
Envoy external dependency policy
Author: htuch@google.com
Input from: michael@sooper.org, mattklein123@gmail.com, asraa@google.com
Status: Review
Last updated: 2020-12-3
This document is publicly shared with the Envoy community

Overview
The goal of this document is to formulate a policy for Envoy’s external dependencies; what
criteria must an external dependency meet to be incorporated in Envoy’s build?

Until recently, we’ve had no stance on external dependencies or criteria for determining if a new
external dependency is acceptable. Given the criticality of the supply chain in Envoy’s overall
security posture and a 3x growth in external dependencies in the past 3 years, it’s desirable to
have an explicit policy, ideally machine checkable/enforced, to ensure a high quality bar for new
dependencies, to slow unnecessary growth and to address structural concerns (duplicated
dependencies, known problematic dependencies).

Envoy’s supply chain
A recent survey of Envoy’s supply chain is provided by the “Understanding, maintaining and
securing Envoy's supply chain” EnvoyCon 2020 talk (slides, video). Key points on growth are
recapped below.

A starting point is to observe that an Envoy binary is predominantly composed of code
belonging to 3rd party dependencies. Not all of this code is exercised in practice, but it dwarfs

mailto:htuch@google.com
mailto:michael@sooper.org
mailto:mattklein123@gmail.com
mailto:asraa@google.com
https://static.sched.com/hosted_files/envoycon2020/42/Understanding%2C%20maintaining%20and%20securing%20Envoy%27s%20supply%20chain.pdf
https://www.youtube.com/watch?v=0VRY1FkeKxw


the Envoy-specific code.

We’ve seen 3x growth in these dependencies in the past few years. Even excluding
test/build/miscellaneous dependencies, we now have ~40 external dependencies, roughly half
of which are core and half in extensions. There is no single maintainer who can confidently
speak to usage and project status of all these dependencies.



This growth is problematic, since it is challenging to keep track of:
● Why a dependency exists in Envoy and where it is used. Is it a critical data plane

dependency, or something that is used with trusted inputs?
● How stale a dependency is relative to its upstream.
● Whether any known Common Vulnerabilities and Exposures (CVE) apply to Envoy’s

dependencies at the versions we consume.
● How closely the external dependencies follow best practices, e.g. code reviews,

multi-party governance, two factor authentication (2FA), vulnerability disclosure process,
regular release practices, etc.

We have made some progress recently on a number of fronts:
● Issue #10471 was opened to explore adding a policy to Envoy governing new external

dependencies. This policy proposed in this document aims to fulfil this goal.
● We now track extended metadata in repository_locations.bzl that indicates a number of

useful pieces of information listed below. These are validated using Bazel build graph
analysis and with the help of Continuous Integration (CI) presubmit checks. A table of
external dependencies is included in Envoy’s documentation.

○ use_category: indicating whether a dependency is used in core vs. extensions,
data vs. control plane, etc.

○ release_date: when the version Envoy used was released upstream. This is
validated with the help of the GitHub API.

○ project_{name,desc,url}

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://github.com/envoyproxy/envoy/issues/10471
https://github.com/envoyproxy/envoy/blob/master/bazel/repository_locations.bzl
https://github.com/envoyproxy/envoy/blob/master/tools/dependency/validate.py
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/external_deps
https://www.envoyproxy.io/docs/envoy/latest/
https://github.com/envoyproxy/envoy/blob/master/tools/dependency/release_dates.py


○ version: Machine parsable version identifier.
○ cpe: project Common Platform Enumeration (CPE) (where available)

● We run a heuristic script hourly on AZP to scan against the latest CVE database, for
dependencies where a CPE is available. This is a homebrew effort due to the lack of
standard package management in C++/Bazel and surrounding tools.

● We have opened issues to track some evidently problematic dependencies:
○ Moving from http-parser for the HTTP/1 codec to llhttp (#5155). http-parser is

deprecated and maintainerless, we have discovered security vulnerabilities in the
past here.

○ nghttp2 (HTTP/2 codec) has been identified as problematic for security reasons.
It lacks a strong review culture, has single developer project governance and an
insufficient security vulnerability disclosure process.

