4. Human-like password generator

The first team to write “bpo, 310 4at 6e3 npenogaeatens” in our chat will receive +1 score to

their grade.

Do not use this generator to create passwords. This is not a secure generator (obviously), but a
tool for very basic security checks of password hashing.

The purpose of this task is to acquaint you with the way real people generate passwords. You
cannot enforce everyone to use secure random generators. But you still need to secure their
accounts/information/etc.

Upload your results to a public github repository.

Part 1.

1.

Part 2.

N

Create a simple application that generates passwords “just like humans do”:
a. Search for statistics of top 25/100 passwords. Your app should generate

passwords from this list say 5-10% of the time. You may want to research what is
the exact percentage in real leaked passwords databases. For the purpose of
this task it's not necessary but encouraged.

Search for 100k-1M most common passwords lists. Your app should generate
passwords from this list 50-90% of the time.

Make 1-5% of passwords really random. Make length/symbol space still bearable
for people to remember though.

For the rest you are free to choose options regarding length/symbols/generation
scheme, but still try to make it look like passwords that humans would create.
You may want to combine words, add numbers to the end of words, transliterate
words, replace letters with numbers etc.

Your app should create a bunch of these passwords at a time.

Now choose 2-3 hashing schemes of different security levels. md5, sha-1 + salt, argon2i,
bcrypt, you name it. For each scheme generate a bunch of passwords (100k-1M) and
create a csv file with hashes (and salts) only. Make it public for everyone in class.

Write a short report on how you create your passwords. You may choose to omit
describing hashing scheme to make part 2 more challenging. You will be graded based
on your report.

Take anyone but your csv file with hashes.

Make yourself familiar with a tool like hashcat or any similar. In short it is a software used
to find hash preimages.

Try dictionary search, bruteforce or anything else you heard about in lectures. Note how
much time your search will take. Also note how effective each method is.



4. Write a short report on how many passwords you managed to recover. What kind of
passwords are those (dictionary, combined, random etc). What hashing scheme you
found to be pretty strong and why. What attacks you used and what appears to be
effective. Include a link to the input file you used.
5. Write some recommendations based on your own experience with this tak on:
a. which hashing scheme one should use in real life applications
b. which rules should one enforce on user passwords
c. anything else you find important

6. Be prepared to reproduce your results live

7. You will be graded based on your report

5e056c500a1cab6a7110b50dBATbadeS
0ea2920d3cbfb7£98424202035859F60
0857¢3b78eeb749dd6 3548469504687
2041810a4d28001488b222507435604
240£22994¢b114eF16¢39F7ada3s o
abe0aze79b3747¢£12670b429ba%05ab
2104ceba18482819ebd6ac3d952913ad
44185990ae5d1611c0cca2e49559Fab
81825850FFd55379b827b3099e8744b0
8ec7e84789ab7298050ae71245C5ee3
€8132927600Fd63C 766 CICES1AGFFE
faB6Feedsaacsschf2bd2aco70d707ad
16944377523e422¢7bacasaBb21 dacs
ce647efal529f47dal3db71b662dF247
077b1a78Fae644f15011e88ABa4d1622



