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If you are working on PT2 support for models that have data-dependent control flow, e.g., via
item(), tolist(), nonzero(), etc., a likely error you will run into is this one:

torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could
not guard on data-dependent expression Eq(u2, -1) (unhinted: Eq(u2, -1)).
(Size-1like symbols: none)

Potential framework code culprit (scroll up for full backtrace):
File "/data/users/ezyang/a/pytorch/torch/_prims_common/__init__.py", line
855, in infer_size
if d == -1:

For more information, run with TORCH_LOGS="dynamic"

For extended logs when we create symbols, also add

TORCHDYNAMO EXTENDED DEBUG_CREATE_SYMBOL="u2"

If you suspect the guard was triggered from C++, add
TORCHDYNAMO_EXTENDED_DEBUG_CPP=1

For more debugging help, see
https://docs.google.com/document/d/1HSUTTVVYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa
_xJs/edit?usp=sharing

The root cause of errors like this is that somewhere in PyTorch (or potentially user code) we are
trying to convert a symbolic quantity (e.g., u2 == -1) into a concrete one (e.g., False) so that we
can branch on it or pass it to a subsystem that doesn’t support symbolic reasoning. Ordinarily
(i.e, when data dependent sizes are not involved), we know the concrete value (the backing
hint) and can just give it to you, installing an appropriate guard to make sure we don’t use this
compilation result when the concrete value would be different. But with data dependent
quantities, we do not know what the true value is (it is, after all, data dependent) and now we
are stuck.

Fortunately, it is often possible to rewrite your model (e.g., by adding torch._check or
torch._check_is_size tests) so that you can bypass these problems. The purpose of this doc is
to teach you how to do this.
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If you like this doc, you may also like B The dynamic shapes manual and
B PendingUnbackedSymbolNotFound
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Data-dependent puzzlers

If you like learning more by doing as opposed to reading, we have a series of exercises at
https://www.internalfb.com/intern/anp/view/?id=5330476 which walk you through a number of
common situations with data-dependent errors and challenge you to find fixes for them. It's a
good way to get your feet wet with a fast feedback loop without having to deal with a full on
model. These are publicly available at

https://github.com/ezyan ta- ndent-shape-puzz|
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Variations of the error

Could not guard on data-dependent expression

This means we tried to extract a concrete boolean from a relational expression like u0 == 0 or
u0 > 10. In these cases, it may be possible that the value is always True or False, in which case
we can fix tracing by informing the symbolic reasoning which way we should go.

This should be distinguished from...

Could not extract specialized integer from data-dependent
expression

This means we tried to extract a concrete integer from an expression; it's pretty common to see
just uO here. There are two typical causes of this:

e You actually need the integer because you’re going to do some sort of control flow; e.g.,
you want to loop u0 times, or you want to index into the u0’'th element of a Python list.
These cases are unsolvable; you want to graph break (e.g.,
torch._dynamo.graph_break()) before the dynamic access and try for compilation at a
later point in time.

e You are overspecializing for some reason. For example, we might have some poorly
written C++ code that hasn’t been ported to Symint; this will force a specialization even
in principle the C++ code could be symbolically traced. In this case, you want the same

playbook to eliminate specialization on plain backed Symints; see
B The dynamic shapes manual for some possible moves.

Tools of the trade

There are a few important functions which you are likely to use. In order of importance:

torch. _check(cond, msg_fn)

Example usage:
torch._check(x.size(9) == y, lambda: f"size mismatch: {x.size(@)} !'= {y}")

Semantically, this is equivalent to:
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if not cond:
raise RuntimeError(msg_fn())

However, there are two important differences:

This test will always succeed at compile time, even if cond involves unbacked Symints.
Instead of installing a guard, we will install a deferred runtime assert which will test that
this condition is actually true at runtime. We don’t need to know if cond is True or False
(like regular conditionals), because at compile time we can just assume that an error will
not be thrown.

In some situations, the condition teaches our symbolic reasoning facts about your
unbacked Symints, which it can use to discharge later conditionals. Our system currently
supports learning the following facts from conditions:

o

If you perform an equality test u0 = RHS, we will attempt to eliminate u0,
replacing all occurrences of it with RHS. We will ALWAYS do this if RHS doesn’t
contain any unbacked symbols (since eliminating unbacked symbols is good--you
can’t have a GuardOnDataDependentSymNode if the unbacked symbol goes

In the equality test above, even if we are not able to eliminate u0, we can refine
its value range. The value range specifies what the set of possible values for a
variable are. By default, size-like unbacked Symlints have a value range of [0,
Inf]; if you assert it is equal to an expression with a refined value range, say [2,
20], then uQ’s value range will be updated to [2, 20]. We also have limited support
for propagating value ranges in reverse.

