The Learning Targets (scroll down to find lessons correlated with each learning target)

UNIT 1: Constructions

- 1.1 I know and use precise definitions of geometric terms.
- 1.2 I can make formal geometric constructions cited in standards both by hand and using geometry software.
- 1.3 Given a geometric figure and a rotation, reflection and translation, I can draw the transformed figure.
- 1.4 I Understand and can explain the formal definition of rotation, reflection and translation.
- 1.5 I can represent transformations in the plane and describe transformations as functions that take points in the plane as inputs and give other points as outputs.

UNIT 2: Transformations & Congruence

- 2.1 I can specify sequences of rigid motions that will carry a figure onto another
- 2.2 I can use the definition of congruence in terms of rigid motions to decide if two figures are congruent
- 2.3 I can use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
- 2.4 I can explain how the criteria for triangle congruence follow from the definition of congruence in terms of rigid motions
- 2.5 I can prove theorems about lines and angles
- 2.6 I can prove theorems about parallelograms
- 2.7 I can prove base angles of isosceles triangles are congruent

UNIT 3:Transformations & Similarity

- 3.1 I can describe the properties of dilations (non-rigid transformation)
- 3.2 I can apply similar triangles to calculate measurements.
- 3.3 I am able to prove that two figures are similar through a series of transformations.
- 3.4 I understand and can use criterion for proving similar triangles
- 3.5 I can prove and use some theorems about triangles
- 3.6 I can prove and use slope criteria for parallel & perpendicular lines
- 3.7 I can construct points that divide a given segment into specified ratios.

UNIT 4: Right triangles & Coordinate Proof

- 4.1 I can use the Pythagorean theorem to determine the lengths of sides of a right triangle.
- 4.2 I can find the coordinates of points that divide given segments into specified ratios.
- 4.3 I can calculate & use the distance between two coordinates.
- 4.4 I can prove that 2 lines are parallel, perpendicular or neither, given coordinates of points on each line.
- 4.5 Given four coordinates, I can determine & prove the specific quadrilateral formed by connecting the coordinates.
- 4.6 I can use sin, cos tan and their inverses to determine lengths of sides and angles in right triangles.

UNIT 5: Applied Trigonometry & Solids

- 5.1 I can use trigonometry to solve a variety of modeling problems.
- 5.2 I can use dissection arguments to show where the formulas for surface area of cylinders, prisms & pyramids come from.
- 5.3 I can compute perimeters of polygons and areas of triangles and rectangles on a coordinate grid.
- 5.4 I can derive & apply volume formulas for cylinders, prisms, cones & pyramids
- 5.5 I can solve real-world and mathematical situations involving volume and surface area.
- 5.6 I can identify 2D cross sections & 3D objects generated from rotating 2D shapes

UNIT 6: Circles

- 6.1 I can determine and apply circumference and area of a circle
- 6.2 I can use the Pythagorean Theorem to derive and apply an equation for a circle of given center & radius
- 6.3 I can measure angles using both degrees and radians.
- 6.4 I can determine the length of an arc of a circle.
- 6.5 I can derive and use a formula to determine the area of a sector of a circle
- 6.6 I can use properties and relationships of chords, secants and tangents to solve for various lengths and angles

Uni	t 1: Constructions & Rigid	Transformations	ccss	
1.1	know and use precise definitions of	geometric terms.	G.CO.1	
1.2	1.2 I can make formal geometric constructions sited in standards both by hand and using geometry software.			
1.3	Given a geometric figure and a rotati	on, reflection and translation, I can draw the transformed figure.	G.CO.5	
1.4	Understand and can explain the form	mal definition of rotation, reflection and translation.	G.CO.4	
	can represent transformations in the plane as inputs and give other points	e plane and describe transformations as functions that take points in as outputs.	G.CO.2	
Endu	ring Understandings	Essential Questions		
• CC • PF • J	You can use special geometric tools to congruent to an original figure without construction is more accurate than sky analyzing geometric relationships devustification skills. Objects in space can be transformed it ways and those transformations can be nathematically. Congruence of two objects can be est of rigid motions. Properties of geometric objects can be hrough geometric constructions. udging, constructing, and communical proportiate arguments are central to	congruency? How do the properties of lines and an to geometric understanding? How is visualization essential to the st geometry? How does the rigid motion connect to How does geometry explain or described and through a series of our world? How do constructions enhance under geometric properties of objects? How can reasoning be used to establish conjectures?	gles contribute audy of congruence? the structure standing of the sh or refute argument?	
	Learning Ta	rget, Instructional task & Standards for Math Practice		
1.1	<u>Geometry Vocabulary</u> High Tech High	Students engage with the academic language needed in this unit in a value that taps into their prior knowledge and provides a place to discuss an dialogue with their peers to activate their prior geometry experience.		
1.1	<u>Starting with Definitions</u> crazymathteacherlady	Using examples & non-examples, students complete Frayer models an collaborate on writing definitions.	d SMP.6 SMP.7	
1.2	<u>Construction Design Project</u> crazymathteacherlady	This activity provides an opportunity for students to familiarize themse with the precision that can be generated using a straightedge and com	I	
1.2	<u>Construction Castles</u> Cheesemonkey	"I created this Constructions Castle project to give students plenty of practice doing constructions while also giving them a chance to development their understanding of how shapes and angles fit together."	SMP.1 SMP.8	
1.2	Ancient Greek geometry, science vs magic	A beautifully simple online tool that allows students to experiment with circles & lines to develop understanding of the capabilities of construct It's deceptively simple, and quite challenging. Can you construct a regular pentagon in 15 moves or less? And can you construct other regular pothat are not shown in the challenges, like the 15-gon and 17-gon?	tions. ular	
1.2	Euclid, the Game! Geogebra	This activity is a great introduction to geogebra as well as the basics of constructions while allowing students to develop methods instead of constructions. Each level introduces a new geometric challenge to construct wonly a virtual compass, ruler, and the previous abilities you've discover	coping ith red.	
1.2	Pizza Delivery Region NCTM Illuminations	The trick to this task is in constructing perpendicular bisectors betwee locations to ensure customers receive pizzas from the nearest location Students must notice this structure and figure out how to apply bisect constructions to increasingly challenging models in to precisely divide city grid for the pizza company.	sMP.6	
1.2	<u>Constructing Shapes</u> High Tech High	This activity builds on Introduction to Constructions but here students make sense of the problem at hand and must attend to precision in explaining why their construction makes the given shape based on how was constructed and how this connects to the definition of the figure.	SMP.6	

