

Cloud Native Security Map
Slack Channel: #sig-security-whitepaper-map

Participants:

-​ Brandon Lum
-​ Emily Fox
-​ Chase Pettet
-​ Diego Comas
-​ Ash Narkar
-​ Vinay Venkataraghavan
-​ John Li
-​ Alok Raj

Goals and Non-goals of Cloud Native Security Map
(“Landscape” v2)

●​ Provide a mapping of CNCF and open source projects to areas of CN Security whitepaper
●​ Provide a practical viewpoint and information on topics in the CN Security whitepaper
●​ Identify gaps in CN Security in the ecosystem and make recommendations to TOC
●​ Help educate practitioners of what technologies can be used in practice and how they tie into

each other
●​ Provide practical tips or examples for how to use tools within this category, or why they are

important (I.e. example breaches, etc.)
●​ Provide a reference for frameworks to utilize when developing CN Security solutions and

architectures.

Non-goals:

●​ Not an implementation guide on how to implement CN Security
○​ Demonstrative, not procedural

●​ Not a checklist of what to do
●​ Not one technology focused (i.e. not taking 1 reference architecture and developing the

landscape around it).

mailto:vvenkatara@paloaltonetworks.com

Storyboard Examples

Storyboard 2: Simple Map + Navigation Storyboard:
https://docs.google.com/presentation/d/1IzfmyJ18sF-hauE371xhHxXGoSkShDVs1DKf4i-63xc/e
dit

https://docs.google.com/presentation/d/1IzfmyJ18sF-hauE371xhHxXGoSkShDVs1DKf4i-63xc/edit
https://docs.google.com/presentation/d/1IzfmyJ18sF-hauE371xhHxXGoSkShDVs1DKf4i-63xc/edit

Meeting Notes and Discussions

2. Naming of SIG-Security “Landscape”

Make suggestions and bring ideas to community

Suggestions

●​ e.g. 1
●​ Cloud Native Security Panorama [Fox]
●​ Cloud Native Security Topography [Fox]

○​ Cloud Native Security Topology [?Chase]
●​ Security Lifecycle [Chase] [+1 Vinay]
●​ Cloud Native Integrated Security Pipeline [Chase]
●​ Cloud Native Security Start Left Maturity [Chase]
●​ Cloud Native Security Trail Map[Chase]
●​ Captain Planet’s Cloud Native Security Hero’s [Chase]
●​ The Cloud Native Security Travel Map [Ash] [+½ add Security]
●​ Cloud Native Security Travel Guide (based on the idea below) [Brandon]
●​ Cloud Native Security Compass (based on the map idea below) [Brandon]
●​ Guided Tour of Cloud Native Security [Vinay]
●​ Cloud Native Security Map [Fox]

3. Organization of SIG-Security Landscape

●​ Content Example from initial landscape development:
https://docs.google.com/document/d/1b-sAh1DHaSjg48ww3cGISdP_uasF9t_bQEuFnWbQg
XQ/edit

●​ Propose several ideas on what to do, individuals/groups sign up to propose ideas at next
meeting

●​ Proposals:
○​ Example A. Overview of white paper, click into different categories for details and

projects. For each header/sub-header, provide relevant links to other aspects that
people may wish to pursue. I.e. for signing of artifacts, relevant, would be the various
aspects of signing and also linking to runtime, because there is verification
enforcement. This way users can explore cloud native security in a more holistic way.

○​ Example : Topographical map (similar to CNCF landscape trail with more directions,
similar to game of pods (https://kodekloud.com/p/game-of-pods-game)

○​ Example B.
○​ If we go with the Travel Map theme we can highlight different phases of the Cloud

Native lifecycle as the points on the map. For example, if we look at the cloud native

https://docs.google.com/document/d/1b-sAh1DHaSjg48ww3cGISdP_uasF9t_bQEuFnWbQgXQ/edit
https://docs.google.com/document/d/1b-sAh1DHaSjg48ww3cGISdP_uasF9t_bQEuFnWbQgXQ/edit
https://meet.google.com/linkredirect?authuser=0&dest=https%3A%2F%2Fkodekloud.com%2Fp%2Fgame-of-pods-game

whitepaper, then “Develop”, “Distribute”, “Deploy” and “Runtime” would be the
continents and within each phase we could delve deeper with details. The “journey”
from one continent to another, say from the “Develop” to “Distribute” phase would be
represented as a flight path. So users can start from a particular phase (continent)
and then follow the flight path to the logical next phase. Users would initially explore
different aspects (countries/cities) of a particular phase (continent) and upon
exploration would then be guided to the next phase.