○ Eliminating the zlib/zlib-ng duplicated dependencies (#13261).
○ Eliminating MoonJIT (maintainerless, duplicated) in favor of LuaJIT (#13539).
○ Replacing RapidJSON with nlohmann/json (#4705).
○ Removing Curl as a dependency (#11816).

● We have formulated an initial external dependency policy that covers the mechanics of
dependency maintenance and some criteria to consider when evaluating a new
dependency.

● A dedicated group of dependency shepherds is responsible for approving new
dependencies and updates to existing dependencies.

The existing criteria that we informally work with are as follows:
● Does the project have release versions? How often do releases happen?
● Does the project have a security vulnerability disclosure process and contact details?
● Does the project have effective governance, e.g. multiple maintainers, a governance

policy?
● Does the project have a code review culture? Are patches reviewed by independent

maintainers prior to merge?
● Does the project enable mandatory GitHub 2FA for contributors?
● Does the project have evidence of high test coverage, fuzzing, static analysis (e.g.

CodeQL), etc.?

Towards a new supply chain policy
A key problem with our existing policy is that it relies exclusively on subjective assessment, has
no automation and is only weakly enforced. We would benefit from having the policy criteria
appear explicitly as metadata and with additional tooling to enforce properties such as
“dependencies without code reviews are not used on the core data plane”. The policy also does
not distinguish between dependency usage, i.e. the same criteria applies no matter whether we
are considering a dependency for processing gRPC configuration fetches or an HTTP codec.

https://en.wikipedia.org/wiki/Common_Platform_Enumeration
https://github.com/envoyproxy/envoy/blob/master/tools/dependency/cve_scan.py
https://github.com/nodejs/http-parser
https://github.com/nodejs/llhttp
https://github.com/envoyproxy/envoy/issues/5155
https://github.com/envoyproxy/envoy/security/advisories/GHSA-x74r-f4mw-c32h
https://nghttp2.org/
https://github.com/nghttp2/nghttp2/issues/1476#issuecomment-663495970
https://nghttp2.org/documentation/security.html
https://github.com/envoyproxy/envoy/issues/13261
https://github.com/envoyproxy/envoy/issues/13539
https://github.com/nlohmann/json
https://github.com/envoyproxy/envoy/issues/4705
https://github.com/envoyproxy/envoy/issues/11816
https://github.com/envoyproxy/envoy/blob/master/DEPENDENCY_POLICY.md
https://github.com/envoyproxy/envoy/blob/master/DEPENDENCY_POLICY.md#new-external-dependencies
https://github.com/envoyproxy/envoy/blob/master/DEPENDENCY_POLICY.md#dependency-shepherds


A number of initiatives in the wider Open-source software (OSS) supply chain security arena
have been working to formulate scorecards and methods for evaluating OSS projects for best
practices. A brief summary:

● OSSF Security Scorecards: These are fully automatable OSS security best practice
checks that run against a GitHub repository via the GitHub API. Examples include
validating the existence of a security policy, signed releases, OSS-fuzz, pull requests for
changes, etc.

● CII Best Practices: Set of criteria for Free/Libre and Open Source Software (FLOSS)
projects. Self-certifying compliance providing a badge to attest. This provides an
expansive list of criteria which cover everything from project website to cryptographic
algorithms. Relevant criteria includes release versions/notes, CVE assignment,
vulnerability process, static/dynamic analysis, test quality.

● OSSF metrics dashboard brainstorming: Collection of potential criteria for evaluating
OSS project supply chain health with discussion on pros/cons.

● Our Software Dependency Problem (Russ Cox): Reflections on manual criteria for
evaluating software dependencies, e.g. licensing, maintenance, CVE history, code
quality, testing.

Moving beyond Envoy’s existing informal considerations and manual evaluation, we can
supplement the existing Envoy dependency policy with:

● Criteria expressed in the Envoy repository_locations.bzl metadata.
● Machine checking/enforcement of compliance, e.g. via GitHub API.
● An explicit gating function (e.g. code reviews via a PR trail are mandatory), with a

process for making exceptions (e.g. code reviews are known to take place in some other
forum X).

