

Implementation Guide for Registration and Authorization
of Consumer Facing Health Apps
DRAFT 2020-08-11

This implementation guide describes how to extend OAuth 2.0 and the HL7 SMART App Launch
Framework using UDAP workflows for consumer-facing apps that implement the authorization code
flow. This guide covers automating the client application registration process and increasing
security using asymmetric cryptography to authenticate ecosystem participants. This guide also
provides a grammar for communicating metadata critical to healthcare information exchange.

The requirements described in this guide are intended to align with the proposed solutions of the
ONC FHIR at Scale Task Force’s Security Tiger Team, the security model outlined in the draft
Carequality FHIR IG, and implementation guide drafts incorporating UDAP workflows under
development by CARIN and the Da Vinci Project.

Note: The proposed URL for publication of this draft is:
www.udap.org/udap-ig-consumer-facing-health-apps.html

1 JSON Web Token requirements

JSON Web Tokens (JWTs) shall conform to the mandatory requirements of RFC 7519. All JWTs defined in

this guide are JSON Web Signatures and shall additionally conform to the mandatory requirements of

RFC 7515. All JWTs SHALL be serialized using JWS Compact Serialization as per Section 7.2 of RFC 7515.

Signature algorithm identifiers used in this guide are defined in Section 3.1 of RFC 7518.

Implementations supporting the UDAP workflows defined in this guide SHALL support RS256. In addition

to the algorithm required by the referenced UDAP specifications, this guide also permits the use of

ES256 and ES384. Implementations SHOULD support ES256, and MAY support ES384.

All JWTs defined in this guide SHALL contain a Javascript Object Signing and Encryption (JOSE) header

conforming to the following requirements:

JWT Header Values

http://www.udap.org/udap-ig-consumer-facing-health-apps.html

alg required A string containing the JWA algorithm used for signing the JWT. For

example:

"RS256"

x5c required An array of one or more strings containing the X.509 certificate or

certificate chain [RFC5280], with the leaf certificate corresponding to

the key used to digitally sign the JWT. Each string in the array is a

base64-encoded DER representation of the certificate, with the leaf

certificate appearing as the first element (or only) of the array.

See https://tools.ietf.org/html/rfc7515#section-4.1.6

2 Discovery

2.1 Discovery of Endpoints

A FHIR Server SHALL make its Authorization Server’s authorization, token, and registration endpoints,

and associated metadata, available for discovery by client applications. Servers SHALL allow access to the

following metadata URLs to unregistered client applications and without requiring client authentication,

where [baseURL] represents the base FHIR URL for the FHIR server:

1.​ A CapabilityStatement at [baseURL]/metadata. The CapabilityStatement SHALL include:

a.​ the OAuth 2.0 URIs Extension on the rest.security element of the as per Section 3.1 of

the HL7 SMART App Launch Framework, and list the “authorize”, “token”, and “register”

components.

b.​ the following codes in the rest.security.service list:

http://hl7.org/fhir/restful-security-service|SMART-on-FHIR and (if UDAP workflows are

supported) http://fhir.udap.org/CodeSystem/capability-rest-security-service|UDAP.

2.​ SMART configuration metadata at [baseURL]/.well-known/smart-configuration. The metadata

SHALL be structured as per Section 4 of the HL7 SMART App Launch Framework, and include the

respective endpoint URLs for the “authorization_endpoint”, “token_endpoint”, and

“registration_endpoint” keys, and “private_key_jwt” in the array of endpoint authentication

methods for the “token_endpoint_auth_methods” key.

3.​ UDAP metadata as defined below at [baseURL]/.well-known/udap, structured as a JSON object

as per section 1 of UDAP Dynamic Client Registration and discussed further in Section 2.2.

https://tools.ietf.org/html/rfc7515#section-4.1.6
http://www.hl7.org/fhir/smart-app-launch/conformance/index.html#declaring-support-for-oauth2-endpoints
http://www.hl7.org/fhir/smart-app-launch/conformance/index.html#declaring-support-for-oauth2-endpoints
http://www.hl7.org/fhir/smart-app-launch/conformance/index.html#using-well-known
http://www.udap.org/udap-dynamic-client-registration.html