1.2	Constructing digitally	Students use their prior knowledge of how to construct the given figures by	SMP.5
1.3	High Tech High MATH	hand to understand how to use geometric software. Activate students' prior understanding of how to rotate, reflect and translate	SMP.7
1.5	High Tech High	a given figure. In order to complete the fourth problem, students must look for and make use of structure found in the previous problems.	31111.7
1.3	Mrs. Pac Man, Robert Kaplinsky	This lesson provides a real-life context for transformations including rotations, reflections, and translations, which are the foundation for students understanding congruence and similarity. Rather than begin the lesson by defining the terms and identifying them in the game, the goal is to let students initially describe the movements in their own words and then guide them towards a mathematically precise definition.	SMP.6
1.3	Transforming a Pentagon & Answer Key, High Tech High	This activity is useful in case students still struggle with visualizing given transformations and need more practice; this can provide students with an opportunity to demonstrate repeated reasoning and regularity in transformations.	SMP.8
1.3	Reflected Triangles Illustrative Mathematics	This activity has students demonstrate their understanding of the line of reflection as the perpendicular bisector between any two corresponding points as well as a precise and accurate construction of a perpendicular bisector.	SMP.6
1.4	<u>Defining Reflections</u> Illustrative Mathematics	This task helps students transition to a technical mathematical definition of reflection. This task requires time and patience and is ideally suited for in class group work. If there are mirrors present in the classroom the teacher may wish to have students experiment so that they can see first-hand how the mirror image is similar and how it differs from the original.	SMP.5 SMP.6
1.4	<u>Defining Rotations</u> Illustrative Mathematics	At this point in the unit, students should be very familiar with the visual representation of rotation and should be able to use this task to help transition to the technical mathematical definition. By providing four possible definitions and having students work through the validity and precision of each.	SMP.6
1.3 1.5	<u>Transforming 2D Figures</u> , MARS	Students describe transformations through writing and images and also see transformations as functions that take points in the plane as inputs and give other points as outputs.	SMP.1 SMP.7 SMP.6
1.5	Horizontal Stretch of the Plane, Illustrative Mathematics	Students compare a transformation of the plane (translation) which preserves distances and angles to a transformation of the plane (horizontal stretch) which does not preserve either distances or angles.	SMP.2
1.3 1.4	Face Value, Mathalicious	Here students are provided with an opportunity to grapple with the idea of something being symmetric and reflecting onto itself and must persevere through the calculations and analysis of the symmetry score. This activity also provides students with an opportunity to model the ideas facial symmetry through reflection.	SMP.1 SMP.4

Jnit 2: Congruence & proof				
2.1 Specify sequences of rigid motions that will carry a figure onto another				
2.2 Use the definition of congruence in terms of rigid motions to d	ecide if two figures are congruent or not	G.CO.6		
2.3 Use the definition of congruence in terms of rigid motions to slonly if corresponding pairs of sides and corresponding pairs of ang		G.CO.7		
2.4 Can explain how the criteria for triangle congruence follow from rigid motions	m the definition of congruence in terms of	G.CO.8		
2.5 Prove theorems about lines and angles		G.CO.9		
2.6 Prove theorems about parallelograms		G.CO.11		
2.7 Prove base angles of isosceles triangles are congruent		G.CO.10		
Enduring Understandings	Essential Questions	!		
 Objects in space can be transformed in an infinite number of ways and those transformations can be described and analyzed mathematically. The concept of congruence and its connection to rigid 	 How is visualization essential to the geometry? How does the concept of rigid motion concept of congruence? 	connect to the		
 motion. Congruence of two objects can be established through a series of rigid motions. Representation of geometric ideas and relationships allow multiple approaches to geometric problems and connect geometric interpretations to other contexts. 	 How does geometry explain or descr of our world? How do geometric constructions enha understanding of the geometric properties. How can reasoning be used to estable conjectures? 	ance erties of objects:		

- Attributes and relationships of geometric objects can be applied to diverse context.
- Properties of geometric objects can be analyzed and verified through geometric constructions.
- Judging, constructing, and communicating mathematically appropriate arguments are central to the study of mathematics.
- Assumptions about geometric objects must be proven to be true before the assumptions are accepted as facts.
- The truth of a conjecture requires communication of a 0 series of logical steps based on previously proven statements.
- A valid proof contains a sequence of steps based on principles of logic.

- What are the characteristics of a valid argument?
- What is the role of deductive or inductive reasoning in validating a conjecture?
- What facts need to be verified in order to establish that two figures are congruent?

	Learning Target, Instructional task & Standards for Math Practice			
2.1	Rigid motions & congruence (specifically the activity part of this lesson) Better lesson	To investigate congruence through rigid motions, students are given a diagram with four congruent triangles. Students will work individually to Identify the rigid motion(s) that can be used to show congruence. They will then write congruency statements for corresponding parts of the triangles and label all congruent parts on the diagram.	SMP 1 SMP 3 SMP 5 SMP 6	
2.1	<u>Sequences of Rigid</u> <u>Motions</u> , High Tech High	The purpose of this activity is to allow students to build on their understandings of single rigid motions before moving directly into congruence. Here, students must attend to precision in their transformations and must also construct viable arguments when explaining how a certain sequence of transformations can be completed in fewer steps. Additionally, students must use tools appropriately to help them precisely complete the sequence of rigid motions.	SMP 3 SMP 5 SMP 6	
2.1	Sequences of Rigid Motions 2, U of A/High Tech High	Before learning the definition of congruence through rigid motions, it is important that students are familiar with sequences of rigid motions and the idea that there can be multiple ways to carry a given figure onto another. The activity helps students to look for and express regularity in repeated reasoning in carrying out sequences of rigid transformations. Additionally, students must attend to precision when completing the	SMP 6 SMP 8	