If you perform a boolean test f(u0), we will remember that this expression always
evaluates to True, and if you evaluate an expression that contains this
expression, we will substitute it with True. We also support some limited
reasoning on logically equivalent statements; e.g., if you torch._check(u0 < 4),
we will also know that u0 >= 4 evaluates to False, and so performing a test like
this in a normal non-check conditional will go through fine.

The exact symbolic reasoning our system supports is not well defined, and we reserve
the right to make it stronger in the future. However, we do have tests for various uses of
reasoning, and we ensure that changes to our reasoning will not break these uses.

Our decompositions / meta implementations of functions in the PyTorch APl make ubiquitous
use of torch._check, so chances are that when you use an unbacked Symint with these APls,
we are already learning things about your Symints without you needing to explicitly spell things



out. You can find out exactly what we are learning by running your program under
TORCH_LOGS=dynamic and looking for “runtime_assert” log messages. However, sometimes
we will hit a non-torch._check conditional on a fact that you, as a user know, but we, the
framework, do not. This is the typical use case for inserting a new torch._check.

In C++, the corresponding version of this is TORCH_SYM_CHECK. However, you must take
care to actually do a symbolic relational test (the regular == on Symint will immediately guard on
the boolean). For example, torch._check(x.numel() == y.numel()) would translate into
TORCH_SYM_CHECK(x.sym_numel().sym_eq(y.numel())), using the sym_eq method on
Symint to perform a symbolic test that returns a SymBool.

torch._check _is_size(size) / guard_size_oblivious(cond)

Example usage:

ue = y.item
torch. check is size

Semantically, this is equivalent to:

if ue < o:
raise RuntimeError("u@ is not a size")

However, like torch._check, there are some important differences:

e Like torch._check, this test will always succeed at compile time, and we will learn the fact
that u0 >= 0. In particular, this will refine the value range on u0 so that it is [0, Inf] rather
than [-Inf, Inf].

e This also marks u0 as size-like. Size-like unbacked Symints behave identically to their
regular counterparts, except for one crucial difference: when they are involved in a
boolean expression that is evaluated using guard_size_oblivious, for the purposes of
evaluating that expression only, we will assume that they cannot equal zero or one (in
other words, their value range is temporarily set to [2, Inf].) For example, if we perform a
(non-torch._check) conditional on u0 == 1 (to see if broadcasting will occur), when u0 is
size-like, we will evaluate this to False rather than throw an error.

For example: guard_size_oblivious(u0 == 1) will always return False when u0 is size-like.

Marking unbacked symbols as size-like is crucial for using them in contexts where tensor sizes
are expected, because PyTorch internals often do many conditions on whether or not sizes are
zero or one, to handle various special cases related to empty / single element tensors. In fact, if
you pass an unbacked symbol to a conventional factory function like torch.empty, we will



automatically mark it as size-like for you. However, sometimes we are not able to infer that a
quantity is size-like. For example, arguments to Tensor.view cannot be inferred to be size-like,
as -1 is also a valid argument. You would need to explicitly torch._check_is_size an unbacked
Symint before passing it to view.

Similarly, if you are in PyTorch framework code and you need to perform a test on a size to see
if itis 0 or 1, you will typically want to wrap this test in guard_size_ oblivious, to instruct that
size-like unbacked Symints can be assumed to not pass this test. It is a bit difficult to say
exactly when it is OK to do this, but in general, most framework code has logic for >= 2 case
which would work perfectly fine for 0/1 case, so if patching something in PyTorch framework to
guard_size_oblivious fixes your problem, it's probably OK. A case when this would be clearly
wrong is if you actually need to do something different for the 0/1 case even at runtime; e.g., a
hand-tracking application testing the number of hands it has detected. So in general, it is usually
not OK to use guard_size_oblivious in user code!

