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If you are working on PT2 support for models that have data-dependent control flow, e.g., via 
item(), tolist(), nonzero(), etc., a likely error you will run into is this one: 
 

torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could 

not guard on data-dependent expression Eq(u2, -1) (unhinted: Eq(u2, -1)).  

(Size-like symbols: none) 

 

Potential framework code culprit (scroll up for full backtrace): 

  File "/data/users/ezyang/a/pytorch/torch/_prims_common/__init__.py", line 

855, in infer_size 

    if d == -1: 

 

For more information, run with TORCH_LOGS="dynamic" 

For extended logs when we create symbols, also add 

TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u2" 

If you suspect the guard was triggered from C++, add 

TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 

For more debugging help, see 

https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa

_xJs/edit?usp=sharing 

 
The root cause of errors like this is that somewhere in PyTorch (or potentially user code) we are 
trying to convert a symbolic quantity (e.g., u2 == -1) into a concrete one (e.g., False) so that we 
can branch on it or pass it to a subsystem that doesn’t support symbolic reasoning. Ordinarily 
(i.e, when data dependent sizes are not involved), we know the concrete value (the backing 
hint) and can just give it to you, installing an appropriate guard to make sure we don’t use this 
compilation result when the concrete value would be different. But with data dependent 
quantities, we do not know what the true value is (it is, after all, data dependent) and now we 
are stuck. 
 
Fortunately, it is often possible to rewrite your model (e.g., by adding torch._check or 
torch._check_is_size tests) so that you can bypass these problems. The purpose of this doc is 
to teach you how to do this. 
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If you like this doc, you may also like  and The dynamic shapes manual
 PendingUnbackedSymbolNotFound

 
Data-dependent puzzlers 
Variations of the error 

Could not guard on data-dependent expression 
Could extract specialized integer from data-dependent expression 

Tools of the trade 
torch._check(cond, msg_fn) 
torch._check_is_size(size) / guard_size_oblivious(cond) 
torch._constrain_as_value / torch._constrain_as_size 

What a fix looks like 
It’s unfixable 
u0 is a size, but we don’t know it 
u0 is actually equal to u1, but we don’t know it 
u0 is a Tensor 
You are overspecializing 
Use lengths instead of offsets 

How to diagnose your problem 
Step 1: Look at the potential framework culprit (aka the Python backtrace) 
Step 2: Look at the C++ backtrace 

Common issues 
torch.tensor_split: Could not guard on data-dependent expression u1 < 0 
TorchScript compatibility 

 

Data-dependent puzzlers 
If you like learning more by doing as opposed to reading, we have a series of exercises at 
https://www.internalfb.com/intern/anp/view/?id=5330476 which walk you through a number of 
common situations with data-dependent errors and challenge you to find fixes for them. It’s a 
good way to get your feet wet with a fast feedback loop without having to deal with a full on 
model. These are publicly available at 
https://github.com/ezyang/data-dependent-shape-puzzles/  

https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit?tab=t.0#heading=h.64r4npvq0w0
https://docs.google.com/document/d/1RWrH-3wLEpzR9kCS6gGBNen_-Fs-8PVbWWFE5AcgeWE/edit?tab=t.0#heading=h.6542i1scm4mu
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Variations of the error 

Could not guard on data-dependent expression 
This means we tried to extract a concrete boolean from a relational expression like u0 == 0 or 
u0 > 10. In these cases, it may be possible that the value is always True or False, in which case 
we can fix tracing by informing the symbolic reasoning which way we should go. 
 
This should be distinguished from... 

