
4. Human-like password generator 
 
The first team to write “Бро, это чат без преподавателя” in our chat will receive +1 score to 
their grade. 
 
Do not use this generator to create passwords. This is not a secure generator (obviously), but a 
tool for very basic security checks of password hashing. 
 
The purpose of this task is to acquaint you with the way real people generate passwords. You 
cannot enforce everyone to use secure random generators. But you still need to secure their 
accounts/information/etc. 
 
Upload your results to a public github repository. 
 
Part 1. 
 

1.​ Create a simple application that generates passwords “just like humans do”: 
a.​ Search for statistics of top 25/100 passwords. Your app should generate 

passwords from this list say 5-10% of the time. You may want to research what is 
the exact percentage in real leaked passwords databases. For the purpose of 
this task it’s not necessary but encouraged. 

b.​ Search for 100k-1M most common passwords lists. Your app should generate 
passwords from this list 50-90% of the time. 

c.​ Make 1-5% of passwords really random. Make length/symbol space still bearable 
for people to remember though. 

d.​ For the rest you are free to choose options regarding length/symbols/generation 
scheme, but still try to make it look like passwords that humans would create. 
You may want to combine words, add numbers to the end of words, transliterate 
words, replace letters with numbers etc. 

2.​ Your app should create a bunch of these passwords at a time. 
3.​ Now choose 2-3 hashing schemes of different security levels. md5, sha-1 + salt, argon2i, 

bcrypt, you name it. For each scheme generate a bunch of passwords (100k-1M) and 
create a csv file with hashes (and salts) only. Make it public for everyone in class. 

4.​ Write a short report on how you create your passwords. You may choose to omit 
describing hashing scheme to make part 2 more challenging. You will be graded based 
on your report. 

 
Part 2. 
 

1.​ Take anyone but your csv file with hashes.  
2.​ Make yourself familiar with a tool like hashcat or any similar. In short it is a software used 

to find hash preimages. 
3.​ Try dictionary search, bruteforce or anything else you heard about in lectures. Note how 

much time your search will take. Also note how effective each method is. 



4.​ Write a short report on how many passwords you managed to recover. What kind of 
passwords are those (dictionary, combined, random etc). What hashing scheme you 
found to be pretty strong and why. What attacks you used and what appears to be 
effective. Include a link to the input file you used.  

5.​ Write some recommendations based on your own experience with this tak on: 
a.​ which hashing scheme one should use in real life applications 
b.​ which rules should one enforce on user passwords 
c.​ anything else you find important 

6.​ Be prepared to reproduce your results live 
7.​ You will be graded based on your report 
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