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Abstract:  

Financial market prediction remains a significant challenge due to inherent complexity, non-linearity, and noise. 
Traditional models often struggle to capture the full dynamics, including periods of stability, sudden shifts, and 
underlying cyclical behaviors. This paper introduces a novel hybrid methodology, termed the 
Quantum-Lyapunov Market Model (QLMM), which integrates concepts from quantitative finance, dynamical 
systems theory (Lyapunov stability, bifurcation, chaos), and quantum mechanics formalism. By representing the 
market state probabilistically using a quantum-inspired wave function and constraining this probability 
distribution with a Lyapunov function quantifying market instability, the model aims to generate predictions 
reflecting both cyclical trends and market stability conditions. We provide a detailed mathematical derivation of 
the model's components, discuss its implementation, practical applications, interpretational value, inherent 
limitations, and suggest avenues for future research. 
 
Keywords: Quantitative Finance, Market Prediction, Lyapunov Stability, Quantum Finance, Econophysics, 
Chaos Theory, Fourier Analysis, Volatility Modeling. 
 

1. Introduction 
Financial markets exhibit characteristics of complex adaptive systems, driven by the interactions of numerous 
agents with varying strategies, expectations, and risk tolerances (Mantegna & Stanley, 2000). This complexity 
leads to emergent phenomena like trends, bubbles, crashes, and stochastic volatility, making accurate prediction 
exceptionally difficult. While traditional quantitative strategies rely on statistical arbitrage, trend following, mean 
reversion, and factor modeling (Chan, 2013), they often operate under assumptions (e.g., stationarity, Gaussian 
distributions) that are frequently violated in real markets (Mandelbrot, 1963). 
 
Recent decades have seen increased interest in applying concepts from physics and complex systems theory to 
finance (Econophysics). Ideas from chaos theory suggest sensitive dependence on initial conditions and potential 
for unpredictable behavior (Peters, 1994). Stability analysis, particularly using Lyapunov functions, offers tools 
to assess the tendency of a system to return to an equilibrium state after a perturbation (LaSalle & Lefschetz, 
1961). Furthermore, the probabilistic nature of quantum mechanics provides a mathematical framework that 
resonates with the inherent uncertainty in market outcomes (Baaquie, 2004). 
 
This paper analyzes a specific implementation (referred to hereafter as the QLMM) that synthesizes these diverse 
concepts. It models the market price not as a single deterministic trajectory but as a probability distribution 
derived from a quantum-like wave function. This distribution is then "shaped" or constrained by a Lyapunov 
function designed to represent market stability, effectively suppressing probabilities associated with highly 
unstable states (large deviations from trend or high volatility). The objective is to leverage the strengths of each 
theoretical domain: identifying cycles (Fourier Analysis), assessing stability (Lyapunov), and representing 
uncertainty probabilistically (Quantum Formalism). 
 



 

The objective is to leverage the strengths of each theoretical domain: identifying cycles (Fourier Analysis, 
possibly linked to economic or behavioral cycles), assessing stability (Lyapunov, reflecting risk perception and 
equilibrium reversion tendencies), and representing uncertainty probabilistically. It is crucial to emphasize that 
this model employs quantum mechanics formalism primarily as a mathematical analogy and a structuring 
framework. The goal is not to assert that financial markets obey quantum physics principles fundamentally, nor 
does the current formulation explicitly rely on uniquely quantum phenomena like destructive interference in 
shaping the final probability distribution. Rather, the wave function construct is a convenient and powerful 
method for superimposing multiple cyclical components and incorporating phase information derived from 

market data. The resulting probability amplitude (  serves as a base model reflecting market dynamics, |ψ2|)
which is then explicitly modulated by a classical stability constraint derived from economic risk considerations. 
This approach seeks to bridge the gap between purely data-driven pattern recognition and underlying economic 
drivers using physics analogies as structured framework for interpretation. 
 

2. Theoretical Framework 
The QLMM draws upon several distinct theoretical pillars: ​
 
2.1 Market Dynamics as a Complex System: Markets are viewed not just as random walks but as systems with 
memory, feedback loops, and potential for emergent collective behavior. Price series reflect this underlying 
complexity. 
 