Could not extract specialized integer from data-dependent 
expression 
This means we tried to extract a concrete integer from an expression; it’s pretty common to see 
just u0 here. There are two typical causes of this: 
 

●​ You actually need the integer because you’re going to do some sort of control flow; e.g., 
you want to loop u0 times, or you want to index into the u0’th element of a Python list. 
These cases are unsolvable; you want to graph break (e.g., 
torch._dynamo.graph_break()) before the dynamic access and try for compilation at a 
later point in time.​
 

●​ You are overspecializing for some reason. For example, we might have some poorly 
written C++ code that hasn’t been ported to SymInt; this will force a specialization even 
in principle the C++ code could be symbolically traced. In this case, you want the same 
playbook to eliminate specialization on plain backed SymInts; see 

 for some possible moves. The dynamic shapes manual

Tools of the trade 
There are a few important functions which you are likely to use. In order of importance: 

torch._check(cond, msg_fn) 
Example usage: 
 

torch._check(x.size(0) == y, lambda: f"size mismatch: {x.size(0)} != {y}") 

 
Semantically, this is equivalent to: 
 

https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit


if not cond:​
    raise RuntimeError(msg_fn()) 

 
However, there are two important differences: 
 

●​ This test will always succeed at compile time, even if cond involves unbacked SymInts. 
Instead of installing a guard, we will install a deferred runtime assert which will test that 
this condition is actually true at runtime. We don’t need to know if cond is True or False 
(like regular conditionals), because at compile time we can just assume that an error will 
not be thrown.​
 

●​ In some situations, the condition teaches our symbolic reasoning facts about your 
unbacked SymInts, which it can use to discharge later conditionals. Our system currently 
supports learning the following facts from conditions:​
 

○​ If you perform an equality test u0 = RHS, we will attempt to eliminate u0, 
replacing all occurrences of it with RHS. We will ALWAYS do this if RHS doesn’t 
contain any unbacked symbols (since eliminating unbacked symbols is good--you 
can’t have a GuardOnDataDependentSymNode if the unbacked symbol goes 
away), and we will try to eliminate unbacked SymInts if the situation is not too 
complicated (in particular, u0 = u1 will eliminate one of these unbacked SymInts.)​
 

○​ In the equality test above, even if we are not able to eliminate u0, we can refine 
its value range. The value range specifies what the set of possible values for a 
variable are. By default, size-like unbacked SymInts have a value range of [0, 
Inf]; if you assert it is equal to an expression with a refined value range, say [2, 
20], then u0’s value range will be updated to [2, 20]. We also have limited support 
for propagating value ranges in reverse.​
 

○​ If you perform a boolean test f(u0), we will remember that this expression always 
evaluates to True, and if you evaluate an expression that contains this 
expression, we will substitute it with True. We also support some limited 
reasoning on logically equivalent statements; e.g., if you torch._check(u0 < 4), 
we will also know that u0 >= 4 evaluates to False, and so performing a test like 
this in a normal non-check conditional will go through fine. 

​
The exact symbolic reasoning our system supports is not well defined, and we reserve 
the right to make it stronger in the future. However, we do have tests for various uses of 
reasoning, and we ensure that changes to our reasoning will not break these uses. 

 
Our decompositions / meta implementations of functions in the PyTorch API make ubiquitous 
use of torch._check, so chances are that when you use an unbacked SymInt with these APIs, 
we are already learning things about your SymInts without you needing to explicitly spell things 



out.  You can find out exactly what we are learning by running your program under 
TORCH_LOGS=dynamic and looking for “runtime_assert” log messages. However, sometimes 
we will hit a non-torch._check conditional on a fact that you, as a user know, but we, the 
framework, do not. This is the typical use case for inserting a new torch._check. 
 
In C++, the corresponding version of this is TORCH_SYM_CHECK. However, you must take 
care to actually do a symbolic relational test (the regular == on SymInt will immediately guard on 
the boolean). For example, torch._check(x.numel() == y.numel()) would translate into 
TORCH_SYM_CHECK(x.sym_numel().sym_eq(y.numel())), using the sym_eq method on 
SymInt to perform a symbolic test that returns a SymBool. 

torch._check_is_size(size) / guard_size_oblivious(cond) 
Example usage: 
 

u0 = y.item()​
torch._check_is_size(u0) 

