
I’ve been looking into a solution where Firefox can support new viewport classes
such as / svh / Ivh/ dvh / svw / Ivw / dvw vi / svi / Ivi / dvi / vb / svb / Ivb / dvb /
svmin / Ivmin / dvmin / svmax / Ivmax / dvmax.

In iOS 15.5 WebKit was updated with the method
setMinimumViewportInset:maximumViewportInset: which we supposedly can
use to tell websites which small and large viewport is.

What are viewports? It’s the visible area a website can draw it’s content on.

Are there multiple viewports? When scrolling, most of the mobile browsers
enlarge their widow by hiding the toolbar, or the urlbar and that offers users a
larger area see more content. (check the following screenshot from the WWDC
talk)

How does Firefox work now?

I’ve been using this website for testing.

https://interop-2022-viewport.netlify.app/combined/viewport-units/


Safari Firefox

We can see everything looks similar when we first load the website. The
difference appear when we start scrolling.



We can see on Safari, svh keeps the height of the smallest height of the
viewport, while on Firefox there’s no concept of a small viewport and the bar
grows with the screen.



So I started with a naive way of configuring the viewport at webkit creation. So I
added this piece of code.

let minimum = UIEdgeInsets(top: 0, left: 0, bottom: 0, right: 0)
let maximum = UIEdgeInsets(top: 52, left: 0, bottom: 80, right: 0)
if #available(iOS 15.5, *) {
webView.setMinimumViewportInset(minimum, maximumViewportInset: maximum)

}
52 for the header, and 80 for the toolbar.

The current configuration appears to be implemented eagerly, leading to the
need for a potential solution. One option to consider is adjusting the constraints
for the WebKit container. Currently, the container's top is anchored to the bottom



of the URL bar, and the container's bottom is connected to the top toolbar. As
scrolling occurs, the height of auxiliary containers decreases, while the WebKit
height expands.
Alternatively, I attempted to address the issue by incorporating insets into the
TabScrollingController. However, this approach proves challenging to manage
due to the presence of gestures that incrementally minimize the toolbars, as well
as flicks that dynamically show or hide them based on scroll velocity.