2.2 Stability Theorems and Lyapunov Functions: Originating in dynamical systems, a Lyapunov function  𝑉(𝑥)
helps determine the stability of an equilibrium point (e.g., ). Key properties include  for𝑥 = 0 𝑉(𝑥) > 0

, , and  along system trajectories. A decreasing  indicates convergence towards  𝑥 ≠ 0 𝑉(0) = 0  𝑑𝑉
𝑑𝑡 = 0 𝑉

equilibrium. In finance, this concept can be adapted heuristically: an "equilibrium" might be a moving average 
trend, and "instability" can be related to deviations from this trend and/or high volatility (Gaffeo et al., 2003). 
The QLMM uses a custom Lyapunov function to quantify market "stress" or deviation from a perceived stable 
state. 
 
2.3 Bifurcation and Chaos Theory: These theories study how small changes in system parameters can lead to 
qualitative shifts (bifurcations) in behavior, potentially leading to complex, unpredictable (chaotic) dynamics. 
While the QLMM doesn't explicitly model bifurcations, the concept informs the understanding that markets 
can transition between different regimes (e.g., trending vs. ranging, low vs. high volatility), and the Lyapunov 
function attempts to capture aspects of this state. High volatility or large trend deviations could be precursors or 
indicators of regime shifts (Sornette, 2003). 
 
2.4 Quantum Physics Concepts (Analogy): The QLMM borrows the mathematical formalism of quantum 

mechanics, specifically the Wave Function . A complex-valued function whose squared magnitude  (ψ) (|ψ|2)



 

represents probability density (Born rule). Here,  describes the probability amplitude for the market price ψ(𝑍)
. 𝑍

 
Superposition: The total wave function is a sum (superposition) of multiple simpler waves (e.g., plane waves exp

), representing the simultaneous potential for different market behaviors or cycles. [𝑖(𝑘𝑍 − ω𝑡 + φ)]
Parameters: k (wave number, spatial frequency in price),  (angular frequency, temporal frequency),  (phase ω φ
shift), and A (amplitude) are parameters derived from market data. This framework allows modeling price 
evolution probabilistically (Haven, 2002). It's crucial to note this is a mathematical analogy, not a claim of 
underlying quantum processes in markets. 
 
2.5 Quantitative Strategy Elements: The model incorporates standard quant concepts like volatility measured as 
the variance (or standard deviation) of recent returns, indicating risk or uncertainty, trends estimated using a 
moving average, representing a short-term equilibrium or expected price level, and frequency analysis using the 
Fast Fourier Transform (FFT) to decompose price fluctuations into dominant cyclical frequencies. 
 

3. Mathematical Methodology: The Quantum-Lyapunov Market Model (QLMM) 
The QLMM is constructed through a sequence of mathematical steps, processing historical price data to yield a 
probabilistic forecast constrained by stability considerations. 
 
3.1 Data Representation: Let the observed historical closing prices be a discrete time series 

, where  is the price at time step . The model aims to predict the probability 𝑃 = 𝑝
1
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2
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distribution  for the price  at a future time, notionally . 𝑃(𝑍) 𝑍 𝑡 = 𝑁 − 1
 
3.2 Core Financial Metrics: Key indicators of the recent market state are calculated: Simple Returns : (𝑟

𝑖
)

Relative price changes are calculated for :  𝑖 = 2,  ...,  𝑁
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Volatility ( ): The recent market volatility is quantified as the population variance of the last  returns (where σ

𝑡
𝑊

is the moving window size):  𝑊 
​
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Here,  denotes the mean return over the window .  represents the dispersion or 𝑟‾ [𝑁 − 𝑊 + 1,  𝑁] σ
𝑡

uncertainty in recent price movements. 



 

 
Trend : A short-term equilibrium or trend level is estimated using the Simple Moving Average (SMA) of  (𝑍

𝑡𝑟𝑒𝑛𝑑
)

the last  prices: 𝑊

 𝑍
𝑡𝑟𝑒𝑛𝑑

= 𝑆𝑀𝐴
𝑤

(𝑃) = ( 1
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3.3 Lyapunov Function for Market Instability : Inspired by stability theory, a function  is (𝑉(𝑍)) 𝑉(𝑍)
constructed to heuristically quantify the "instability" associated with a potential future price , given the current 𝑍
market context : (σ

𝑡
, 𝑍

𝑡𝑟𝑒𝑛𝑑
)

 

  𝑉(𝑍
𝑡𝑟𝑒𝑛𝑑

, σ
𝑡
) = α(𝑍 − 𝑍

𝑡𝑟𝑒𝑛𝑑
)2 + βσ

𝑡

​

The term  acts as a quadratic potential, penalizing deviations from the estimated trend α(𝑍 − 𝑍
𝑡𝑟𝑒𝑛𝑑

)2

 scales this penalty. The term  adds a penalty proportional to the current market volatility 𝑍
𝑡𝑟𝑒𝑛𝑑

.  α > 0 βσ
𝑡

, reflecting the inherent instability of high-volatility regimes.  scales this contribution. (σ2
𝑡
)  β > 0

provides a scalar measure where higher values correspond to states considered less stable or probable based 𝑉(𝑍) 
on trend deviation and prevailing volatility. The constants  and  (e.g., 0.05 and 0.02 in the implementation)  α  β
are model hyperparameters weighting these factors. 
 