 
Semantically, this is equivalent to: 
 

if u0 < 0:​
    raise RuntimeError("u0 is not a size") 

 
However, like torch._check, there are some important differences: 
 

●​ Like torch._check, this test will always succeed at compile time, and we will learn the fact 
that u0 >= 0. In particular, this will refine the value range on u0 so that it is [0, Inf] rather 
than [-Inf, Inf].​
 

●​ This also marks u0 as size-like. Size-like unbacked SymInts behave identically to their 
regular counterparts, except for one crucial difference: when they are involved in a 
boolean expression that is evaluated using guard_size_oblivious, for the purposes of 
evaluating that expression only, we will assume that they cannot equal zero or one (in 
other words, their value range is temporarily set to [2, Inf].) For example, if we perform a 
(non-torch._check) conditional on u0 == 1 (to see if broadcasting will occur), when u0 is 
size-like, we will evaluate this to False rather than throw an error. 

 
For example: guard_size_oblivious(u0 == 1) will always return False when u0 is size-like. 
 
Marking unbacked symbols as size-like is crucial for using them in contexts where tensor sizes 
are expected, because PyTorch internals often do many conditions on whether or not sizes are 
zero or one, to handle various special cases related to empty / single element tensors. In fact, if 
you pass an unbacked symbol to a conventional factory function like torch.empty, we will 



automatically mark it as size-like for you. However, sometimes we are not able to infer that a 
quantity is size-like. For example, arguments to Tensor.view cannot be inferred to be size-like, 
as -1 is also a valid argument. You would need to explicitly torch._check_is_size an unbacked 
SymInt before passing it to view. 
 
Similarly, if you are in PyTorch framework code and you need to perform a test on a size to see 
if it is 0 or 1, you will typically want to wrap this test in guard_size_oblivious, to instruct that 
size-like unbacked SymInts can be assumed to not pass this test. It is a bit difficult to say 
exactly when it is OK to do this, but in general, most framework code has logic for >= 2 case 
which would work perfectly fine for 0/1 case, so if patching something in PyTorch framework to 
guard_size_oblivious fixes your problem, it’s probably OK. A case when this would be clearly 
wrong is if you actually need to do something different for the 0/1 case even at runtime; e.g., a 
hand-tracking application testing the number of hands it has detected. So in general, it is usually 
not OK to use guard_size_oblivious in user code! 
 
This can be done in C++ with TORCH_GUARD_SIZE_OBLIVIOUS(u0.sym_eq(0)), for example. 
 

torch._check_is_size(size, max=upper_bound) 
NOTE: This is NEW as of https://github.com/pytorch/pytorch/pull/144471  Jan 14, 2025
 
This is semantically equivalent to torch._check(size <= upper_bound), but it also has different 
semantics under guard_size_oblivious: we will assume that size < upper_bound. This only 
works when upper bound is an integer constant (so you get normal semantics if upper_bound is 
a symbolic expression; we can potentially fix this without too much work.) 
 
https://github.com/pytorch/pytorch/issues/120288  

torch._constrain_as_value / torch._constrain_as_size 
These are much more niche APIs that are effectively equivalent to 
torch._check/torch._check_is_size, except they also let you adjust the value range of the 
variable by providing a min/max value. In recommendation models, you are unlikely to be able 
to solve GuardOnDataDependentSymNode errors in this way. 
 
Although constrain_as_value looks like an attractive way to specify that a variable should be 
in-bounds of another tensor, in practice it is often unusable, because value ranges only support 
constant bounds, and it is pretty common that the tensor you want to index into has a (backed) 
symbolic dimension s0. Passing its size as the max value for a value range will force it to be 
specialized, which is often not what you want. Instead, if necessary, you should manually 
discharge range checks by torch._check()’ing appropriate expressions based on what errors 
you see. 

https://github.com/pytorch/pytorch/pull/144471
https://github.com/pytorch/pytorch/issues/120288


What a fix looks like 
There are a number of common ways you are going to resolve a problem like this. We describe 
the most common ones here. 