2.2 Required UDAP Metadata

The metadata returned from the UDAP metadata endpoint defined above SHALL represent the server’s

capabilities with respect to the UDAP workflows described in this guide. If no UDAP workflows are

supported, the server SHALL return a 404 Not Found response to the metadata request. For elements

that are represented by JSON arrays, clients SHALL interpret an empty array value to mean that the

corresponding capability is NOT supported by the server.

udap_versions_supported required A fixed array with one string element:

["1"]

udap_certifications_supported recommended An array of zero or more certification

URIs supported by the Authorization

Server, e.g.:

["https://www.example.com/udap/prof

iles/example-certification"]

udap_certifications_required recommended An array of zero or more certification

URIs required by the Authorization

Server, e.g.:

["https://www.example.com/udap/prof

iles/example-certification"]

grant_types_supported recommended An array of one or more grant types

supported by the Authorization Server,

e.g.:

["authorization_code", "refresh_token"]

scopes_supported recommended An array of one or more strings

containing scopes supported by the

Authorization Server, as defined at

http://hl7.org/fhir/smart-app-launch/sc

opes-and-launch-context/index.html.

The server MAY support different

http://hl7.org/fhir/smart-app-launch/scopes-and-launch-context/index.html
http://hl7.org/fhir/smart-app-launch/scopes-and-launch-context/index.html

subsets of these scopes for different

client types or entities. E.g.:

["openid", "launch/patient",

"system/Patient.read",

"system/AllergyIntolerance.read",

"system/Procedures.read"]

authorization_endpoint recommended A string containing the URL of the

Authorization Server’s authorization

endpoint.

token_endpoint recommended A string containing the URL of the

Authorization Server’s token endpoint if

the server supports UDAP JWT-Based

Client Authentication.

token_endpoint_auth_methods

_supported

recommended Fixed array with one value:

["private_key_jwt"]

token_endpoint_auth_signing_

alg_values_supported

recommended Array of strings listing one or more JWA

algorithm identifiers supported by the

Authorization Server for validation of

signed JWTs submitted to the token

endpoint for client authentication. For

example:

["RS256", "ES384"]

registration_endpoint recommended A string containing the URL of the

Authorization Server’s registration

endpoint if the server supports UDAP

Dynamic Client Registration.

registration_endpoint_jwt_signi

ng_alg_values_supported

recommended Array of strings listing one or more JWA

algorithm identifiers supported by the

Authorization Server for validation of

signed software statements,

certification, and endorsements

submitted to the registration endpoint.

For example:

["RS256", "ES384"]

3 Client Application Registration

Before FHIR data requests can be made, Client applications operators SHALL register each of their

applications with the Authorization Servers identified by the FHIR servers with which they wish to

exchange data. Client applications SHALL use the client_id assigned by an Authorization Server in

subsequent authorization and token requests to that server.

Authorization Servers SHOULD support dynamic registration as specified in the UDAP Dynamic Client

Registration profile DRAFT 2019-05-15 at http://www.udap.org/udap-dynamic-client-registration.html

with the additional options and constraints defined in this guide. Confidential clients, i.e. conventional

server-based web applications that can maintain a secret, MAY use this dynamic client registration

protocol as discussed further in Sections 3.1 through 3.3 to obtain a client_id. Other client types SHOULD

follow the manual registration processes for each Authorization Server. Future versions of this guide may

add support for dynamic client registration by native device applications or public clients which cannot

protect a private key.

3.1 Software Statement

To register dynamically, the client application shall first construct a software statement as per section 2

of UDAP Dynamic Client Registration.

The software statement SHALL contain the required header elements specified in Section 1 of this guide

and the JWT claims listed in the table below. The software statement SHALL be signed by the client

application operator using the signature algorithm identified in the ‘alg’ header of the software

statement and with the private key that corresponds to the public key listed in the client’s X.509

certificate identified in the ‘x5c’ header of the software statement.

http://www.udap.org/udap-dynamic-client-registration.html

Software Statement JWT Claims

iss required Issuer of the JWT -- unique identifying client URI.