		transformations to ensure that when comparing different possible sequences the	
2.2	Same size, same	transformed figure is in fact in the correct location. The purpose of the task is to help students transition from the informal notion of	SMP 3
	<u>shape?,</u> Illustrative	congruence as "same size, same shape" that they learn in elementary school and begin	SMP 6
	mathematics project	to develop a definition of congruence in terms of rigid transformations. The task can also be used to illustrate the importance of crafting shared mathematical definitions.	
	and description here:	Note that the term "congruence" is not used in the task; it should be introduced at the	
	Arguing about	end of the discussion as the word we use to capture a more precise meaning of "same	
	<u>Shapes</u> Kate Nowak	size, same shape."	
2.3	Properties of Congruent Triangles, Illustrative Mathematics	At this point, students have experience with sequences of rigid motions and what congruence is. This problem extends those ideas to begin to build the understanding of properties that congruent triangles have. As explained on the IM website, "The goal of this task is to understand how congruence of triangles, defined in terms of rigid motions, relates to the corresponding sides and angles of these triangles. In particular, there is a sequence of rigid motions mapping one triangle to another if and only if these two triangles have congruent corresponding sides and angles." Additionally, students will need to reason abstractly and quantitatively while completing this problem; working between the sequence of rigid motions to map one triangle to the other while keeping track of the different parts of the triangles and how they are related.	SMP 2
2.3	Congruence Theorems,	The purpose of this activity is to provide students an opportunity to experiment with	SMP 1
2.4	NCTM Illuminations	different arrangements of triangle parts (sides and angles) to see what is necessary for	SMP 8
		triangle congruence. The goal is that after testing all possible arrangements, students will be able to explain which arrangements provide triangle congruence and which do	
		not. Through the testing phase, students must persevere through all possible	
		arrangements and should begin to look for repeated reasoning through the different trials.	
2.3	Analyzing Congruency	At this point in the unit, students should be familiar with both CPCTC and criteria for	SMP.3
2.4	<u>Proofs</u> , MARS	triangle congruence from the previous sample activities. In their explanations about if	SMP.7
		the given triangles are congruent or not, students must construct viable arguments to support their ideas. Through this activity and repeated exposure to different triangle criteria, students should be able to look for and make use of structure in identifying whether triangles are congruent or not.	
2.4	Why does SAS Work?,	These four tasks are grouped together because they all show triangle congruence,	SMP 8
	Why does ASA work?,	each spotlighting one of the criteria for triangle congruence. In the above activities,	
	When does SSA work	students were exposed to the different criteria so some or all of the activities here can	
	to determine triangle	be used as needed to ensure that students understand the different criteria. Because	
	<pre>congruence?, Why does SSS work?,</pre>	students have seen these ideas in the previous activities, this is a great place for students to look for and express regularity in repeated reasoning through these ideas.	
	Illustrative	students to look for and express regularity in repeated reasoning through these ideas.	
	Mathematics		
2.4	Angle bisection and	This problem allows students to use the constructions they know along with criteria	SMP 6
	midpoints of line	for triangle congruence to prove bisectors and midpoints in the given activity.	
	<u>segments</u> , Illustrative Mathematics	Students should be able to model with precision the angle and line bisection constructions needed to represent the conditions presented in this task.	
2.7	Isosceles Triangle	This task provides students with an opportunity to use their understandings about	
	<u>Theorem</u> , Illustrative	triangle congruence in a very specific case; the base angles of an isosceles triangle are	
	Mathematics	congruent.	
2.5	<u>Angles Between</u>	The purpose of this section is to provide students with several examples of congruent	SMP 7
	Intersecting and	angles in given contexts. Depending on where students are and how much practice	
	<u>Parallel Lines</u> , Khan Academy	they need, teachers can either work through all of the provided examples and videos or only those that they see best fit for their students. Through the various examples	
	Academy	and proofs, students should begin to look for and make use of structure relating to a	
		transversal crossed by parallel lines and vertical angles.	
2.5	Lines, Transversals,	In this activity, students explore the relationship among angles formed by a transversal	SMP 2
	and Angles, Desmos	and a system of two lines. In particular, they consider what happens when the two	SMP 3
	Activity	lines are parallel vs when they are not.	SMP7
L			SMP 8

2.5	Parallel line & angle	All high school geometry proofs are essentially one big maze. You're told where to	SMP 1
	mazes Daniel	start and where to end – you just gotta connect all the dots and make the jumps in	SMP 2
	Schneider	between. So, I experimented with presenting angle relationships with parallel lines	SMP 3
		that way as well. Where this leads: I love the fact that there are multiple answers –	
		almost any student can generate their own path and justify their answers. You can also	
		ask some interesting questions – what is the shortest path. Find a path that uses	
		every angle exactly one. Find a path that doesn't use the same rule twice in a row	
2.5	Points Equidistant from	Students should be comfortable with perpendicular bisectors so the open nature of	SMP 3
	a two points in the	this problem allows students to explore the distance between the endpoints of the line	SMP 5
	<u>plane</u> , Illustrative	segment to points on the perpendicular line in a familiar context as the build to the	
	Mathematics	understanding of the above proof. This provides a good opportunity for students to	
		engage in "Construct Viable Arguments and Critique the Reasoning of Others." Also,	
		students working on this task have multiple opportunities to engage in "Use	
		Appropriate Tools Strategically" as the task makes use of geogebra.	
2.5	Origami Angles, Tina	There are 31 angles to find in the diagram (excluding 180 degree angles but including	SMP 3
	Cardone	sums of smaller angles. In each case students are asked to find more than the 'easy'	
		angles. They will need to continue working past the point where angle measures are	
		obvious and this is where some students' ingenuity shines through.	
2.6	Quadrilaterals, Khan	This activity explores definitions, conditions and proofs relating to quadrilaterals.	SMP 7
	Academy	Specifically, there are videos provided to show that opposite sides and opposite angles	
	,	of a parallelogram are congruent as well as that diagonals of a parallelogram bisect	
		each other The purpose of this activity is to provide students with an introduction to	
		the congruence properties found within a parallelogram.	
2.6	Quadrilateral dots	"Join the dots to complete these quadrilaterals — where there are options, try to find	SMP 1
	(paper)	the one on the grid with the largest possible area." This task reinforces quadrilateral	SMP 3
	Fawn Nguyen via Don	definitions, properties and area. Leads to student discussions of congruence criteria.	
	Steward	(UPDATE: I made this into a desmos activity that you can access here)	
	<u>Desmos Activity</u>		
2.6	Congruence of	The purpose of this activity is to connect students' prior learnings about proving	SMP 3
	Parallelograms,	congruence in triangles and applying this to parallelograms. Students can also use	SMP 5
	Illustrative	their understandings from the previous activity (Quadrilaterals) as they explore	
	Mathematics	different criteria of parallelograms. As stated on the IM website "This task is ideal for	
		hands-on work or work with a computer to help visualize the possibilitiesThis task	
		would be ideally suited for group work since it is open ended and calls for	
		experimentation. Thus it provides a good opportunity for students to engage in	
		"Construct Viable Arguments and Critique the Reasoning of Others." Also, students	
		working on this task have multiple opportunities to engage in "Use Appropriate Tools	
		Strategically" as they can use manipulatives or computer software to experiment with	
		constructing different parallelograms."	
2.1	<u>Proof Blocks</u> , Proof	The purpose of this activity is to provide students with a formalized written look at the	SMP 3
-	Blocks	visual work they have done in this unit. There are several instructional suggestions for	SMP 7
2.7		how the proof blocks can be used in the classroom but however they are used, they	
	A blog post on how	help students to construct viable arguments and critique the reasoning of others while	
	I've used them	looking for and making use of the structure necessary for geometric proofs.	