It’s unfixable 
Sometimes, it’s actually unfixable. 
 

i = x.item()​
if i > 4:​
  return x * 2​
else:​
  return x + 3 

 
If the user code is legitimately branching on a data-dependent value, it is literally impossible to 
trace as is and you’ll have to do something else, maybe use a torch.cond. 
 
Another common pattern is if you do this:​
 

return self.mlps[x.item()] 

 
Where self.mlps is a Python list / ModuleList. Once again, you are branching on a 
data-dependent value. Here, the easiest fix is to induce a graph break before indexing. 

u0 is a size, but we don’t know it 
Some guards fail on tests that essentially ask “is this a size”, but we don’t know it is a size. 
These fall into two categories:​
 

●​ Regular tests like “u0 >= 0” or “u0 != -1” that are unconditionally true for sizes. Adding a 
torch._check_is_size(...) on the relevant size will instruct that these tests are true. 
(However, this is typically uncommon, because if the test in question is for error 
checking, we can infer that the quantity must be true, because we would error otherwise. 
One important exception are APIs which accept both sizes as well as -1; it is necessary 
for the user to tell us that the input data dependent quantity cannot possibly be -1, as if it 
could be, something unusual would happen.) Example: 
https://github.com/pytorch/pytorch/pull/107788  

○​ Sometimes, you can refactor an error checking API to split a logical disjunction of 
conditionals into separate conditionals. If you can do so to get a single 
torch._check(x == y) statement, this will make it possible to automatically 
generate a deferred runtime assert. Example: 

https://github.com/pytorch/pytorch/pull/107788


https://github.com/pytorch/pytorch/pull/110979 ​
 

●​ Tests like u0 == 0 or 1 which are not always true for sizes, but for which our choice 
doesn’t really matter (it is handling an edge case such as what to do with an empty 
tensor, or it is testing for broadcasting but we want to assume broadcasting is not 
occurring.) We can resolve these situations with two ingredients: first, the guard itself 
must be evaluated via guard_size_oblivious, which says “for all size-like ints, assume 
they cannot equal zero or one, and I promise that if they do equal zero/one something 
reasonable will happen.” Second, the symbols themselves must be marked size-like 
(either inferred because they were passed to tensor factory functions, or explicitly 
specified with torch._check_is_size(...)). Many examples of making guards size oblivious 
in https://github.com/pytorch/pytorch/pull/118579 

 
Sometimes, these tests can occur in C++. We have corresponding C++ APIs for these tests, but 
it can be a little more difficult to localize the problem as you do not get a useful backtrace by 
default. 
 

u0 is actually equal to u1, but we don’t know it 
Multiple unbacked SymInts can actually known to be equal at compile time: 
 

i0 = x.sum().item()​
i1 = x.sum().item()​
return torch.randn(i0) + torch.randn(i1) 

 
If there is a torch._check(i0 == i1) somewhere (in the example above, this test will happen 
inside the shape checking rule for addition), we will automatically unify the two unbacked 
SymInts and report them as equal. However, sometimes there is no such assert, and you have 
to explicitly add an assert to get it to work. Example: 
https://github.com/pytorch/pytorch/issues/111950  
 
We recently fixed some bugs in PyTorch where we incorrectly reallocate unbacked SymInts in 
framework code, and then failed to discover that they are equal. We have fixed many of them 
but this may also potentially be the cause of a problem. Example: 
https://github.com/pytorch/pytorch/pull/117862 Note that if we allocate an unbacked SymInt, but then 
immediately set it equal to another one, these are benign (and not so easy for us to eliminate entirely 
from the framework). 
 

u0 is a Tensor 
 

https://github.com/pytorch/pytorch/pull/110979
https://github.com/pytorch/pytorch/pull/118579
https://github.com/pytorch/pytorch/issues/111950
https://github.com/pytorch/pytorch/pull/117862