This SHALL match the value of a

uniformResourceIdentifier entry in the Subject

Alternative Name extension of the client’s

certificate included in the ‘x5c’ JWT header

sub required Same as ‘iss’. In typical use, the client application

will not yet have a client_id from the Authorization

Server

aud required The Authorization Server's "registration URL" (the

same URL to which the registration request will be

posted)

exp required Expiration time integer for this software

statement, expressed in seconds since the "Epoch"

(1970-01-01T00:00:00Z UTC). The ‘exp’ time SHALL

be no more than 5 minutes after the value of the

‘iat’ claim.

iat required Issued time integer for this software statement,

expressed in seconds since the “Epoch”

jti required A nonce string value that uniquely identifies this

software statement. This value SHALL NOT be

reused by the client app in another software

statement or authentication JWT before the time

specified in the “exp” claim has passed

client_name required A string containing the human readable name of

the client application

redirect_uris conditional An array of one or more redirection URIs used by

the client application. This claim SHALL be present

if grant_types includes "authorization_code" and

this claim SHALL be absent otherwise. Each URI

SHALL use the https scheme.

contacts required An array of URI strings indicating how the data

holder can contact the app operator regarding the

application. The array SHALL contain at least one

valid email address using the mailto scheme, e.g.

["mailto:operations@example.com"]

logo_uri conditional A URL string referencing an image associated with

the client application, i.e. a logo. If grant_types

includes "authorization_code", client applications

SHALL include this field, and the authorization

server MAY display this logo to the user during the

authorization process. The URL SHALL use the

https scheme and reference a PNG, JPG, or GIF

image file, e.g.

"https://myapp.example.com/MyApp.png"

grant_types required Array of strings, each representing a requested

grant type, from the following list:

"authorization_code", "refresh_token". The value

"refresh_token" SHALL NOT be present in the array

unless "authorization_code" is also present

response_types conditional Array of strings. If grant_types contains

"authorization_code", then this element SHALL

have a fixed value of ["code"], and SHALL be

omitted otherwise

token_endpoint_auth

_method

required Fixed string value: "private_key_jwt"

scope required String containing a space delimited list of scopes

requested by the client application for use in

subsequent requests. The Authorization Server

MAY consider this list when deciding the scopes

that it will allow the application to subsequently

request

The unique client URI used for the 'iss' claim SHALL match the uriName entry in the Subject Alternative

Name extension of the client app operator's X.509 certificate, and SHALL uniquely identify a single client

app operator and application over time. The software statement is intended for one-time use with a

single OAuth 2.0 server. As such, the 'aud' claim SHALL list the URL of the OAuth Server's registration

endpoint, and the lifetime of the software statement ('exp' minus 'iat') SHALL be 5 minutes.

3.2 Example

Example software statement, prior to Base64URL encoding and signature (non-normative, the “.”

between the header and claims objects is a convenience notation only):

{

 "alg": "RS256",

 "x5c": ["MIEF.....remainder omitted for brevity"]

}.{

 "iss": "http://example.com/my-app",

 "sub": "http://example.com/my-app",

 "aud": "https://oauth.example.net/register",

 "exp": 1597186041,

 "iat": 1597186341,

 "jti": "random-value-109a3bd72"

 "client_name": "My Consumer-Facing App",

 "redirect_uris": ["https://myapp.example.com/redirect"],

 "contacts": ["mailto:operations@example.com"],

 "logo_uri": "https://myapp.example.com/MyApp.png",

 "grant_types": ["authorization_code"],

 "response_types": ["code"],

 "token_endpoint_auth_method": "private_key_jwt",

 "scope": ["user/Patient.read", "user/Procedure.read"]

}

Request Body

The registration request is submitted by the client to the Authorization Server’s registration endpoint.

POST /register HTTP/1.1

Host: oauth.example.net

Content-Type: application/json

{

 "software_statement": "...the signed software statement JWT...",

 "certifications": ["...a signed certification JWT…"]

 "udap": "1"

}

The Authorization Server SHALL validate the registration request as per Section 4 of UDAP Dynamic

Client Registration. This includes validation of the JWT payload and signature, validation of the X.509

certificate chain, and validation of the requested application registration parameters. If a new

registration is successful, the Authorization Server SHALL return a registration response with a HTTP 201

response code as per Section 5.1 of UDAP Dynamic Client Registration, including the unique client_id

assigned by the Authorization Server to that client app. If a new registration is not successful, e.g. it is

rejected by the server for any reason, the Authorization Server SHALL return an error response as per 5.2

of UDAP Dynamic Client Registration.

3.3 Inclusion of Certifications And Endorsements

Authorization Servers MAY support the inclusion of certifications and endorsements by client application

operators using the certifications framework outlined in UDAP Certifications and Endorsements for Client

Applications. Authorization Servers SHALL ignore unsupported or unrecognized certifications.