				T
Unit	t 3: Similarity			CCSS
3.1	I can describe the properties	of dilations (non-rigid transfor	rmation)	G-SRT.1
3.2	I can apply similar triangles t	o calculate measurements.		G.SRT.2
3.3	I am able to prove that two f	igures are similar through a se	ries of transformations.	G-SRT.2
3.4	I can use criterion for provin	g similar triangles		G-SRT.3
3.5	G-SI 3.5 I can prove and use some theorems about triangles G-SI G-CI			
3.6	I can prove and use slope cr	iteria for parallel & perpendicu	lar lines	G-GPE.5
3.7	I can construct points that di	vide a given segment into spec	sified ratios.	G-GPE.6, G-SRT.5
	ring Understandings		Essential Questions	
•	Similar geometric figures have and segments that are propositions. All transformations. All transformations. All transformations. Dilations, that are similar, but may not Congruence is also similarity defined similarity where the The processes of proving inclusions and developing conjectur case, exploring with example similarities across cases, and counterexamples. Making sense of others' arguvalidity are proof-related act A proof can have many differ forms, including narrative, pipresentation, or algebraic for	ritional in length. In be created by mations create similar in particular, create figures be congruent. It is just a more specifically ratio of lengths is 1:1. In ude a variety of activities, res, considering the general res, looking for structural searching for In ments and determining their rivities. In the diagram, two-column	 How can transformations help me to under similarity? What strategy can be used to prove similated. How do you solve problems using congruent triangles? How do you prove congruence and similar in geometric figures? How is visualization essential to the study. How do geometric constructions enhance the geometric properties of objects? How can reasoning be used to establish or conjectures? What are the characteristics of a valid argument of the study. What facts need to be verified in order to two figures are congruent? How can transformations be used to explain the similarity of geometric figures apple. What is the relationship between transform produce congruent figures and transformations produce similar figures. 	rity theorems? ent and similar rity relationships of geometry? understanding of refute ument? establish that ain similarity? ied and verified? mations that
	Lear	ning Target, Instructional ta	sk & Standards for Math Practice	
3.1	Photocopy Faux Pas (page 4), Math Vision Project	The purpose of this activity is	to provide an open space for the exploration of ut the need for precise definitions just yet.	the SMP 1 SMP 2
3.1	Perform Dilations on objects, Engage NY (grade 8 mod 3 lesson 2)	learn that dilations map lines Students know that dilations		
3.1 Dilations using technology. Khan academy In most assessments, students will be using technology and so, placed here, this task provides them with the opportunity to digest their understanding of dilations and do so in a technology based environment where they are building on previous knowledge built up earlier in the section. Computer based softwares are excellent for problem solving in geometry and this may also provide an opportunity to introduce students to other tools that will be extremely useful as they progress in their geometric thinking.			and do llent ss in	
3.1	Who is the fairest?, NRICH	of some of the previous activ of dilations and what happen themselves.	me of the previous ones, this task could be used ities to get at some of the same ideas about props when lines and figures are dilated by a point no	perties SMP 8 ot on
	Flip Family (page 13)	it to a situation on the coordi	to take students' understandings of dilations an nate plane and extend their understanding to the can partition a given line segment. Placed here	e ways SMP.7