We focus the dependency policy on the data plane below, since this is in the scope of Envoy’s
threat model, while the control plane is generally trusted. One result of this focus is that only
Envoy’s C/C++ dependencies are considered in scope, since our Go/Python dependencies are
typically used in build/test. We also deliberately exclude tooling such as Bazel build rules and
the compiler (Clang and ecosystem); while these are clearly potential attack vectors, the shared
fate with other projects and low rate of historical CVEs suggests that our efforts are best
focussed on linked data plane code.

Proposal

Dependencies must be git canonical or mirrored
Most of Envoy’s dependencies are GitHub-canonical or mirrored on GitHub. Unfortunately, a
handful (e.g. QUICHE, BoringSSL-FIPS, V8, googleurl) exist in Google Cloud Storage tarball
snapshots. This is highly problematic, since we are unable to easily bump versions and have
limited ability to validate the dependency criteria below using standard tooling. All new C++
dependencies MUST be git-based and directly reference the git repository, with no manual

https://github.com/ossf/scorecard
https://bestpractices.coreinfrastructure.org/en/criteria/0
https://docs.google.com/spreadsheets/d/119YwYxf5Fy09CjPX6h-yuKZOY4XjCCuDSD_Ryj14s64/edit#gid=0
https://research.swtch.com/deps
https://github.com/envoyproxy/envoy/blob/master/bazel/repository_locations.bzl
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/threat_model#data-and-control-plane


update steps, unless there is a compelling reason beyond expediency provided. Mirrors are
acceptable providing they automatically sync against some upstream source. GitHub is the
strong preference for hosting since it provides a common project API for compliance checking,
e.g. validated how far from the last released version we have drifted.

Criteria for new Envoy dependencies
Building on ossf/scorecard, we will develop tooling to validate the following criteria, and
augment with manual checks. These apply to all dependencies with use category:

● dataplane_core

● dataplane_ext

● controlplane

● observability_core

● observability_ext

Criteria Requirement Mnemonic Automated Weight Rationale

>=2 contributors
responsible for a
non-trivial
number of
commits

MUST Contributors Yes - custom Normal Avoid bus factor
of 1

Tests run in CI MUST CI-Tests Yes - OSSF
Scorecard

Normal Changes gated
on tests

Code review
before merge

MUST Code-Review Yes - OSSF
Scorecard

Normal Consistent code
reviews

PRs for all
changes (for GH
repos)

MUST Pull-Requests Yes - OSSF
Scorecard

Normal Audit trail of
reviews

CVE history
appears
reasonable, no
pathological
CVE arcs

MUST SoundCVEs No High Avoid
dependencies
that are CVE
heavy in the
same area (e.g.
buffer overflow)

High test
coverage (also
static/dynamic
analysis,
fuzzing)

MUST Test-Coverage No1 Normal Key
dependencies
must meet the
same quality bar
as Envoy

No duplication of
existing

MUST NoDuplication No High Avoid
maintenance

1 This is the most time consuming criterion to verify; projects do not commonly report test coverage or
have readily accessible coverage reports. Fuzzing is easier to understand when an OSS-fuzz integration
exists.

https://github.com/ossf/scorecard
https://github.com/envoyproxy/envoy/blob/3630105873c217687a467c72d8f59a9f4bb2bedf/api/bazel/external_deps.bzl#L43


dependencies cost of multiple
JSON parsers
etc

Cloud Native
Computing
Foundation
(CNCF)
approved
license

MUST License Yes High

Security
vulnerability
process exists

MUST SecPolicy No High Lack of a policy
implies security
bugs are open
zero days

Dependencies
must not
substantially
increase the
binary size
unless they are
optional (i.e.
confined to
specific
extensions)

MUST BinarySize Yes High Envoy Mobile is
sensitive to
binary size. We
should pick
dependencies
that are used in
core with this
criteria in mind.

Envoy can
obtain advanced
notification of
vulnerabilities

SHOULD SecPolicy-Comp
at

No High Coordinated
security
releases
possible, but
most
dependencies
do not feature
this

Do other
significant
projects have
shared fate by
using this
dependency?

SHOULD SharedFate No High Increased
likelihood of
security
community
interest, many
eyes.

Releases (with
release notes)

SHOULD Releases Semi Normal Discrete
upgrade points,
clear
understanding of
security
implications. We
have many
counterexample
s today (e.g.
CEL, re2).