Authorization Servers MAY require registration requests to include one or more certifications. If an

Authorization Server requires the inclusion of a certain certification, then the Authorization Server SHALL

communicate this by including the corresponding certification URI in the udap_certifications_required

element of its UDAP metadata.

3.4 Modifying and Cancelling Registrations

The client URI in the Subject Alternative Name of an X.509 certificate uniquely identifies a single

application and its operator over time. Thus, a previously registered client application MAY request a

modification of its previous registration with an Authorization Server by submitting another registration

request to the same Authorization Server’s registration endpoint using a certificate with a Subject

Alternative Name client URI entry matching the original registration request.

If an Authorization Server receives a valid registration request with a software statement containing the

same ‘iss’ value as an earlier software statement but with a different set of claims or claim values, or

with a different (possibly empty) set of optional certifications and endorsements, the server SHALL treat

this as a request to modify the registration parameters for the client application by replacing the

information from the previous registration request with the information included in the new request. For

http://www.udap.org/udap-certifications-and-endorsements.html
http://www.udap.org/udap-certifications-and-endorsements.html

example, an Application operator may use this mechanism to update a redirection URI or to remove or

update a certification. If the registration modification request is accepted, the Authorization Server

SHOULD return the same client_id in the registration response as for the previous registration. If it

returns a different client_id, it SHALL cancel the registration for the previous client_id.

If an Authorization Server receives a valid registration request with a software statement that contains

an empty grant_types array from a previously registered application, the server SHOULD interpret this as

a request to cancel the previous registration. A client application SHALL interpret a registration response

that contains an empty grant_types array as a confirmation that the registration for the client_id listed in

the response has been cancelled by the Authorization Server.

If the Authorization Server returns the same client_id in the registration response for a modification

request, it SHOULD also return an HTTP 200 response code. If the Authorization Server returns a new

client_id in the registration response, the client application SHALL use only the new client_id in

subsequent transactions with the Authorization Server.

4 Authorization process

Client applications SHALL obtain an access token for access to FHIR resources by following the OAuth 2.0

authorization code grant flow, as extended by the SMART App Launch Framework, and with the

additional options and constraints discussed in this section.

4.1 Obtaining an authorization code

Client applications SHALL request an authorization code as per section 7.1.1 of the HL7 SMART App

Launch Framework, with the following additional constraints. Client applications are NOT REQUIRED to

include a launch scope or launch context requirement scope. Client applications and servers MAY

optionally support UDAP Tiered OAuth for User Authentication to allow for cross-organizational or third

party user authentication.

Servers SHALL handle and respond to authorization code requests as per section 7.1.2 of the HL7 SMART

App Launch Framework.

4.2 Obtaining an access token

Client applications SHALL exchange authorization codes for access tokens as per section 7.1.3 of the HL7

SMART App Launch Framework, with the following additional options and constraints.

4.2.1 Constructing Authentication Token

If the client app has registered to authenticate using a private key rather than a shared client_secret,

then the client SHALL use its private key to sign an Authentication Token as described in this section, and

http://www.udap.org/udap-user-auth.html

include this JWT in the client_assertion parameter of its token request as described in section 5.1 of

UDAP JWT-Based Client Authentication and detailed further in Section 4.2.2 of this guide.

Authentication Tokens submitted by client apps SHALL conform to the general JWT header requirements

above and SHALL include the following parameters in the JWT claims defined in Section 4 of UDAP

JWT-Based Client Authentication:

Authentication JWT Claims

iss required The unique identifying URI client for this client application and

client app operator. This URI SHALL match the value of a

uniformResourceIdentifier entry in the Subject Alternative Name

extension of the client’s certificate included in the ‘x5c’ JWT

header.

sub required The application's client_id as assigned by the authorization server

during the registration process

aud required The FHIR authorization server's token endpoint URL

exp required Expiration time integer for this authentication JWT, expressed in

seconds since the "Epoch" (1970-01-01T00:00:00Z UTC).

iat required Issued time integer for this authentication JWT, expressed in

seconds since the “Epoch”

jti required A nonce string value that uniquely identifies this authentication

JWT. This value SHALL NOT be reused by the client app in another

authentication JWT before the time specified in the “exp” claim

has passed

The maximum lifetime for an Authentication Token SHALL be 5 minutes, i.e. the value of ‘exp’ minus the

value of ‘iat’ SHALL NOT exceed 300 seconds. The Authorization Server MAY ignore any unrecognized

claims in the Authentication Token. The Authentication Token SHALL be signed and serialized using the

JSON compact serialization method.