3.4 Frequency Domain Analysis ( ): To capture cyclical behaviors, the Discrete Fourier Transform (DFT) is ω

𝑗

applied to the detrended price series . 𝑝'
𝑖

= 𝑝
𝑖

− 𝑚𝑒𝑎𝑛(𝑃)

 

DFT Calculation: , for frequencies .​𝑌
𝑓

= 𝐷𝐹𝑇(𝑝')
𝑓

=
𝑛=0

𝑁−1

∑ 𝑝'
𝑛

· 𝑒𝑥𝑝(− 2π𝑖 𝑓𝑛
𝑁 ) 𝑓 = 0, …, 𝑁 − 1

 

Power Spectrum: The power spectral density  reveals the contribution of each frequency 𝑆
𝑓

= |𝑌
𝑓
|2

component.​
 
Dominant Frequencies: The indices  corresponding to the M largest peaks in  (excluding , the 𝑓

𝑝𝑒𝑎𝑘,𝑗
𝑆

𝑓
𝑓 = 0

DC component;  in the implementation) are identified.​𝑀 = 3
 
Angular Frequencies: These are converted to angular frequencies (radians per time step): 



 

  for . These  represent the dominant temporal frequencies of market oscillations ω
𝑗

=
2π𝑓

𝑝𝑒𝑎𝑘,𝑗

𝑁 𝑗 = 1,  ...,  𝑀 ω
𝑗

within the observed data window.​
 
3.5 Quantum-Inspired Wave Function ( ): A complex-valued wave function ) is constructed using ψ(𝑍, 𝑡)  ψ(𝑍, 𝑡)
the superposition principle, combining M plane waves associated with the dominant frequencies:​
 

[A ] ψ(𝑍, 𝑡) =
𝑗=1

𝑀

∑ · 𝑒
𝑖(𝑘

𝑗
𝑍−ω

𝑗
𝑡+ϕ

𝑗
)

 
The parameters are determined heuristically at the time of prediction (based on data up to ): 𝑃

𝑁

Amplitude (A): . This heuristic choice dampens the wave amplitude in high volatility ( ) 𝐴 = 𝑒𝑥𝑝(− σ
𝑡
) σ

𝑡

environments, reflecting reduced certainty or momentum.​
 

Wave Number ( ):   for all . This strong heuristic links the spatial 𝑘
𝑗

𝑘
𝑗

= 𝑘 = 𝑟
𝑁

=
𝑝

𝑁
−𝑝

𝑛−1

𝑝
𝑁−1

𝑗 = 1,  ...,  𝑀

frequency k (in price  space) directly and solely to the most recent single-period return, interpreting it as the 𝑍
dominant market "momentum" affecting all considered cycles.​
 
Angular Frequencies ( ): Obtained from the FFT analysis (Section 3.4). ω

𝑗

Phase Shifts : Calculated to potentially align the wave component with the very recent price direction. An (ϕ
𝑗
)

estimate of recent slope  is used: . 𝑑𝑍
𝑑𝑡 𝑟𝑒𝑐𝑒𝑛𝑡

≈ 𝑚𝑒𝑎𝑛(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑝)[𝑁 − 10: 𝑁]) ϕ
𝑗

= 𝑡𝑎𝑛−1(
( 𝑑𝑍

𝑑𝑡 )
𝑟𝑒𝑐𝑒𝑛𝑡

𝑘
𝑗

)

This choice links the phase to the ratio of recent price velocity and the wave number .​𝑘
 
Time ( ): For prediction at the next step,  is typically considered  (representing one time unit forward). 𝑡 𝑡  𝑡 = 1
The wave function is evaluated over a range of potential future prices Z at this fixed future time :​𝑡

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
= 1

 

 ψ(𝑍, 𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

) = 𝐴
𝑗=1

𝑀

∑ 𝑒𝑥𝑝[𝑖(𝑘
𝑗
𝑍 − ω

𝑗
𝑡

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
+ ϕ

𝑗
)]