 Users can start from any phase that best suits their needs and the map would act as
a recommendation as to what can be further explored.

 The different CNCF projects would be represented as countries within the continent
and we could show how you go from one to another. For example, you would likely
do authentication followed by authorization. So now you have a path from
SPIFFE/SPIRE to OPA.

​ We can also convey the maturity of a project with different sized dots on the map, to
give users an idea of adoption etc. So typically the graduated projects would be
larger dots compared to the sandbox ones. (Ash)

-​ Really nice thinking, but I’m unsure of the dot sizes as a proxy for maturity.
Maybe colors? Idk. I worry about larger and smaller dots being difficult to
parse in this context for the semantics. (Chase)

​

Additional notes:

Levels of implementation/Security - guide on level 1 do ABC, level 2 do extra XYZ

4. Content of Security Landscape

●​ Develop and split up content creation in the future
●​ Smallest set to showcase flow
●​ Topic overview + related projects

Develop

●​ ...
●​ K8s Manifest Scanning [Ash]

https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#develop-1

○​ Organizations are increasingly adopting the “Shift Security Left” philosophy which
involves working with development and compliance teams to detect security
issues during early development phases thereby reducing security risks towards
the end of the delivery pipeline.
Kubernetes manifests allows users to define the resources (eg. Deployments,
Service) for their application/service. These resources are then created by
sending a request to the Kubernetes API server. Kubernetes provides a
mechanism called Admission Control that can be leveraged to control the
desired-state of the cluster. It could be beneficial if we could enforce custom
security policies much earlier in the development pipeline, integrate these checks
with existing CI frameworks and report any issues even before deploying these
resources to the cluster. Hence scanning K8s manifests as part of the
development pipeline will not only help uncover issues earlier but can also
potentially reduce the application’s attack surface. Some of the security policies
that could be enforced are:

■​ Prohibit container images that use the “latest” tag
■​ Prohibit container images from specified registries
■​ Prevent all containers from running as “root”
■​ Ensure all containers specify cpu and memory limits
■​ Require all ingresses to have TLS configured
■​ Prevent services from creating external load balancers

Related projects:
■​ Conftest / OPA

●​ Code Review
●​ Dockerfile Scanning [Diego]

○​ Identifying weaknesses as early as possible is a great benefit to integrate
security early and avoid tedious and expensive changes once the problem
becomes a vulnerability in production.
Putting aside the application code and dependencies, in Docker containers​
the earliest point is the source of creation - the Dockerfile.
There are tools available to identify problems in the content of a Dockerfile,
starting from essential things like avoiding to set the user as root.

Here are some other checks that will help improve the security of the container
created using the Dockerfile:

●​ Do not run as root or a sudoer user
●​ Do not use latest tag for base images and pin to specific versions
●​ Do not include ADD to fetch external resources
●​ Do not include curl bashing
●​ Do not store secrets

You can create checks in your CI pipeline to scan these potential weaknesses
and you can even enable a git-hook with something like Open Policy Agent
Conftest to block those issues very early.

https://www.conftest.dev/
https://www.openpolicyagent.org/
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#code-review

Related projects:
■​ Conftest : https://github.com/open-policy-agent/conftest/
■​ Hadolint : https://github.com/hadolint/hadolint

●​ ...
●​ Pre-commit hooks [Vinay]