		activity could come as a formative assessment to see where students are with	
		activity could serve as a formative assessment to see where students are with	
2.2	Trionale Diletions (1999)	dilations, or as another solidifying understanding task to wrap up this section	CMD1
3.2	Triangle Dilations (pages	One purpose of this task is to solidify and formalize the definition of dilation. A	SMP.1
3.3	9-11) Math Vision Project	second purpose of this task is to examine proportionality relationships between	SMP.7
		sides of similar figures by identifying and writing proportionality statements based	
		on corresponding sides of the similar figures. A third purpose is to examine a	
		similarity theorem that can be proved using dilation: a line parallel to one side of a	
2.4	Casting a Triangle in	triangle divides the other two proportionally.	
3.1	Scaling a Triangle in	The goal of this task is to apply dilations to a triangle in the coordinate plane.	
3.7	Coordinate Plane,	Students will need to find the coordinates of a point which cuts a given segment into	
	Illustrative Mathematics	one third (part a) and into two thirds (part b). Because the centers for the two	
		dilations are vertices of \triangle ABC and the sum of the dilation factors (one third and two	
		thirds) is one, the two dilated triangles share a vertex	
	<u>Defining similarity</u>	Placed here, this activity's purpose is to further interact with the precise nature of	SMP 5
	through angle preserving	rotations, reflections, translations, and dilations with support from khan's interface.	SMP 6
	transformations, Khan	It has the extra motivating factor of seeming like a puzzle where students' attention	
	Academy	to precision and detail are extremely important as students describe the rotations,	
3.3		reflection, rotations, and dilations that are occurring.	
3.5	Golf Ball Problem, Fawn	Standard G-SRT.5 calls for students to "use congruence and similarity criteria for	SMP 4
	Nguyen	triangles to solve problems." Both of these task asks students to use similarity to	
		solve a problem in a modeling context that will be familiar to many (Golf and	
		Pool).In order to solve this problem, students must use the fact that when an object	
		bounces off of a wall, the angle of incidence equals the angle of reflection; that is,	
		the angle at which the object hits the wall is equal to the angle at which the object	
		ricochets from the wall forming similar triangles which can help to solve the given	
		problems	
3.5	Similar Circles, Illustrative	This task explores the proof for all circles being similar meaning that there is a	SMP 1
	Mathematics	sequence of transformations of the plane (reflections, rotations, translations, and	SMP 8
		dilations) transforming one to the other. If we give the plane a coordinate system,	
		then the circles have equations and the transformations can be described explicitly	
		with equations. The goal of this task is to work on showing that all circles are similar	
		using these two different methods, the first visual and the second algebraic. Part (a)	
		of this problem will require students to make sense of a seemingly challenging	
		problem. Part (b) provides an opportunity to look for repeated reasoning between	
		the argument for part (a) and part (b).	
3.5	Pigs in a Blanket, Geoff	In this investigation, students will take a different look at triangles and do some	SMP 1
	(Emergent Math)	investigating, exploring, and modeling using their knowledge of similar triangles and	SMP 4
		hopefully come to some previously unknown ideas about midpoints of triangles,	
		namely that connecting them results in 4 congruent triangles that are similar to the	
		larger triangle.	
3.3	Similarity	Students define a similarity transformation as the composition of basic rigid motions	SMP 3
	transformations, Engage	and dilations. Students define two figures to be similar if there is a similarity	SMP 6
	NY HS Geometry, mod 2	transformation that takes one to the other. Students can describe a similarity	
	lesson 12	transformation applied to an arbitrary figure (i.e., not just triangles) and can use	
		similarity to distinguish between figures that resemble each other versus those that	
2.4	rate and finding of the	are actually similar.	CN 45 4
3.4	Identifying Similar	Use informal arguments to establish facts about the angle sum and exterior angle of	SMP 1
	Triangles	triangles, about the angles created when parallel lines are cut by a transversal, and	SMP 2
2.5	Math Assessment Project	the angle angle criterion for similarity of triangles.	SMP 3
3.5	Rolling Cups,	This open-ended modeling task has students experiment with rolling cups to	SMP 1
	Math Assessment Project	develop a formula to determine the radius of the circle formed when rolling a cup	SMP 2
	Read this first by Dan	given the cup dimensions. Applications of proportions and similar triangles are	SMP 3
	Meyer	usually employed. Students are also asked to analyze the responses of others and	SMP 4
	How I implement this	critique their approaches.	
	<u>lesson</u>		<u> </u>

Uni	t 4: Right Triangles 8	Coordinate Proofs		ccss	
4.1	I I can use the Pythagorean th	eorem to determine the lengths o	of sides of a right triangle.	G.SRT.8	
4.2	4.2 I can find the coordinates of points that divide given segments into specified ratios. G.GPE.6 G.SRT.5				
4.3	I can calculate & use the dist	ance between two coordinates.		G.GPE.7	7
4.4	I can prove that 2 lines are p	arallel, perpendicular or neither, g	iven coordinates of points on each line.	G.GPE.5	5
	6 Given four coordinates, I car ordinates.	determine & prove the specific q	uadrilateral formed by connecting the	G.CO.11	1
4.6	5 I can use sin, cos tan and the	eir inverses to determine lengths o	f sides and angles in right triangles.	G.SRT.6	
Endu	uring Understandings		Essential Questions		
•	real world problems. Use a variety of representation relationships and solve problem properties and describe relationships and describe relationships are described in the statements involving quadrillationships.	ems involving triangles Analyze cionships in quadrilaterals. stify and prove mathematical aterals.	 How are right triangles used to meas How do you use coordinate geometr relationships within triangles? How do you find a side length or ang right triangle? How do trigonometric ratios relate t triangles? 	ry to find gle measur	e in a
	Lear	ning Target, Instructional task	& Standards for Math Practice		
4.1	TV Space Timon Piccini	A 3-act application of the Pythag TV will fit in the space provided.	gorean theorem where students try to determ	mine if a	SMP 2 SMP 3
4.1	Viewmongous Mathalicious & How it went in my class	having a 42-inch screen, it mean advertised as the screen's size, the much screen there is. In this lesson, students use the P	are measured diagonally. When Best Buy lists of 42 inches on the diagonal. Yet even though the diagonal only tells us part of the story above the diagorean Theorem along with some propositionship between the diagonal length, aspec	n this is out how ortional	SMP 1 SMP 2 SMP 4
4.1	<u>Wizard of Oz</u> Kaplinsky	If you play the clip prior to explo statement and have no idea what correct the Scarecrow's statement have no idea how to answer that minutes. From there you can use any one proof of the Pythagorean Theore connections to the clip and realize exploration is complete, you can	ring the proof, students will hear the Scarecrest he is saying. Then ask students, "How cannot so it is mathematically precise?" Again, the question. The whole process will take about of a number of good strategies for exploring em. Along the way students may start to make it is related to what they are learning. On return to this problem, play the video clip again we correct the Scarecrow's statement so it	we ney will at five the ke ce the gain,	SMP 3 SMP 6
4.1	Taco Cart Dan Meyer My class, Fawn Midpoint discovery,	Given the location of 2 people ar will get to the taco cart first. Gre ceiling extension questions inclu 2) Figure out where the Taco star both Dan & Ben get there at the	nd their routes and walking speeds determin at low floor, initial task with lots of room for ding: 1) Find the fastest path to the Taco star nd would have to be located on the path so t same time. segments graphed on it. Then I asked studer	r high nd. that	SMP 1 SMP 4
	Misscalcul8	write the ordered pair of each er midpoint. We did #1 together an their own.	nd point and finally to guess the ordered pained then I asked them to go through and do #2	r of the 2-6 on	SMP 6 SMP 7
4.2	Midpoints & dividing segments, EngageNY	congruent segments and, therefo	e midpoint, we are dividing a segment into two re, need to calculate half of the vertical and ided or subtracted these values from the		SMP 2 SMP 6