Commits/releas
es in last 90
days

SHOULD Active Yes - OSSF
Scorecard

Normal Avoid
unmaintained
deps, not
compulsory
since some
code bases are

https://github.com/cncf/foundation/blob/master/allowed-third-party-license-policy.md#approved-licenses-for-allowlist


“done”

Dependencies that fail any “MUST” criteria will require discussion amongst maintainers. When
exempted, a rationale will be added to repository_locations.bzl metadata tracking the reasoning
behind exceptions. “SHOULD” criteria boost confidence in a project’s suitability; they are worth
evaluating and tracking but do not block.

New dependencies should be competitively evaluated against alternative candidates where
available best on this criteria.

Dependencies that change use category should be re-evaluated against this criteria.

Realistically, we expect that many dependencies (including those that exist today) will
require exemptions. The objective is that we are deliberative about these exceptions and avoid
dependencies that require a gross number of them. This list of exceptions will provide a set of
criteria that we can use when evaluating competing dependencies and allow us to work
constructively with projects to improve their compliance (e.g. by filing upstream issues, reaching
out to CNCF, engaging contractors).

This policy will add friction to adding new dependencies; in part this is desirable, since we want
to ensure that the non-trivial risk that dependencies add to Envoy carries with it a responsibility
to think seriously about dependency quality. At the same time, we aim to be pragmatic; if a
dependency is required for essential functionality and no better alternative exists, maintainers
may exercise wide discretion.

An example evaluation of some of Envoy’s existing data plane dependencies against this
criteria. Each evaluation required roughly 20 minutes of time on average.

BoringSSL2 Protobuf c-ares xxhash zlib

Contributors Yes Yes Yes Yes Maybe (Claims
2 contributors,
git history
indicates only 1,
huge backlog of
PRs)

CI-Tests Yes, but not on
GitHub, see
here.

Yes Yes Yes No

Code-Review Yes, but not on
GitHub, see
here.

Yes (but fails on
scorecard)

Commits without
review trail

Commits without
review trail

No

Pull-Requests N/A Yes No ~1k commits, No

2 This repository was not Github canonical, so OSSF scorecard automation failed.

https://github.com/envoyproxy/envoy/blob/master/bazel/repository_locations.bzl
https://ci.chromium.org/p/boringssl/g/main/console
https://boringssl-review.googlesource.com/


~300 PRs

Active Yes Yes Yes Yes No (not since
2017)

Test-Coverage 65%+ coverage,
fuzzing, *SAN
sanitizers

Unit tests exist
and cover major
functionality. No
coverage
scripts, low
test:source
SLOC ratio.
Fuzzing exists.

88.7% test
coverage,
fuzzing, *SAN
sanitizers,
valgrind

Some
tests/benchmark
s, no coverage
CI or scripts. No
OSS-fuzz
integration, but
Envoy has good
coverage
(~60%, we don’t
use all of
xxhash)..

67% coverage,
fuzzing

NoDuplication Yes Yes Yes Yes No (zlib-ng)

Releases No Yes Yes Yes Yes

SecPolicy No, but
disclosure form
exists.

No Yes No No

SecPolicy-Com
pat

No No No3 No No

SharedFate Yes Yes Yes Yes Yes

License Yes Yes Yes Yes Yes

SoundCVEs Yes Yes Yes N/A Yes4

An evaluation of the OSSF Scorecard against all of Envoy’s eligible criteria is available here.

Extend repository_locations.bzl metadata
The above criteria will be captured in repository_locations.bzl metadata. Each item will be
assigned a short mnemonic and a list of failing criteria added to each dependency.

CI enforcement
Dependencies will be required to declare the above metadata when used on the data plane or
control planes. Tooling run in CI presubmits will validate metadata when automatically
checkable (e.g. with OSSF Scorecard) and the existence of exemption rationale for violations.

