Setting Up

You will need a Mac and an iPhone for this tutorial.

XCode
1. Download and install XCode on your Mac. Ensure the version is XCode 15 or newer.
2. Launch XCode and click ‘Create New Project’.
3. Under the iOS tab, select ‘App’.
4. Name your project and save.

Connecting Your iPhone

1. Open your project in XCode. At the top bar select ‘Window’ > ‘Devices and Simulators’.
2. Connect your iPhone to your Mac via cable.
3. Inthe list of devices, select your iPhone and check ‘Connect via Network’.
4. You can now disconnect your iPhone.
Create ML

Now let’s build your image classification model.
Find or Create a Dataset

1. Find a dataset that you are interested in or create one yourself. There are many datasets
already available on the internet. For example, if you wanted to your model to recognize
plants, you may want to use this dataset:
https://www.kaggle.com/datasets/yudhaislamisulistya/plants-type-datasets

2. If you'd like to create your own dataset, name the main folder training_data, and create
sub-folders of the types of images. See above link for example.

3. Similar to the training data, make another folder for your testing data. The testing data
should have the same sub-folders but different images.

Creating an Image Classification Model

1. Navigate back to your XCode project. At the top bar, ‘XCode’ > ‘Open Developer Tool’ >
‘Create ML'.

2. Click ‘New Document’ in the bottom left corner. Select ‘Image’ > ‘Image Classification’.

Name your project and save.

4. Press the + sign under training data and select your training data folder.

w


https://apps.apple.com/us/app/xcode/id497799835?mt=12/
https://www.kaggle.com/datasets/yudhaislamisulistya/plants-type-datasets

5. Optionally, you can select different augmentations under ‘Parameters’ that will add
modified copies of your images to the training data.

Training and Testing Your Model

1. Now press the ‘Train’ button at the top left corner and let the training run. If you're
unhappy with the accuracy of your training, you may train more and adjust the number of
iterations.

2. To test your model, select ‘Evaluation’ at the top. Then, press the + sign, select your
testing data folder, and press ‘Test'.

3. Once you are satisfied with the accuracy of your image classification model, select
‘Output’ at the top and drag and drop the icon next to your model’s name into your XCode
project.

SwiftUl - ContentView

We will now code the file ContentView.swift to connect your image classification model to an
app that integrates a live camera feed with real-time predictions.

Coding ContentView

1. Define a state object for the view model under line 10:

struct ContentView: View {

@StateObject private var viewModel = ContentViewModel()

We will create this ContentViewModel later so do not worry if XCode is throwing an error.
2. The Ul will go inside the body. You can design the Ul however you like, here is Apple’s

tutorial: https://developer.apple.com/tutorials/swiftui/. For this tutorial, we'll work with


https://developer.apple.com/tutorials/swiftui/

the VStack provided to us.

var body: some View {
VStack {

HStack {
Text("Prediction: ")
Text (viewModel.prediction)

HStack {
Text("Confidence: ")
Text(viewModel.confidence)

CameraPreview(session: viewModel.session).onAppear {

DispatchQueue.global().async {
self.viewModel.setupSession()

Set Camera Permissions

1. Inthe list of files on the left, select your app at the very top.
2. Select ‘Info”:

ImageClassificationApp

(] General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules

3. Under ‘Custom iOS Target Properties’, hover over any key and press + to add a new key.

4. Enter ‘NSCameraUsageDescription’ and press enter. It will autocorrect to ‘Privacy -
Camera Usage Description’ if done correctly.

5. Optionally, you can enter a description for why your app requires the camera in the
‘Value' section.



SwiftUl - Camera Preview

Now we will code the camera preview which will use your phone camera to allow the image
classification model to detect objects.

Creating a New File

1. At the top left corner of your Mac, select ‘File’ > ‘New' > ‘File’.
2. Make sure you are in the iOS tab and select ‘Swift File'.
3. Click ‘Next’, name the new file ‘CameraPreview.swift’, and click ‘Create’.

Coding

1. Import the needed libraries:

import SwiftUI

import AVKit

2. Define required properties:

struct CameraPreview: UIViewRepresentable {
var session: AVCaptureSession

3. Implement makeUIView function and setup the UIView and preview layer:

func makeUIView(context: Context) —-> UIView {
let view = UIView(frame: UIScreen.main.bounds)
let previewLayer = AVCaptureVideoPreviewLayer(session: session)

previewLayer.frame = view.frame
previewLayer.videoGravity = .resizeAspectFill

view.layer.addSublayer(previewLayer)
return view

4. Implement the updateUIView function:

func updateUIView(_ uiView: UIView, context: Context) {}



SwiftUl - ContentViewModel

Now we will create a class that incorporates video capturing, image classification model
predictions, and updating the Ul based on the predictions.

1. Create a new Swift File like how we did for the CameraPreview.swift, name it
‘ContentViewModel.swift'.
2. Import needed libraries:

import AVKit

import Vision
import Combine

3. Setup the basic class structure:

class ContentViewModel: NSObject, ObservableObject, AVCaptureVideoDataOutputSampleBufferDelegate {

4. Define observable properties for Ul updates:

@Published var prediction: String
@Published var confidence: String

5. Setup the AVCaptureSession and implement the setupSession function:

let session = AVCaptureSession()

func setupSession() {
guard let device = AVCaptureDevice.default(for: .video) else { return }
guard let input = try? AVCaptureDevicelnput(device: device) else { return }
session.sessionPreset = .hd1280x720

let output = AVCaptureVideoDataOutput()
output.setSampleBufferDelegate(self, queue: DispatchQueue(label: "videoQueue"))

session.addInput(input)
session.addOutput(output)
session.startRunning()




6. Implement the captureOutput function to handle video frames:

func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from
connection: AVCaptureConnection) {

guard let pixelBuffer: CVPixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else {
return }

guard let model = try? VNCoreMLModel(for: ModelName.model) else { return } ® Cannotfind"'..

let request = VNCoreMLRequest(model: model) { (finishedReq, err) in
DispatchQueue.main.async {
self.processResults(for: finishedReq)
}
}

try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request])

On line 36, replace ‘ModelName’ with the name of your image classification model.
7. Implement the processResults function:

private func processResults(for request: VNRequest) {
guard let results = request.results as? [VNClassificationObservation], let firstResult =
results.first else {
prediction = "--"
confidence = "--"
return

}

if firstResult.confidence % 100 >= 20 {

prediction = firstResult.identifier.capitalized

confidence = String(format: "%.2f%%", firstResult.confidence * 108@)
} else {

prediction =

confidence =

Now make sure you save all your files and we can press the run button on the left panel. Your
phone should launch this app and start scanning objects around you!



	Setting Up 
	XCode 
	Connecting Your iPhone 

	Create ML 
	Find or Create a Dataset 
	Creating an Image Classification Model 
	Training and Testing Your Model 

	SwiftUI - ContentView 
	Coding ContentView 
	Set Camera Permissions 

	SwiftUI - Camera Preview 
	Creating a New File 
	Coding 

	SwiftUI - ContentViewModel 