4.2	Math Vision Project, Math 2, Module 6: pgs 49-53	coordinates of one of the endpoints of the segment. In this lesson we divided the segment into two segments of different lengths. We had to determine vertical and horizontal distances other than 12 and then use these values to determine the location of the point. We could use either endpoint to do this, but we had to be careful to add and/or subtract depending on whether we were moving right/left or up/down along the segment and which endpoint the point was closest to. This task is for students to apply their understanding of similar triangles and proportionality to find the point on a line segment that partitions the segment in a given ratio. Students are first asked to find the midpoint of a segment using two possible strategies that involve congruent triangles. The task continues by asking students to extend those strategies and use similar triangles to find segments in ratios other than 1:1. The formula for finding the midpoint of a segment is formalized during the discussion. The discussion can also be extended to derive a formula for finding the point that partitions a segment in any given ratio.	SMP 1 SMP 2 SMP 7
4.3	<u>Distance formula relate</u> <u>to Pythagorean theorem</u> , Jessie Hester	A progression of introductory interactive notebook activities that walk students from the pythagorean theorem to distances on maps to distances on a coordinate plane.	SMP 6 SMP 8
4.3	Where's The Nearest Toys R Us?, Kaplinsky	Students use the Pythagorean theorem & distance formula using GPS coordinates and a spreadsheet to determine the distance to various Toys R Us store locations.	SMP 2 SMP 4
4.2	<u>Distance & midpoint on a</u> <u>map</u> , Pam Wilson	Rather than having students work a gazillon problems – I've decided to use a school map. I ran a copy of grid paper on a transparency and overlaid on a map of school – copied, added a rough set of axes. Placed points throughout. Sample questions: Calculate the distance between Room 137 & Room 114. Find the coordinates between Room 137 & Room 114. What room are you closest to at this point?	SMP 1 SMP 4
4.4	Parallel & perpendicular lines, Fawn Nguyen	A simple yet beautiful way to allow students to apply their intuition about parallel and perpendicular lines and then study and formalize their findings.	SMP 3 SMP 6 SMP 8
4.1 4.2 4.3 4.4 4.5	Squares on a Grid, Illustrative mathematics & my implementation	The purpose of this task is to use the Pythagorean Theorem and knowledge about quadrilaterals in order to construct squares of different sizes on a coordinate grid. In addition to the Pythagorean Theorem, students will need to show that the shapes they have constructed are squares. This can be done by using the Pythagorean Theorem a second time to check that, in addition to having four congruent sides, the quadrilaterals also have congruent diagonals.	SMP 1 SMP 3 SMP 8
4.5	Coordinate Ouadrilateral Proofs, Mathy McMatherson	Give just 4 coordinates, what kind of quadrilateral is it? Justify your answer – be sure to give evidence about why you believe you shape is what it is, as well as why your shape isn't something else". There is a method of organizing and categorizing objects such that they split into defining categories, all of which have a common property or defining characteristic – and, anything underneath these categories have all the properties of the objects above them and continue to become specialized. It is useful, in my opinion, to make this method of organization explicit and teach my students how to understand this method of classification.	SMP 2 SMP 3 SMP 6
4.5	Is this a Rectangle?. Illustrated Mathematics	The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. One of the advantages to open-ended tasks like this one is that they allow for multiple, creative solutions and, in so doing, show how the different strands of the curriculum are related. This task supports the transformational approach to geometry adapted in the CCSS in a very strong way: the second solution uses rotations and translations in a fundamental way while the fourth solution requires an understanding of similar triangles and consequently of dilations of the plane. At the same time, it gives an opportunity to relate these new ideas to classical approaches using the Pythagorean Theorem and slopes of lines.	SMP 1 SMP 3
4.5	Prove it(pdf), Math Vision Project (math 1, module 8: pg 15-18)	In this task you need to use all the things you know about quadrilaterals, distance, and slope to prove that the shapes are parallelograms, rectangles, rhombi, or squares. Be systematic and be sure that you give all the evidence necessary to verify your claim.	SMP 2 SMP 3 SMP 6

4.6	Discovering Trigonometry, Lisa B & Tina C	An introductory exploration using Geogebra where students relate trigonometric ratios to similar triangles.	SMP 5 SMP 7
4.6	Intro to trigonometry, Sam Shah	A series of 4 packets that guide students through discovering trigonometric ratios through the study of similar triangles and then extending this to the special right triangles.	SMP 6 SMP 7
4.6	Do Kids really understand trigonometry once Sin/Cos/Tan are introduced?, Sam Shah	For my kids, at this level, I want each term (sin/cos/tan) to be a ratio generates a class of similar triangles — which all look the same, but have different sizes. And I want kids to conjure that up, when they think of sin(40)=0.6428. But I fear that 0.6428 will stop losing meaning as a ratio of sides that 0.6428 won't mean anything geometric or visual to them. Why? Because the words "sine" "cosine" and "tangent" start acting as masks, and kids start thinking procedurally when using them in geometry.	SMP 6 SMP 8
4.6	Triangle pile up, Great Maths teaching ideas	This resource is a challenging puzzle to consolidate learning on trigonometry. The idea is that pupils have to start with the information they have in the bottom triangle and work their way up through the stack, finding missing side lengths to allow them to calculate the length of the hypotenuse of the top triangle. The puzzle can be solved with trigonometry alone (finding missing sides and missing angles) or Pythagoras' Theorem can be used at some points as well. This puzzle can also be used to clearly demonstrate why you shouldn't round numbers mid-way through a calculation. It might be quite nice to get one group to round their answers at each stage to compare with the others and demonstrate how the rounding error accumulates through the puzzle. There are lots of extension opportunities for this puzzle such as: what is the area of the whole compound shape?, what is the perimeter of the compound shape?, what proportion of the page is occupied by the triangles?	SMP 1 SMP 6 SMP 8
4.6	Breaking handicap laws & Creating Trigonometry, Michael Pershan	In this sequence of activities, students necessitate the trig ratios by first exploring handicap ramps and looking more broadly at angles of inclination given height and width. In the second post, the students build toward a handmade trigonometric table to use to solve problems.	SMP 1 SMP 8