4.3 Submitting a token request

For client applications authenticating with a shared secret, the client application and server SHALL follow

the token request and response protocol in Section 7.1.3 of the HL7 SMART App Launch Framework.

Client applications authenticating with a private key and Authentication Token as per Section 4.2 SHALL

submit a POST request to the Authorization Server’s token endpoint containing the following parameters

as per Section 5.1 of UDAP JWT-Based Client Authentication. Client apps authenticating in this manner

SHALL NOT include an HTTP Authorization header or client secret in its token endpoint request. The

token request SHALL include the following parameters:

grant_type required Fixed value: authorization_code

code required The code that the app received from the

authorization server

redirect_uri required The client application’s redirection URI matching the

redirect_uri value included in the initial

authorization endpoint request

client_assertion_type required Fixed value:

urn:ietf:params:oauth:client-assertion-type:jwt-bear

er

client_assertion required The signed Authentication Token JWT

udap required Fixed value: 1

Authorization servers receiving token requests containing Authentication Tokens as above shall validate

and respond to the request as per Sections 6 and 7 of UDAP JWT-Based Client Authentication.

For all successful token requests, the Authorization Server SHALL issue access tokens with a lifetime no

longer than 60 minutes.

5 References

Boston Children's Hospital and Health Level Seven International, “Smart App Launch
Implementation Guide”, Version 1.0.0, Health Level Seven, November 13, 2018.
Hardt, D., Ed., “The OAuth 2.0 Authorization Framework”, RFC 6749, RFC Editor, October
2012.
Jones, M., et al., “JSON Web Signature (JWS)”, RFC 7515, RFC Editor, May 2015.
Jones, M., et al, “JSON Web Token (JWT)”, RFC 7519, RFC Editor, May 2015.
Maas, L., “UDAP Dynamic Client Registration”, Draft Specification, UDAP.org, May 15, 2019.
Maas, L., and Maas, J., “UDAP JWT-Based Client Authentication”, Draft Specification,
UDAP.org, August 14, 2018.

Maas, L., and Maas, J., “UDAP Certifications and Endorsements for Client Applications”, Draft
Specification, UDAP.org, May 15, 2019.
Maas, L., and Maas, J., “UDAP Tiered OAuth for User Authentication”, Draft Specification,
UDAP.org, July 23, 2018.

6 Authors

Luis C. Maas III, EMR Direct

7 Notices

Copyright ©2020 UDAP.org and the persons identified as the document authors. All rights reserved.

UDAP.org grants to any interested party a non-exclusive, royalty-free, worldwide right and license to

reproduce, publish, distribute and display this Draft Specification, in full and without modification, solely

for the purpose of implementing the technology described in this Draft Specification, provided that

attribution is made to UDAP.org as the source of the material and that such attribution does not indicate

an endorsement by UDAP.org.

All Draft Specifications and Final Specifications, and the information contained therein, are provided on

an “AS IS” basis and the authors, the organizations they represent, and UDAP.org make no (and hereby

expressly disclaim any) warranties, express, implied, or otherwise, including but not limited to any

warranty that the use of the information therein will not infringe any rights or any implied warranties of

merchantability or fitness for a particular purpose, and the entire risk as to implementing this

specification is assumed by the implementer. Additionally, UDAP.org takes no position regarding the

validity or scope of any intellectual property or other rights that might be claimed to pertain to the

implementation or use of the technology described in this document or the extent to which any license

under such rights might or might not be available, nor does it represent that it has made any

independent effort to identify any such rights.

	1 JSON Web Token requirements
	2 Discovery
	2.1 Discovery of Endpoints
	2.2 Required UDAP Metadata

	3 Client Application Registration
	3.1 Software Statement
	3.2 Example
	Request Body

	3.3 Inclusion of Certifications And Endorsements
	3.4 Modifying and Cancelling Registrations

	4 Authorization process
	4.1 Obtaining an authorization code
	4.2 Obtaining an access token

	5 References
	6 Authors
	7 Notices