Another reason you might be overallocating unbacked SymInts is that you are passing around a 
Tensor and relying on implicit conversion to int. For example, most functions which accept an int, 
also accept a Tensor, and will automatically call item() on the int argument. It is worthwhile to study 
TORCH_LOGS=dynamic and decide if you expect to see all the unbacked SymInts you see, or if 
there are too many. When this happens, a new SymInt will be allocated on the line where a PyTorch 
function is called 
 
(This is less likely to cause problems now, because we memoize the return value of t.item(), so you’ll 
consistently get the same unbacked symint if you call it multiple times) 

You are overspecializing 
Consider the following code in non-strict export mode: 
 

u0 = x.sum().item()​
return y[:u0] 

 
This will fail trying to evaluate u0 (sic; not a boolean expression). The reason for this is that 
when a SymInt is used inside a Python slice directly (e.g., not with Dynamo), Python will actually 
force the integer to be specialized, and fail if it is unbacked. 
 
This can be fixed by rewriting the program not to specialize. For the particular example above, 
you can fix it by rewriting the code not to use slices: 
 

u0 = x.sum().item()​
return y.narrow(0, 0, u0) 

 
Example: https://github.com/pytorch/pytorch/issues/111950  
 

Use lengths instead of offsets 
When working with variable sequence lengths, it is common to have tensors representing the 
lengths or offsets of the sequences involved. For example, if I have values = [[1, 2, 3], [4, 5], [6, 
7, 8, 9]], I might have lengths = [3, 2, 4] and offsets = [0, 3, 5, 9]. The two representations are 
interconvertible but if you are working with them as integers (by calling lengths.tolist()), it is 
better to call tolist on lengths, not offsets. 
 
The reason for this is if you perform a torch.split() on your values tensor, we need to create 
Tensors for each sub-sequence involved, e.g., a size 3, 2 and 4 tensor. If you have unbacked 
SymInts for sizes, these sizes become u0, u1 and u2; you indicate that they are size-like and 
you are done. But if you have unbacked SymInts for offsets, they become u1 - u0, u2 - u1, u3 - 
u2. This is a pain, because you cannot conveniently mark these quantities as size-like and there 

https://github.com/pytorch/pytorch/issues/111950


are problems. Because it is relatively simple to write code to do either lengths or offsets, you 
should prefer lengths. 
 
More discussion at https://github.com/pytorch/pytorch/issues/119468  
 

How to diagnose your problem 

Step 1: Look at the potential framework culprit (aka the Python 
backtrace) 
The exception has a backtrace, and often it will tell you what the problem is. Since PT2 
backtraces are quite long, the error message will also give you its best guess for what the 
framework culprit is, e.g., 
 

Potential framework code culprit (scroll up for full backtrace):​
  File "/data/users/ezyang/a/pytorch/torch/_prims_common/__init__.py", line 

855, in infer_size​
    if d == -1: 

 
Look at the condition in question. 
 

●​ Does it make sense that this is triggering a guard on data-dependent symbol? 
●​ Should we know if the quantity in question is size-like (the exception tells you which 

symbols are size-like; if a symbol is not in the list, we are assuming it could be an 
arbitrary integer)? 

●​ If the equation is between two distinct symbols, should we know that these are actually 
equal? 

●​ If all the symbols are size-like, but the equation involves 0 or 1, are we missing a 
guard_size_oblivious wrapper on the equation? (Don’t forget that to do a 
guard_size_oblivious between two size tuples, you have to use sym_eq and not regular 
equality.) 

 
In this particular example, we are testing if d (ostensibly the data dependent value) is -1; if d 
were a size, we would know it was definitely non-negative. So this would suggest that we are 
missing a torch._check_is_size somewhere. Or if d is already size-like, but numel() == 0 is 
failing, it sounds like you need to wrap it in guard_size_oblivious. 
 