○​ Security Scans of Infrastructure as Code, Kubernetes manifests, software
packages for vulnerabilities
DevOps processes need to ensure that security is injected early and into
existing tools and processes. One of the most fundamental processes
executed by DevOps teams is that of making a Pull Request to check in
new or updated software or infrastructure artifacts. Consequently, it is now
possible and a best practice to ensure that all these artifacts (software
libraries and packages, IaC and K8’s manifests) are scanned when the
Pull Request is made. By executing security scans at this phase, DevOps
teams have full and early visibility into the presence of vulnerabilities in
software libraries prior to merging the code with the main line branch.
Additionally, the scanning of IaC and K8’s manifests identifies security and
compliance violations at this stage. Both types of failures are detected and
the Pull Request is rejected due to these violations, which need to be
addressed by the DevOps teams.
Technologies: Anchore

○​ …..
●​ Static Analysis tools[Diego]

○​ Static analysis should be leveraged to identify vulnerabilities and weaknesses in
software code, application manifests and IaC. This can be tested during the
development stage of the SDLC. There are multiple benefits of doing static
analysis testing like reducing the cost to fix a vulnerability as the weaknesses are
found earlier in the SDLC.

There are many commercial and open source tools that can be used for static
analysis and these are a few examples :

OSS tool for programming language :

■​ Python : bandit
■​ Javascript : eslint
■​ Go: gosec
■​ NodeJS: nodejs-scan
■​ PHP: phpcs-security-audit
■​ .NET : security-code-scan

OSS tool for IaC:

https://github.com/open-policy-agent/conftest/

■​ Terraform : checkov, terrascan, tfsec, regula, terraform-compliance,
conftest

OSS for application manifests:
■​ Kubernetes : Kubesec , Kubeaudit

●​ ...
●​ ...
●​ ...

Distribute
●​ ...
●​ ...
●​ Image Scanning [Vinay]

○​ Scanning of images for vulnerabilities forms a key component of the Shift
Left paradigm that is being adopted by cloud native DevOps teams.
Scanning container images allows both Vulnerability Management teams
as well as DevOps teams detailed visibility into the vulnerabilities and
malware that may be present as part of their application code. These
container images can be scanned either at the image build time or as they
are resident in container registries such as Docker Hub.

○​ Additionally, scanning container images provides visibility into
vulnerabilities present in different layers that comprise the container
image. The data obtained from scanning container images can be used by
both DevOps and Security teams. The DevOps teams use the data to
make the necessary fixes and updates to packages as necessary. The
security teams on the other hand use the data to have full visibility into the
vulnerability posture, build a risk model, which are then used to create
image governance policies to prevent the deployment of risky or insecure
images into the runtime environment.

○​ Technologies: Clair, Harbor
●​ ...
●​ Artifacts & Images -Brandon

○​ Registry Staging​
​
In order for artifacts to be usable and deployed, they need to be made
available in a repository, these are usually done via registries. Registries
store both the content of images as well as its metadata. It is important to
configure the registries so that artifacts have high availability.​
​
Technologies: Docker Distribution, Quay​

https://kubesec.io/
https://github.com/Shopify/kubeaudit
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#distribute-1
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#image-scanning
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#artifacts--images
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#registry-staging

​

○​ Signing, Trust, and Integrity ​
​
To preserve the integrity of artifacts, the contents and its metadata should be signed.
The information to be signed includes the content of the image to prevent tampering,
as well as signing of metadata to provide provenance of the artifact​
​
Technologies: Docker Content Trust, Red Hat Simple Signing​
Adjacent Technologies/Projects: skopeo, buildah, crio, docker distribution​

Runtime Environment
●​ Compute

○​ Orchestration [maybe emily…] container orchestration capabilities enable
organization to deploy applications securely at the velocity their teams
need.

■​ Security Checks
■​ Scan application manifests
■​ https://www.cisecurity.org/benchmark/Kubernetes/
■​ kubescan

■​ Threat Models & Matrices
■​ Microsoft threat matrix based on MITRE ATT&CK framework for

Kubernetes,
■​ The Kubernetes Security Audit Working Group Security Threat

Model
■​ Attack Trees

■​ The CNCF Financial User Group Kubernetes Attack Trees
■​ Policies

■​ Kyverno
■​ Tech

■​ K8s
○​ Kubernetes is a robust container orchestration

platform that provides teams with multiple areas of
configuration. It is both portable and extensible, allow
organizations to customize their deployments

■​ Crossplane
○​ Crossplane is a Kubernetes add-on that enables you

to provision and manage infrastructure, services, and
applications from kubectl.