Hex	5: Applied Trigonor	netry & Solids		CCSS
5.11	can use trigonometry to solve	e a variety of modeling problems.		G.SRT.6
	can use dissection arguments e from.	s to show where the formulas for s	urface area of cylinders, prisms & pyramids	G.GMD.1
5.31	can compute perimeters of p	olygons and areas of triangles and	rectangles on a coordinate grid.	G.GPE.7
5.41	can derive & apply volume fo	rmulas for cylinders, prisms, cones	s & pyramids	G.MG.1
5.51	can solve real-world and mat	hematical situations involving volu	me and surface area.	G.GMD.3
5.61	can identify 2D cross sections	s & 3D objects generated from rota	ating 2D shapes	G.GMD.4
Endu	uring Understandings		Essential Questions	
•		real properties of the shape or olume is essential to learning and	 What can we measure about figures? measure these qualities? How do me change when we change dimensions? How do you find the surface area and solid? How do the surface areas and volum solids compare? How are the surface areas and volum related and applied? 	asurements ? I volume of a es of similar
	Lear	ning Target, Instructional task	& Standards for Math Practice	
5.1	Using trigonometry to measure a Flagpole, FracTad's Fractopia Diamond Building, Lisa B via Jeff De Varona's	elevation, which is measured fro applied to figure out the angle of I used this lesson as a summary clinometer activity based on this determine how to find the height constructed of 2 equilateral trian constructed 30-60-90 triangles a	to a unit on right triangles, a few days after do s. My favorite part was listening to students to the of 1 diamond using only the fact that it is ngles with sides length 7 feet. Some students and used trigonometry, which is exciting becaught triangles in this geometry class. Most students	SMP 5 oing a SMP 1 SMP 5 SMP 5 SMP 7
5.1	51-Foot Ladder, Mathalicious	In 2005, when discussing the pro Mexico, then- Arizona governor wall. I'll show you a fifty-one foo actually be long enough to climb In this lesson, students combine	oposed border wall between the United State Janet Napolitano said, "You show me a fifty fo t ladder." Politics aside, would a 51-foot ladd	oot SMP 4 er SMP 7
5.1	Sofa Away from Me, Mathalicious	Given a television of a certain size lesson uses right triangle trigonor percent of your visual field that it right triangle trigonometry to find various distances from the televit person's field of view filled by a compercent they find. Finally, they we find the distance where the TV find.		SMP 8 for ction to
5.1	Satellite, Illustrative Mathematics	satisfy physical constraints. This communication with two contro Students determine distances be students determine the time it to	ng geometric methods to solve design proble task models a satellite orbiting the earth in I stations located miles apart on earth's surfactween various locations and given a rate of takes to travel between two specified location nes and is beyond the scope of this section bo include it here.	ce. ravel, s. Part

5.2	Introducing Surface area	The lesson will hopefully cause the students to ask more questions about surface	SMP 3
5.2	with Pop Box Design,	area and will provide a higher level of engagement for the rest of the unit where	SMP 4
	Timon Piccini and My	students will be deriving formulas like this one. This activity also provides a nice	SMP 6
	Adaptations	bridge between the geometry work of this unit and some more algebraic topics.	
5.2	Tin Man, Miss Calcul8	Each pair of students built a tin man out of boxes, toilet paper rolls, paper towel	SMP 1
		rolls, Styrofoam balls, and cones. They had to use a formula sheet to first measure	SMP 5
		the surface area of the parts, showing all of their work for each part. Next they had	SMP 6
		to tape the parts together. The tin man had to have all parts attached and be sitting	
		or standing on its own. Then I would give them the exact amount of foil they	
		measured for, no more and no less. They had to cover their tin man as completely as	
		possible without running out of tinfoil or having extra leftover.	
5.5	Greenhouse	This task requires a scale drawing and calculations related to area and volume for a	SMP 1
	Management, Achieve	greenhouse project. Students are called upon in the prompt to show their work and	SMP 2
	the Core	thinking so they can make a presentation to the manager about their solution This	SMP 3
		task is linked to CTE standards and was designed with agriculture sciences educators	SMP 6
		to provide a link between mathematics and the field of agriculture. The purpose of	
		this task is to give students a modeling task in which to use apply their knowledge of	
		the area and volume formulas.	
5.4	Tap into teen	In this multi-step 3 act math task, the teacher will show three sets of 3 Act Math	SMP 5
	minds: <u>Prisms &</u>	Style tasks involving comparisons between rectangular prisms and pyramids,	SMP 8
	<u>Pyramids, a 3- act task</u>	triangular base prisms and pyramids, and cylinders and cones.	
	There is no link here :-(is		
	this it?		
5.2	Fawn & <u>NCTM</u> : <u>I am a</u>	An activity in measurement and geometry in which students explore the volume and	SMP 2
	<u>Doughnut</u>	surface area of a donut. Through calculation, creative thinking, and discovery, the	SMP 3
	Maralina da un Consala all	students enhanced their geometric vocabulary and reasoning.	SMP 4
5.5	Kaplinsky: <u>Gumball</u>	Engaging tasks to develop student understanding of the application of the concept	SMP 1 SMP 2
	Machine Kaplinsky: <u>Drug Money</u>	of volume of a variety of solids.	SMP 3
	Kaplinsky: <u>Cigarette</u>		JIVIP 3
	Butts		
	Dan Meyer: You Pour I		
	choose		
	Dan Meyer: Water Tank		
	Dan Meyer: Meatballs		
5.5	MARS: Calculating	This task challenges students to find the volumes of 3 different cups and then	SMP 3
	volumes of Compound	critique the work of other students who did the same task.	SMP 5
	<u>objects</u>	·	
5.4	Open Middle: Find 3	This problem helps students think strategically and work backwards to determine	SMP 2
	different cylinders that	possible dimensions of a cylinder so that its volume is in a specified range.	SMP 3
	hold between 110 and		SMP 8
	115 cu. ft. of water.		
5.5	Kate Nowak: Spiky Door	A 3 day task that requires students to construct a pyramid or cone with a specified	SMP 2
		pre determined range for its volume and surface area. Effective gets students to	SMP 4
		reliably distinguish both slant height from height, and volume from surface area.	SMP 6
5.5	MARS: <u>Evaluating</u>	This lesson unit is intended to help you assess how well students are able to solve	SMP 1
	statements about	problems involving area and volume, and in particular, to help you identify and assist	SMP 3
	<u>enlargements</u>	students who have difficulties with:	SMP 7
		-Computing perimeters, areas, and volumes using formulas.	SMP 8
		-Finding the relationships between perimeters, areas, and volumes of shapes after	
_		scaling.	<u> </u>
5.5	MARS: <u>Designing Candy</u>	This lesson unit is intended to help you assess how well students are able to:	SMP 2
	<u>Boxes</u>	Select appropriate mathematical methods to use for an unstructured problem.	SMP 3
		Interpret a problem situation, identifying constraints and variables and specify	SMP 8
		assumptions.	
		Work with 2- and 3-dimensional shapes to solve a problem involving capacity and	
		surface area.	
	I .	Communicate their reasoning clearly.	1

5.6	Identifying 3D figure	This activity provides some practice with foundational visualization tools that will be	SMP 1
	from 2D Rotation,	extremely useful throughout the rest of the unit. This also provides a nice	SMP 5
	Renton Schools	opportunity for students to include various entry points and requires that the	SMP 7
		students look for and make use of structure while investigating the shapes.	

