
Z E B Y L

Nov 23, 2020
TO: Dev-ops & Development Team
Prepared by: Dishant Agnihotri

Re: Production Deployments

Please Note: This document considers we’ve not set up CI/CD pipelines or hooks.

Version Control using Centralized Git Workflow:

Centralized Workflow is important so that we can easily debug the issue, fast rollbacks
and easy collaboration between multiple developers & dev-ops. The Centralized
Workflow uses a central repository to serve as the entry for all changes to the project.

The default production deployment branch is called master and the default
development branch is develop.

The architecture for the centralized workflow is explained using the below diagram:

Looking at the big picture we can see the possibilities for easier collaborations &
versioning. Git Flow is an evolution of Feature Branch Workflow, so it reuses all principles
of each pattern and includes more as “develop”, “hotfixes” and “release” branches.
Branches Explanation:

1.​ For Developers:
a.​ develop: Develop a.k.a development is the default and main branch for the

developers. No direct commit will be tolerated. Develop branch can only be
used to cut “feature” branch for actually committing the latest code.

b.​ feature: Feature branches are the developer friend. They will be used to
push code & to raise PR’s. A single user can cut as much as PR they want.
Each feature represents a module on which the developer is working and
should be named accordingly.

i.​ For example: A developer is working on the login page UI then it
should be named as: feature/login-page-ui and another developer is

working on the register page then it should be written as
feature/register-page-ui.

c.​ hotfixes: These branches can be directly cut from the master with version
control naming and can be used to fix quick bugs. Developers can cut
hotfixes.

2.​ For Dev-ops:

a.​ master: Master is the default and main branch for the dev-ops. No direct
commit will be tolerated. Master branch can only be used to merge
releases and to cut hotfixes.

b.​ release - Releases are the branches that need to always be cut from the
develop with a version & to merge inside the master for deployment. A
release needs to be cut once we want it to be deployed on the master.

i.​ Please note: Summary of commits needs to be added inside the
description so that it can be easily debugged in the near future.

ii.​ Version controlling: Below image can help to understand how
version controlling is done:

c.​ hotfixes: These branches can be directly cut from the master with version

control naming and can be used to fix quick issues. Dev-ops can cut
hotfixes.

d.​ tags: On successful production deployment, the tag needs to be assigned
onto the master branch with the same version control name of the most
recent release. Each tag will have the same commits summary as of the
recent release.

For detailed documentation refer to this link:
https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

Centralized Git Workflow based upon our setup

As we’ve used two different setups or repos for the same project then the below
workflow will be used for centralizing git workflow:

1.​ https://github.com/TextAspectInc/Development-Module
a.​ “master” branch will be the finalized branch from the development team.

On completion, we’ll notify the dev-ops team to use it as a production
release.

b.​ “feature” we’ll cut feature branches for the development of the modules.
On completion, we’ll merge them to master.

2.​ https://github.com/TextAspectInc/MH_SMS_Portal
a.​ “master” branch will be the main production branch.
b.​ “develop” branch will be used to migrate code from “Development

Module”.
c.​ Once the code is migrated and commit to “develop” then a release will be

cut with the proper versioning & summary of commits in the description.
d.​ The release will be merged to “master”.
e.​ Deployment starts.
f.​ On successful deployment & developers testing, a tag needs to be

generated with the same description as of the previous release.
g.​ The same progress will keep on following for each release.

Important Tools Required

As we i.e. developers don’t have access to the production server, we need the below
setup for debugging & monitoring purposes:

1.​ Apache JMeter: (https://jmeter.apache.org/): For load type performance testing
of new releases. This is a free tool. If we are installing UppTime then we don’t
need to have this one installed.

a.​ Please Note: This should be done by the dev-ops team.

https://github.com/TextAspectInc/Development-Module
https://github.com/TextAspectInc/MH_SMS_Portal
https://jmeter.apache.org/

2.​ Pingdom: (https://www.pingdom.com/): For static content & release size of the
new release. This is a free tool, please sign-up for a free account.

a.​ Please note: We don’t need to set up this tool on the server. We just need a
report before and after deployment. As mentioned inside the
Pre-Deployment Checklist & Post-Deployment Checklist.

b.​ I have shared a drive to upload the reports for each release. Please create
a folder for each release version & upload both the report with the name
“pre-deployment report” & “post-deployment report”

c.​ Please note: This should be done by the dev-ops team.

3.​ Sentry: (https://sentry.io/welcome/): For Error Tracking. This is a free tool.
a.​ Please note: This should be done by the development team.

4.​ UppTime (https://upptime.js.org/): For uptime & log tracking. This is a free tool.

a.​ This needs to be installed on the server.
b.​ Please note: This should be done by the dev-ops team.
c.​ Please add monitoring emails for “dishantagnihotri@gmail.com” &

“rahul.kumar.mj5@gmail.com” & pejman’s sir.

