
Learning Beyond Limited Labels
By Discovering Disentangled and Compact Representations of Abstract Concepts

As most machine learning practitioners know, the primary challenge for machine learning as a
field continues to be ensuring that trained learning systems are capable of generalizing beyond
limited training datasets - and humans are much better at this than current state-of-the-art
learning systems. As a member of the applied machine learning research group at Intuit, I have
been toying with the idea of combining domain knowledge and human interactions with
data-driven approaches to teach learning systems to learn more effectively.

At ICML (the International Conference on Machine Learning) this year, I came across an
inspiring talk that proposed innovative ideas to tackle this problem. It was an invited lecture in
the Saturday Workshop on “Toward Learning with Limited Labels” entitled “Towards
disentangling underlying explanatory factors” by Dr. Yoshua Bengio. Given the speaker’s
reputation, it’s not surprising that this talk attracted a lot of interest. What did surprise me was
that the overflow was so significant that halfway through the talk, much of the audience had to
be escorted out in order to comply with the facility’s safety regulations. Here’s what those of us
lucky enough to stay for the whole talk got to hear.

What’s Missing with Deep Learning: Deep Understanding
In the first part of the talk, Dr. Bengio provided concrete evidence that current state-of-the-art
deep learning-based models tend to capture “statistical regularities” in the training data sets,
rather than the underlying causal mechanisms. In standard machine learning practice, training,
validation, and testing data sets are sampled from the same pool (i.e., the same statistical
distributions). In many real-world applications such as autonomous driving, the statistical
distributions of actual data inputs can deviate vastly from the training data sets. This
discrepancy explains why models trained using static data sets appear to generalize so well at
test time, but remain vulnerable to adversarial attacks when deployed in the real world. While
this observation would not surprise any seasoned machine learning/deep learning
practitioners, the fact that Dr. Bengio’s group set out to measure the extent to which this
happens is impressive[1]. (Their approach is summarized in the appendix.)

Toward A Machine That Plans
Dr. Bengio spoke next about the tried and true strategies that encourage learning systems to
“learn how the world ticks,” including equivariance/invariance, symmetries, and leveraging
spatial and temporal scales. Inspired by the neuroscientific approach to understanding how
human brains work, these strategies attempt to:

● Capture “good” internal, high-level, low-dimensional representations

http://www.iro.umontreal.ca/~bengioy/yoshua_en/talks.html


● Maximize independence among controllable external factors, which leads to the
concept of agents and actions

Why does capturing meaningful low-dimensional representation allow for generalization? From
a neuroscientific perspective, there is evidence that human thought is inherently
low-dimensional, hierarchical, and attentional. The human brain can store about seven items in
working memory, which is small compared to the hundreds of dimensions of internal
representations used in state-of-the-art machine learning models.

While limiting, this low-dimensional content-based attention allows humans to focus on a few
elements out of a large set. In recent findings, neuroscientists have shown that the human brain
integrates innumerable cognitive tasks into structured low-dimensional hierarchies. This allows
a human to shift fluidly within changing but related tasks[10]. The low-dimensional core dynamic
of the human brain is analogous to a meta-learner of related tasks. Such meta-learning allows
learning systems to generalize and adapt to new tasks in a data-efficient manner (i.e., few
shots)[11]. More importantly, the seemingly vast diversity of natural-world scenarios actually
arises from a small set of coherent rules (in physics and chemistry for example) that can be
explained through abstract concepts. By adding a low-dimensionality constraint into the model
architecture, learning systems can be trained to learn such meaningful hierarchical
lower-dimensional representations[3].

Why might maximizing independence among external factors improve generalization? It could
be argued that the human brain can come up with control policies that influence independent
and distinct aspects of the world. For example, consider an object that we can
manipulate/control - let’s say a coffee mug on a desk. One can choose to perform two
independent actions on the mug, for instance: 1. turning the mug at its base by 90 degrees,
and 2. filling up the mug with coffee to its rim. The outcome of this first action could be called
“observing how the coffee mug looks from a 90-degree clockwise viewpoint,” while the
outcome of the second is “observing the volume capacity of the mug.” These independent
action-outcome pairs are maximally independent factors that explain how our perception of the
coffee mug transitions from the original state (of sitting on a desk) to the two final states
(turned by 90 degrees, and then filled with coffee). By mentally abstracting these
action-outcome pairs, a human can generalize and predict the final states of the mug after
these independent actions are taken in any sequence or combination. More importantly,
humans can extend such generalization beyond coffee mugs to any object of similar physical
properties.