 
3.6 Constrained Probability Density ( ): The final probability density for the future price  combines the 𝑃(𝑍) 𝑍
quantum probability postulate (Born rule) with the stability constraint imposed by the Lyapunov function: 

Raw Quantum Probability: . This represents the probability density 𝑃
𝑟𝑎𝑤

(𝑍, 𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

) = |ψ(𝑍, 𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

)|2

derived purely from the wave function superposition.​
 



 

Lyapunov Constraint Factor: . This 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑍) = 𝑒𝑥𝑝[− 𝑉(𝑍)] = 𝑒𝑥𝑝[− (α(𝑍 − 𝑍
𝑡𝑟𝑒𝑛𝑑

)2 + βσ
𝑡

factor exponentially suppresses the probability of states Z deemed unstable (far from or occurring in high 𝑍
𝑡𝑟𝑒𝑛𝑑

 

).​σ
𝑡

 
Constrained Probability Density: The final density function is the product: 
 

​𝑃(𝑍) = 𝑁
𝑛𝑜𝑟𝑚

· 𝑃
𝑟𝑎𝑤

(𝑍, 𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

) * 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑍)

​

​𝑃(𝑍) = 𝑁
𝑛𝑜𝑟𝑚

· |ψ(𝑍, 𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

)| · 𝑒𝑥𝑝[− (α(𝑍 − 𝑍
𝑡𝑟𝑒𝑛𝑑

)2 + βσ
𝑡
)

 

Where  is a normalization constant such that    over the relevant range of . (Note: The 𝑁
𝑛𝑜𝑟𝑚

∫ 𝑃(𝑍)𝑑𝑍 = 1 𝑍

normalization constant is not required for finding the maximum and is omitted in the prediction step of the 
code).​
 
3.7 Prediction ( ): The model's prediction for the next price step, , is the mode of the constrained 𝑍

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑍

𝑝𝑟𝑒𝑑𝑖𝑐𝑡

probability density function, i.e., the value of Z that maximizes :​𝑃(𝑍)
 

​𝑧
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑧
𝑃(𝑍)

 

​𝑍
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

​ = 𝑎𝑟𝑔𝑚𝑎𝑥​
𝑍
[∣ψ(𝑍, 𝑡

𝑝𝑟𝑒𝑑𝑖𝑐𝑡
​)∣2⋅𝑒𝑥𝑝(− [α(𝑍 − 𝑍

𝑡𝑟𝑒𝑛𝑑
)2 + βσ

𝑡
​])] 

 
This identifies the most probable future price according to the model, considering both the cyclical projections   
( ) and the stability filter . ψ (𝑒𝑥𝑝[− 𝑉(𝑍)])
 
 

4. Implementation, Interpretation, and Application 
4.1 Implementation: The mathematical steps are implemented in Python via functions like 
compute_volatility, moving_average, lyapunov_function, 
compute_market_frequencies, compute_phase_shifts, 
constrained_probability_density, and quantum_market_prediction, using libraries 
such as NumPy for numerical operations and SciPy for FFT and peak detection.​
 
4.2 Practical Application: The predicted_price ( ) can serve as a short-term directional forecast 𝑍

𝑝𝑟𝑒𝑑𝑖𝑐𝑡

or price target. The shape of the  distribution offers additional insight: a sharp peak implies higher 𝑃(𝑍)



 

confidence, whereas a broad or multimodal distribution suggests greater uncertainty or conflicting signals. The 
Lyapunov value  itself could function as a dynamic risk indicator.​𝑉(𝑍)
 
4.3 Market Insights & Interpretation: This model provides a lens viewing markets through: 
Factor Interplay: Explicitly models interactions between cyclical patterns ( ), momentum , trend (ω

𝑗
(𝑘

𝑘
, ϕ

𝑗
)

, and volatility ( ). 𝑍
𝑡𝑟𝑒𝑛𝑑

) σ
𝑡

 
Stability Filtering: The Lyapunov constraint  formalizes the intuition that extreme price 𝑒𝑥𝑝[− 𝑉(𝑍)]
movements or those during high volatility might be less sustainable, effectively filtering the raw "quantum" 
possibilities towards more stable outcomes.​
 
Probabilistic Viewpoint: Emphasizes a distribution of potential outcomes rather than a single point forecast, 
acknowledging inherent market uncertainty.​
 
4.4 Translation to Market Circumstances: 
High Volatility ( high): Dampens , increases , potentially broadening  and lowering confidence, σ

𝑡 
𝐴 𝑉(𝑍) 𝑃(𝑍)

signaling higher risk.​
 
Strong Trend Deviation (  large): Penalized by , making predictions far from the moving average 𝑍 − 𝑍

𝑡𝑟𝑒𝑛𝑑
𝑉(𝑍)

less likely unless strongly supported by cyclical ( ) and momentum ( ) terms in . ω
𝑗

𝑘
𝑗

ψ

Shifting Cycles (  changes): Changes in dominant frequencies identified by FFT could indicate regime shifts or ω
𝑗

alterations in market dynamics. 
 