5.​ Cloudflare (https://www.cloudflare.com/en-gb/): Not required but recommended.

#TODO: @ Consult with Hassan.

Based on your needs, you can set up free tools provided by SolarWinds for all kinds of
server needs. All important tools are free or come with generous free plan:
https://www.solarwinds.com/

Pre-Deployment Checklist

1.​ Deployment Objective Updations (Dev-ops)
a.​ Deployment objective document needs to be filled with the date &

summary of commits that will be going to take effect into the release. The
branch that will take effect should also be mentioned.

b.​ The next release tag should also be mentioned with a reason why the tag
is incremented.

c.​ Server report needs to be added for the previous release with the data
specified when the report has been taken.

https://www.pingdom.com/
https://sentry.io/welcome/
https://upptime.js.org/
mailto:dishantagnihotri@gmail.com
mailto:rahul.kumar.mj5@gmail.com
https://www.cloudflare.com/en-gb/
https://www.solarwinds.com/

d.​ NOTE: I have attached a sample document for the deployment objective.

2.​ Git Workflow (Dev-ops)
a.​ All pending branches should be merged inside the develop branch. This

will be done by the development team.
b.​ Create a new release branch as specified inside the Centralized Git

Workflow and the increment should be proper. All the commits summary
needs to be added properly to the description.

c.​ Once released, the branch can be merged to master and a tag needs to be
generated on the master branch specifying the same number as of the
release node. Please do note: All the descriptions specified inside the
release branch should also be done inside the tag. ​

3.​ Git Clean-up (Dev-ops & Development)
a.​ Once the tag is generated, the git needs to be cleaned for future

deployments.
b.​ All branches need to be deleted except the “active”, “master” & “develop”

branches.
c.​ This will be done by the development team on the “Development Module”

& should be done on the “MH SMS Portal” by the dev-ops team.

4.​ Building up of infrastructure code (Dev-ops)
a.​ Compiling & Minifying of JS & CSS bundles (if required)
b.​ Before moving to production, the local build needs to be generated &

verified.
c.​ Docker image integrity needs to be verified (if required)

5.​ Database Migrations (Dev-ops)

a.​ If the new release contains a new table schema or new field inputs then
migrations have to be done.

b.​ Migrations can never be done directly. Back-up needs to be generated &
renamed with today's date.

c.​ The backup needs to be stored where it can be accessed easily.
d.​ Now, the new table or fields needs to be created.
e.​ Test the website just to be sure, it doesn’t affect the current execution of

the website.

6.​ Basic To-do (Dev-ops & Developers)
a.​ Please verify upptime is working & have all working emails (required)

b.​ Clear the server cache (required)
c.​ CDN integrity verification (if required)
d.​ Stop the CRON jobs (required as they cause issues). Please do verify

all-important jobs has been finished, as we can’t pause jobs.

7.​ Current Image Backup (Dev-ops)
a.​ Delete the previous deployed server image
b.​ Make an image backup with the name of today’s date. (required)
c.​ Test the backup (if required)

Post-Deployment Checklist

1.​ Use Incognito Window
a.​ Every deployment the test needs to be done on the incognito window.

2.​ Notify the development team (Dev-ops)

a.​ Head up to the development team to inform them of the deployment in
case anything happens that requires a follow-up.

3.​ Basic To-do (Dev-ops)
a.​ Clear the server cache (required)
b.​ Reset Nginx or apache (required)
c.​ Clear the route cache (if setup)
d.​ Monitor Exception Rates: Leverage an error-tracking platform to measure

the number of exceptions occurring, and if the rate increases, consider
rolling back the change.

i.​ This will be done by the developers using sentry reporting. (if
required)

e.​ Checking up of database connection (required)
f.​ Serve the latest codebase onto the CDN (if setup)
g.​ Re-initialization of the CRON Jobs (required)
h.​ Check integrity of load-balancer if we’re using (if setup, yes)
i.​ Gzipping (required)

4.​ Monitor:

a.​ Monitor the overall performance of the website. Look for abnormalities in
CPU, memory, network or disk usage using upptime.

b.​ Server report needs to be taken and added onto the “Deployment
Objective Report” with the date when the report is generated. The drive is
shared for uploading the report.

5.​ Testing:
a.​ SMTP & 3rd party integration needs to be tested. (required)
b.​ Tests need to be performed for the latest deployed update. This will be

done by developers as well as dev-ops. (required)

6.​ Security

a.​ Passwords need to be changed & updated every time a new release goes
into the server. The password needs to be stored inside 1Password for all
the team members to have access to it in the near future. (required)

b.​ Environment variables need to be verified again & all-important passwords
and keys like PayPal integration key, stripe integration key, database
password or other needs payment & security related passwords need to be
changed after each release.

7.​ Post Mortem Meeting

a.​ Discuss how the deployment went during the next team meeting.

How to revert the old deployment

Git pull ~Head${1}

	Z E B Y L