Цох		ummer 2017. <u>ums is what i p</u>	refer for the last unit of the year**	CSS
Hex 6: circles				
6.1 I	6.1 I can determine and apply circumference and area of a circle G.GN			
6.2 I	6.2 I can use the Pythagorean Theorem to derive and apply an equation for a circle of given center and radius G.0			
6.3 I	can measure angles using bo	th degrees and radians.	G.C	C.B.5
6.4 I	6.4 I can determine the length of an arc of a circle. G.C.			C.B.5
6.5 I	can derive and use a formula	to determine the area of a sector	of a circle G.C	C.B.5
6.6 I can use properties and relationships of chords, secants and tangents to solve for various lengths and angles				
	uring Understandings		Essential Questions	
•	to the radius. You can find the length of pa arc) by relating it to an angle You can use an arc length to formed by the arc and the ra	the circle. pted by an angle is proportional art of a circle's circumference (an in the circle. find the area of the sector idii of the circle. ning Target, Instructional task Students find the area and perin segments and fractions of circles cost of a project. (7-G.4) The shalleft purposefully unspecified, as	circles? How can you find the measures of angles, segments of a circle using the lines interse circle, the center of the circle, and within How can you use the arcs and intersecting and within a circle to determine the meas arcs, segments, and areas of sectors of the meter of geometric figures whose boundaries are sand to combine that information to calculate the one component skill of modeling with mathematical assumptions themselves.	ecting the the circle? g lines on urements of e circle?
6.2	Equations of Circles Desmos	In this activity, students practice form) to match various descripti	is for students to make simplifying assumptions themselves. In this activity, students practice writing equations of circles (in standard and general form) to match various descriptions and constraints.	
6.2	Equations of Circles 1, Shell Center	that satisfies an equation in tern proceed through this lesson to d questions they have not been sh knowledge along with their pers problems. They start with specif	ne Pythagorean Theorem, and the fact that any (x, ns of x and y is a point on its graph, students lerive the equation of a circle. They are asked nown how to solve yet, and must access their prior everance to make sense of, and make progress on ic questions about specific circles, but then here they must look for and make use of structure us from given equations.	SMP 2 SMP 5 SMP 7
6.2	Sprinkler system design with Desmos.	students to diagram a sprinkler s This forced them to practice usin info for sprinkler lines, heads an cost and employ the distance for		st al
6.2	Equations of circles 2 Shell Center		elp you assess how well students are able to: s of circles and their geometric features.	SMP 5 SMP 6

6.4	Rotunda West, Dan	A 3 act task where students have to calculate the fastest route from one point to	SMP 1
	Meyer info <u>here</u>	another either by going through the circle or driving on the circumference. This task is a great introduction to calculating arc length.	SMP 3 SMP 6
6.4	Arc Lengths and Sector Areas, Cathy Jones	In this task, students will discover the relationships between arc length, central angle measure, and circumference. They will also discover the relationship between circle area, central angle measures, and sector area. Lastly, students can create formulas for calculating arc length and sector area.	
6.3 6.4 6.5	Sectors of circles, Shell center	his lesson unit is intended to help you assess how well students are able to solve problems involving area and arc length of a sector of a circle using radians. It assumes familiarity with radians and should not be treated as an introduction to the topic. This lesson is intended to help you identify and assist students who have difficulties in: Computing perimeters, areas, and arc lengths of sectors using formulas. Finding the relationships between arc lengths, and areas of sectors after scaling.	SMP 5 SMP 7
6.1 6.5	<u>Circles Galore</u> , Fawn Nguyen	In this task, you will look at a pattern of black and white circles and describe, mathematically, what is happening to the areas of black and white as the pattern develops.	SMP 2 SMP 3 SMP 7
6.4 6.6	Lucky Cow, Dan Meyer	This task asks students to ponder what line will cut a wedge (sector) of Lucky Cow cheese exactly in half. Rather than finding the obvious vertical line that would divide the area, students are asked to find the horizontal line that cuts the area in half. At first students might use their intuition and a method of guessing and checking to estimate a solution. Once students have grappled with the general premise and possible estimated solution to the problem, they can move into more precise solutions using sector area (in either radians or degrees), trigonometry, and proportional reasoning. Alternative solutions may also involve trapezoids, segments, and some algebraic manipulation. The purpose of this task is to contextualize finding the area of a sector, or a proportion of a sector, and to apply that area formula in a richer context that requires thinking across multiple mathematical concepts. One solution of this task is a really nice use of the area of a sector in terms of radians as well. However, there are several valid approaches to solve this problem, so students should be encouraged to compare and contrast their methods. Students may need a refresher on right triangle trigonometry to precisely complete this task.	SMP 1 SMP 4 SMp 6 SMP 7
6.4	Triplets of Cellville, Mathalicious & my blog post about it here.	In this lesson, students describe the location information provided by a cell phone tower, explain why loci from at least three towers are required to pinpoint a	
+	Inscribed & Circumscribed Right triangles, Shell Center	This lesson unit is intended to help you assess how well students are able to use geometric properties to solve problems. In particular, it will help you identify and help students who have difficulty: Decomposing complex shapes into simpler ones in order to solve a problem. Bringing together several geometric concepts to solve a problem. Finding the relationship between radii of inscribed and circumscribed circles of right triangles.	SMP 1 SMP 2 SMP 3
6.4	Axle Roads, Mathalicious	when a car turns, the outer wheel has to move farther than the inner wheel. But how is that possible if the wheels are connected by an axle? In this lesson, students use the geometry of circles to understand how we get from point A to point B when the path isn't a straight one.	SMP 1 SMP 4