TORCH_LOGS=dynamic and the user stack trace are in practice important for understanding 
how exactly to fix the problem, because they will help you determine how exactly you should 
change the user program. 
 

https://github.com/pytorch/pytorch/issues/119468


[INFO] create_unbacked_symint u0 [-9223372036854775808, 

9223372036854775807] (w.py:40 in custom_op_meta) 

 
This log message tells you where (w.py:40) this particular unbacked SymInt was allocated. A 
given unbacked SymInt may get allocated multiple times, so you may need to keep track of 
equalities on them: 
 

[INFO] set_replacement u1 = u0 (trivial_lhs) ValueRanges(lower=0, 

upper=9223372036854775807, is_bool=False) 

 

Step 2: Look at the C++ backtrace 
If the potential framework code culprit is completely uninformative, your guard may potentially 
be happening in C++. You can force a best effort C++ backtrace by running with 
TORCHDYNAMO_EXTENDED_DEBUG_CPP=1. This will give you an extremely long C++ 
backtrace with Python frames, CPython frames and C10/ATen/libtorch proper frames all 
interspersed together. You’re looking for some symbols in at:: or c10:: namespace that look like 
kernel specific code (likely related to the kernel that was being executed as per the Python 
backtrace.) If you’re running on a non debug build of PyTorch, due to inlining, you may be 
missing frames, so you will also have to do some sleuthing in the source code to find the source 
code location. Example: https://github.com/pytorch/pytorch/pull/118579  
 
Here is an example C++ backtrace from a debugging session at 
https://fb.workplace.com/groups/6829516587176185/posts/6829896033804907  
 

[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO]   File 

"./buck-out/v2/gen/fbcode/aa1e544c619c762d/caffe2/__gen_aten__/out/RegisterComposit

eImplicitAutograd.cpp", line 2025, in at::(anonymous namespace)::(anonymous 

namespace)::wrapper_CompositeImplicitAutograd_Tensor_narrow(at::Tensor const&, 

long, at::Tensor const&, c10::SymInt)​
214[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO]   File 

"./fbcode/caffe2/aten/src/ATen/native/TensorShape.cpp", line 1410, in 

at::native::narrow_tensor_symint(at::Tensor const&, long, at::Tensor const&, 

c10::SymInt)​
215[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO]   File 

"./buck-out/v2/gen/fbcode/aa1e544c619c762d/caffe2/__gen_aten__/out/core/TensorMetho

ds.cpp", line 52, in long at::Tensor::item<long>() const​
216[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO]   File 

"./fbcode/ATen/core/TensorBody.h", line 4274, in at::Tensor::item() const 

 
Here, you can see that at::native::narrow_tensor_symint calls into item (which in our case is what 
triggers the guard on data-dependent SymNode). You can then modify the C++ code to avoid 

https://github.com/pytorch/pytorch/pull/118579
https://fb.workplace.com/groups/6829516587176185/posts/6829896033804907


specializing, or perhaps you weren’t supposed to be in this C++ code in the first place (in this case, 
start was not expected to be a Tensor, and modifying this fixed the problem.) 
 
By the way, the C++ backtraces are much better in fbcode than in OSS (although I find I usually get 
enough information from the OSS trace), so if you are having trouble understanding your C++ 
backtrace, consider trying with an fbcode build. 
 

Common issues 

torch.tensor_split: Could not guard on data-dependent expression 
u1 < 0 
Alas, torch.tensor_split(tensor, indices_tensor) will basically always fail to trace. This is because 
tensor_split technically supports negative values in the indices tensor, and we have no idea how 
to generate a generic kernel that works both with positive and negative indices. If you know that 
int_indices must not be negative, you can rewrite your code to: 
 

int_indices = indices.tolist()​
for i in int_indices:​
  torch._check_is_size(i)​
return torch.tensor_split(tensor, int_indices) 

 

TorchScript compatibility 
If the code to be modified must work under TorchScript, you can gate calls to 
torch._check_is_size and co with: 
 

if not torch.jit.is_scripting() and is_torchdynamo_compiling():​
  torch._check_is_size(blah) 
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