The internal representation of action-outcome pairs is what we call the “mental model” of the
world. We use this mental model to plan, act, and predict the outcomes of our actions. In the
realm of machine learning, the closest analogs to this idea are the advances in reinforcement
learning that show how acting in the real world can help guide representation learning and
disentangling[4, 5]. (Disentangling being the separation of independent causes.) Having the
“right” representation of the environment and the policy to control/affect aspects of it “are two



important ingredients that occur in parallel that allow human minds to discover what’s
controllable in the world.” And, as Dr. Bengio pointed out, ”This naturally leads to the
emergence of the notion of objects and agents.”

The Two Priors
Next came the key ideas of the talk: the two types of priors that encourage learning systems to
learn deeper “concepts”--the Conscious Prior[6] and the Independent Controllable Explanatory
Factors[7].

The Conscious Prior

In brief, a conscious representation can be viewed as a low-dimensional combination of a few
(concrete or abstract) concepts constituting a “thought.” State-of-the-art learning systems are
often trained to capture a high-dimensional representation of the input space. With the
Conscious Prior, there are two levels of representation: a high-dimensional “unconscious
(hidden)” representation (h) and a low-dimensional “conscious” representation (c). The low
dimensionality of the conscious representation serves as a strong regularization for the learning
problem. Attention can be applied over the conscious and unconscious state in such a way that
the learning system output/prediction synthesized from the unconscious representation maps
to a simple combination in the conscious representation. We can think of attention as a
model-training mechanism that encourages a learning system to discover a conscious
representation in which learned concepts can be “mentally” manipulated and/or referred to
compactly. It should be noted that merely encouraging lower-dimensional representation does
not guarantee that the discovered/learned representation is “conscious” in the neuroscience
sense.

The Independent Controllable Explanatory Factors

The idea behind Independent Controllable Explanatory Factors is that by acting in the real
world, a learning system (or agent) can learn “disentangled representations.” Because an agent
can act on a particular aspect of the environment while leaving others unaffected, the learned
internal representation must be able to distinguish perturbations coming from independent
factors. As in the example of manipulating the coffee mug, an agent learns to associate its



actions in the environment with internal representations that are unique to the action and the
aspect of the environment being acted upon (i.e., Independent Controllable Explanatory
Factors).

Final Thoughts
Among all the ICML talks I attended this year, this one has been the most thought-provoking.
Shortly after wrapping up for the day, I hurried back to my hotel room, pulled up the papers[1, 6,
7, 8] referenced in the talks, and started immersing myself in them. While I’m still trying to figure
out how to apply these concepts to my current work, I’m keeping them in my machine learning
toolbox, hoping they’ll become useful one day.

In closing, here are my thoughts on the two priors. Reflecting on my understanding of the
Conscious Prior, the idea of using a lower-dimensional conscious space to represent a
“concept” seems to correspond well to the current understanding of how thoughts occur in
human brains. This type of machine training should lead to models that are not only more
easily trainable and generalizable, but also more explainable (e.g., model decisions explained
by activation of a few meaningful concepts vs. activation of a large sparse array of neural
weights). Fewer and more coherent explanatory factors, plus making these factors maximally
independent from one another, makes the factors' effects easier to tease apart. I see a parallel
between Independent Controllable Explanatory Factors and the idea of learning with
equivariance, which Dr. Bengio pointed out has led to discoveries of good representations in
many visual learning tasks. Notably, not all features of an aspect of environments - such as the
aspect of color - are information that an agent can act upon (i.e., controllable). So there must
be other strategies the human brain uses to learn those concepts in generalizable ways.

Applying the Conscious Prior and Independent Controllable Factors even to toy problems
(such as navigating in a simple grid world [7, 9]) provides a good example of how machine
learning as a field can benefit from ideas borrowed from neuroscience. I’m hopeful that there
are many more insights we can draw from our growing understanding of the human brain to
help build more robust machine learning systems.

Appendix

How did Bengio’s group measure the tendency of complex models to latch on to surface
statistical regularities rather than generalizable features?

Jason Jo and Yoshua Bengio[1] implemented perturbation maps (Random and Radial Fourier
filtering schemes) that qualitatively changed statistical regularities while preserving object
recognizability, and applied them to well-known image data sets (SVHN and CIFAR-10). A
state-of-the-art Convolutional Neural Network (Preact ResNet with Bottleneck architecture
200[2]) was trained on one data set, and then tested across differently-perturbed sets. With this

http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html


setup, the models exhibited up to a 28 percent generalization gap across the various test
sets[1].
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