■​ Volcano

https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#signing-trust-and-integrity
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#runtime-environment
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#compute
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#orchestration
https://www.cisecurity.org/benchmark/Kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://github.com/kubernetes/community/blob/master/sig-security/security-audit-2019/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob/master/sig-security/security-audit-2019/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/cncf/financial-user-group/tree/master/projects/k8s-threat-model/AttackTrees

○​ Volcano enables organizations to run
high-performance workloads on Kubernetes. It
features powerful batch scheduling capability required
by many classes of high-performance workloads,
such as machine learning/deep learning,
bioinformatics/genomics, and other big data
applications

■​ K3s
○​ A production ready, easy to install, half the memory,

lightweight kubernetes. All in a binary less than 100
MB.

○​ Containers

■​ Runtime [Brandon]
■​ ...
■​ Image Trust & Content Protection -Brandon​

To ensure the confidentiality and integrity of the container images, verification
of image signatures and image decryption is performed on the runtime.
Container image signature verification ensures the integrity and provenance
of the image, providing observability and assurance of images running on the
cluster. ​
​
Related Technologies/Projects: Docker Content Trust, Red Hat Simple
Signing, Portieris​
​
Adjacent Technologies/Projects: skopeo, buildah, crio, docker distribution

Container image decryption ensures that only authorized clusters with access
to the decryption keys are allowed to use an image - and the image remains
confidential otherwise.

Related Technologies/Projects: ocicrypt​
​
Adjacent Technologies/Projects:crio, docker distribution, containerd

Links at top level Develop <> Distribute [Vinay]

The Develop phase involved the security scanning of artifacts such as Infrastructure as Code
and Kubernetes templates in a manner that is integrated into the IDE’s and at the Pull Request
phase. The next phase which is the Distribute phase is responsible for building the VM,
Container or Serverless artifact called the image. The container images are built and pushed
into a container registry. It is in this phase that the container images are scanned to obtain a

https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#containers
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#runtime-1
https://github.com/cncf/sig-security/blob/master/security-whitepaper/cloud-native-security-whitepaper.md#image-trust--content-protection

complete manifest of the vulnerabilities and malware that could be present in open source
software packages, modules and libraries. Additionally, the IaC and Kubernetes manifests can
be scanned at the distribute phase as well to detect security and compliance violations. Once all
the security and compliance tests have been successfully executed does the next phase get
triggered.

Links at 2nd level Image Scanning <> Artifacts & Images - Brandon

After images are scanned for vulnerabilities and compliance checks, they should then be
prepared for distribution, all images, artifacts, along with their metadata has to be made
available in registries. This brings us to preparing and securing the artifacts for distribution,
ensuring the confidentiality, integrity and availability of the images and artifacts.

Links between Artifacts & Images and Container runtime on image trust and content
protection - Brandon

Protecting images and artifacts by means of signing and encryption provide image security, but
just signing and encrypting them does not increase security if the consumers of these artifacts
do not enforce the right controls. It is equally important to have their counterparts, verification
and decryption. ​

​
Links between Artifacts & Images and Key management - Brandon

Protecting images and artifacts by means of signing and encryption involve cryptography, which
is tied to key material. To ensure that controls are enforcing them, key management is as
important to ensuring security of the artifacts. Mismanaged or unprotected keys lead to
degredation of these security controls.