4 Longish history of gnarly CVEs, but not many since 2016.

3 Similar to nghttp2, c-ares has adopted a vulnerability disclosure policy based around
https://oss-security.openwall.org/wiki/mailing-lists/distros. This is a distro-first model that doesn’t have
room for static binary build models commonly used with Envoy.

https://github.com/google/oss-fuzz/tree/master/projects/boringssl
https://github.com/google/oss-fuzz/tree/master/projects/protobuf-c
https://coveralls.io/github/c-ares/c-ares?branch=master
https://coveralls.io/github/c-ares/c-ares?branch=master
https://github.com/google/oss-fuzz/tree/master/projects/c-ares
https://github.com/google/oss-fuzz/tree/master/projects/zlib
https://bugs.chromium.org/p/boringssl/issues/entry?template=Security
https://github.com/c-ares/c-ares/security/policy
https://cyan4973.github.io/xxHash/
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&query=cpe%3A2.3%3Aa%3Agoogle%3Aboringssl%3A%2A&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&query=cpe%3A2.3%3Aa%3Agoogle%3Aprotobuf%3A%2A&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&query=cpe%3A2.3%3Aa%3Ac-ares_project%3Ac-ares%3A%2A&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&query=cpe%3A2.3%3Aa%3Agnu%3Azlib%3A%2A&search_type=all
https://docs.google.com/spreadsheets/d/1caO4qMmG8o5i2nGoEof1qMpD5_WicfiC5WcxA_5isTY/edit#gid=0
https://github.com/envoyproxy/envoy/blob/master/bazel/repository_locations.bzl
https://oss-security.openwall.org/wiki/mailing-lists/distros


Existing dependencies
Existing dependencies will be incrementally covered by this policy. When they are found in
violation, issues will be filed in the Envoy and upstream repositories. We anticipate prioritizing
core dependencies and those dependencies used by extensions tagged as stable and robust in
untrusted environments.

Dependency maintenance
The addition of a new dependency will imply a willingness to take on support of this dependency
in Envoy. Each dependency will be tracked in a DEPENDENCY_OWNERS.md file. Issues will
be filed against dependency owners when CI tooling detects stale dependencies (already
possible via the release date metadata). For non-core dependency use, if dependency owners
do not maintain their dependencies, the dependency and any related extension will be removed.

Dependency shepherds will continue to be responsible for enforcing this policy.

Non-core extension repository separation
One of the significant contributors to Envoy’s continued dependency and SLOC growth is C++
extensions.

Many of these extensions have limited support, maintenance and production use. Some are
labeled alpha or have unknown security postures (see this list). One reason for the growth in

https://github.com/envoyproxy/envoy/blob/master/DEPENDENCY_POLICY.md#dependency-shepherds
https://github.com/envoyproxy/envoy/blob/master/EXTENSION_POLICY.md#extension-stability-and-security-posture
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/threat_model#core-and-extensions


C++ extensions is that Envoy has an unstable API internal C++ API, and upstreaming an
extension ensures build maintenance as this API changes.

To structurally eliminate the dependencies implied by these extensions, we can ask that new
external dependencies that are immature, not widely used or that are not in some sense “core”
to Envoy, be added to an independent extension repository. Details are beyond the scope of this
policy document and discussion is tracked at envoyproxy/envoy/issues/14078.

Bazel improvements
Some of the capabilities we desire around metadata (e.g. CPE, release date tracking) are
traditionally performed by package managers in languages with standardized package
managers, e.g. NPM, Go, PyPi. This does not exist in the C++ world, the closest we have is
Bazel. There is an effort underway to add module support to Bazel, ideally we can reduce the
number of places we have ad hoc tooling (e.g. the CVE scanner, stale release tracking) by
influencing this effort with Envoy as a C++ exemplar project.

GitHub improvements
We’d like to be able to obtain the following from GitHub in the future:

● Dependency 2FA/MFA usage. This is currently only visible to project maintainers. We
have reached out to GitHub and they suggest working with the OSSF Security Metrics
project. This would be used to add a 2FA/MFA criteria and drive conversations with
dependencies on adopting best practices to reduce contributor and maintainer account
hijacking risk.

https://github.com/envoyproxy/envoy/issues/14078
https://docs.google.com/document/d/1moQfNcEIttsk6vYanNKIy3ZuK53hQUFq1b1r0rmsYVg/edit?ts=5faee200
https://github.com/envoyproxy/envoy/tree/master/tools/dependency
https://github.com/ossf/Project-Security-Metrics