 
 
 
 

5. Limitations and Future Directions:  
Despite its novel synthesis, the QLMM has significant limitations: ​
​

Heuristic Parameterization: Several key definitions ( , the specific 𝐴 = 𝑒𝑥𝑝(− σ
𝑡
), 𝑘

𝑗
= 𝑟

𝑁
,  ϕ

𝑗
= 𝑡𝑎𝑛−1(...)

form and coefficients ,  of   are heuristic choices lacking rigorous derivation from first principles α  β 𝑉(𝑍)
(financial or physical). Their validity rests on empirical performance. 
 
Sensitivity: Model outputs are likely sensitive to hyperparameters like window length , number of frequencies 𝑊
M, and the Lyapunov coefficients , .  α β
 



 

Stationarity Assumptions: While dynamic, the use of FFT and moving averages within fixed windows implicitly 
assumes some degree of local stationarity, which may be violated during market shocks or regime changes.​
 
Quantum Analogy Limits: The quantum formalism is used mathematically; asserting that markets are quantum 
systems is unwarranted. Concepts like entanglement or measurement collapse are not employed, and are simply 
a means to enhance interpretation of market movement.​
 
Lack of Economic Basis: The model is primarily data-driven and physics-inspired, lacking direct input from 
fundamental economic variables or behavioral finance insights.​
 
Overfitting Risk: Deriving multiple parameters and making predictions from the same recent data window 
creates a risk of overfitting, potentially leading to poor generalization out-of-sample.​
 
Computational Aspects: While FFT is efficient, the evaluation of  over a range of Z can be demanding for 𝑃(𝑍)
high-frequency applications.​
 
Future Directions:  
 

-​ Parameter Optimization & Validation: Rigorously optimize alpha, beta, W, M, and potentially the 
functional forms for , ,  using walk-forward analysis and cross-validation on diverse datasets. 𝐴 𝑘 ϕ
 

-​ Alternative Basis Functions: Explore wavelets or other time-frequency representations instead of 
FFT/plane waves to better handle non-stationarity and localized events. 
 

-​ Richer Lyapunov Functions: Incorporate additional state variables (e.g., trading volume, order book 
liquidity) into  for a more comprehensive stability measure. 𝑉(𝑍)
 

-​ Integration of External Factors: Explore methods to modulate model parameters ( ) 𝐴, 𝑍
𝑡𝑟𝑒𝑛𝑑

,  𝑉(𝑍)

based on macroeconomic data, news sentiment, or other exogenous variables. 
 

-​ Rigorous Backtesting: Conduct extensive, unbiased backtesting across various assets, timeframes, and 
market conditions, accounting for transaction costs, to assess practical predictive power and 
profitability. 
 

-​ Comparative Benchmarking: Compare performance against established quantitative models (e.g., 
ARIMA, GARCH, LSTMs) and simpler benchmarks. 

 

6. Conclusion: 



 

The Quantum-Lyapunov Market Model (QLMM) presents a sophisticated synthesis of quantitative finance 
metrics, dynamical systems stability concepts, and quantum mechanical formalism applied to financial 
forecasting. By generating a probabilistic price outlook derived from market cycles ( ) and subsequently ψ
filtering this through a stability lens based on trend deviation and volatility  (exp[-V(Z)]), the (𝑒𝑥𝑝[− 𝑣(𝑍)])
model attempts to capture a nuanced picture of market dynamics. While the reliance on specific heuristic 
choices for parameter linkage warrants careful validation and potential refinement, the QLMM framework 
exemplifies the potential of interdisciplinary approaches. It offers a unique perspective that explicitly 
incorporates notions of equilibrium, cyclicality, momentum, and stability, potentially providing valuable 
insights beyond simple point forecasts. Robust empirical testing is crucial to ascertain its practical utility in 
navigating the complexities of real-world financial markets. 
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