Storyboard Examples

Simple Map + Navigation

https://docs.google.com/presentation/d/1IzfmyJ18sF-hauE371xhHxXGoSkShDVs1DKf4i-63xc/e
dit

https://docs.google.com/presentation/d/1IzfmyJ18sF-hauE371xhHxXGoSkShDVs1DKf4i-63xc/edit
https://docs.google.com/presentation/d/1IzfmyJ18sF-hauE371xhHxXGoSkShDVs1DKf4i-63xc/edit

Content Templates (Example: Application Manifests)

Motivation (1-2 sentences)

Organizations are increasingly adopting the “Shift Security Left” philosophy which involves
working with development and compliance teams to detect security issues during early
development phases thereby reducing security risks towards the end of the delivery pipeline.

Threats and incidents (optional: if available)

Example catalog of incidents like the supply chain catalog

Description (3-5 sentences)

Application manifests allows users to define the resources (eg. Deployments, Service) for their
application/service. These resources are then created by sending a request to the cluster
orchestrator. It could be beneficial if we could enforce custom security policies much earlier in
the development pipeline, integrate these checks with existing CI frameworks and report any
issues even before deploying these resources to the cluster. Hence scanning application
manifests as part of the development pipeline will not only help uncover issues earlier but can
also potentially reduce the application’s attack surface.

Recommendations (Expect to be 1-5 bullets)

●​ Scan application manifests for insecure configurations
●​ Block insecure applications and provide remediation steps

Examples (instances of recommendations)

Example of applications manifests are Kubernetes YAML files, that are sent to the Kubernetes
API server to deploy an application.

Some of the security policies that could be enforced on Kubernetes YAML files are:

■​ Prohibit container images that use the “latest” tag
■​ Prohibit container images from specified registries
■​ Prevent all containers from running as “root”
■​ Ensure all containers specify cpu and memory limits
■​ Require all ingresses to have TLS configured
■​ Prevent services from creating external load balancers

Projects (Just link to project)

●​ Conftest

https://www.conftest.dev/

●​ OPA

References (optional: related documents, blogs, etc.):

●​ NIST controls/docs
●​ Medium blogs

https://www.openpolicyagent.org/

Template Links (Q: How deep layers? Just one level? More? Organization vs navigability) ​
​
Proposition: Links between top layers and one layer below, the rest are just island of things,
and links between things that are relevant.

Links at top level Develop <> Distribute

The Develop phase involves the security scanning of artifacts such as Infrastructure as Code
and Kubernetes templates in a manner that is integrated into the IDE’s and at the Pull Request
phase. The next phase which is the Distribute phase is responsible for building the VM,
Container or Serverless artifact called the image. The container images are built and pushed
into a container registry. It is in this phase that the container images are scanned to obtain a
complete manifest of the vulnerabilities and malware that could be present in open source
software packages, modules and libraries. Additionally, the IaC and Kubernetes manifests can
be scanned at the distribute phase as well to detect security and compliance violations. Once all
the security and compliance tests have been successfully executed does the next phase get
triggered.

Links at 2nd level Image Scanning <> Artifacts & Images (Between continents)

After images are scanned for vulnerabilities and compliance checks, they should then be
prepared for distribution, all images, artifacts, along with their metadata has to be made
available in registries. This brings us to preparing and securing the artifacts for distribution,
ensuring the confidentiality, integrity and availability of the images and artifacts.

Links between Artifacts & Images and Container runtime on image trust and content
protection (across continents Develop <> Runtime)

Protecting images and artifacts by means of signing and encryption provide image security, but
just signing and encrypting them does not increase security if the consumers of these artifacts
do not enforce the right controls. It is equally important to have their counterparts, verification
and decryption. ​
​
Links between Artifacts & Images and Key management (across continents Develop <>
Runtime)

Protecting images and artifacts by means of signing and encryption involve cryptography, which
is tied to key material. To ensure that controls are enforcing them, key management is as
important to ensuring security of the artifacts. Mismanaged or unprotected keys lead to
degradation of these security controls.

	Cloud Native Security Map
	Goals and Non-goals of Cloud Native Security Map (“Landscape” v2)

	Storyboard Examples
	Meeting Notes and Discussions
	2. Naming of SIG-Security “Landscape”
	3. Organization of SIG-Security Landscape
	Additional notes:
	4. Content of Security Landscape

	Storyboard Examples
	Content Templates (Example: Application Manifests)