This can be done in C++ with TORCH_GUARD_SIZE_OBLIVIOUS(u0.sym_eq(0)), for example.

torch. _check_is_size(size, max=upper_bound)
NOTE: This is NEW as of https://github.com/pytorch/pytorch/pull/144471 Jan 14, 2025

This is semantically equivalent to torch. check(size <= upper_bound), but it also has different
semantics under guard_size_oblivious: we will assume that size < upper_bound. This only
works when upper bound is an integer constant (so you get normal semantics if upper_bound is
a symbolic expression; we can potentially fix this without too much work.)

https://qithub.com/pytorch/pytorch/issues/120288

torch._constrain_as_value / torch. _constrain_as_size

These are much more niche APlIs that are effectively equivalent to
torch._check/torch._check_is_size, except they also let you adjust the value range of the
variable by providing a min/max value. In recommendation models, you are unlikely to be able
to solve GuardOnDataDependentSymNode errors in this way.

Although constrain_as_value looks like an attractive way to specify that a variable should be
in-bounds of another tensor, in practice it is often unusable, because value ranges only support
constant bounds, and it is pretty common that the tensor you want to index into has a (backed)
symbolic dimension s0. Passing its size as the max value for a value range will force it to be
specialized, which is often not what you want. Instead, if necessary, you should manually
discharge range checks by torch._check()'ing appropriate expressions based on what errors
you see.
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What a fix looks like

There are a number of common ways you are going to resolve a problem like this. We describe
the most common ones here.

It's unfixable

Sometimes, it's actually unfixable.

i = x.item()
if i > 4:
return x * 2
else:
return x + 3

If the user code is legitimately branching on a data-dependent value, it is literally impossible to
trace as is and you’ll have to do something else, maybe use a torch.cond.

Another common pattern is if you do this:
return self.mlps[x.item()]

Where self.mlps is a Python list / ModuleList. Once again, you are branching on a
data-dependent value. Here, the easiest fix is to induce a graph break before indexing.

uO0 is a size, but we don’t know it

Some guards fail on tests that essentially ask “is this a size”, but we don’t know it is a size.
These fall into two categories:

e Regular tests like “u0 >= 0" or “u0 != -1” that are unconditionally true for sizes. Adding a
torch._check is_size(...) on the relevant size will instruct that these tests are true.
(However, this is typically uncommon, because if the test in question is for error
checking, we can infer that the quantity must be true, because we would error otherwise.
One important exception are APIs which accept both sizes as well as -1; it is necessary
for the user to tell us that the input data dependent quantity cannot possibly be -1, as if it
could be, something unusual would happen.) Example:
https://github.com/pytorch/pytorch/pull/107788

o Sometimes, you can refactor an error checking API to split a logical disjunction of
conditionals into separate conditionals. If you can do so to get a single
torch._check(x == y) statement, this will make it possible to automatically
generate a deferred runtime assert. Example:
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https://github.com/pytorch/pytorch/pull/110979

e Tests like u0 == 0 or 1 which are not always true for sizes, but for which our choice
doesn’t really matter (it is handling an edge case such as what to do with an empty
tensor, or it is testing for broadcasting but we want to assume broadcasting is not
occurring.) We can resolve these situations with two ingredients: first, the guard itself
must be evaluated via guard_size_oblivious, which says “for all size-like ints, assume
they cannot equal zero or one, and | promise that if they do equal zero/one something
reasonable will happen.” Second, the symbols themselves must be marked size-like
(either inferred because they were passed to tensor factory functions, or explicitly
specified with torch._check_is_size(...)). Many examples of making guards size oblivious

in https://qgithub.com/pytorch/pytorch/pull/118579

Sometimes, these tests can occur in C++. We have corresponding C++ APIs for these tests, but
it can be a little more difficult to localize the problem as you do not get a useful backtrace by
default.

u0 is actually equal to u1, but we don’t know it

Multiple unbacked Symints can actually known to be equal at compile time:

i@ = x.sum().item()
il = x.sum().item()
return torch.randn(i@) + torch.randn(il)

If there is a torch._check(i0 == i1) somewhere (in the example above, this test will happen
inside the shape checking rule for addition), we will automatically unify the two unbacked
Symints and report them as equal. However, sometimes there is no such assert, and you have
to explicitly add an assert to get it to work. Example:
https://github.com/pytorch/pytorch/issues/111950

We recently fixed some bugs in PyTorch where we incorrectly reallocate unbacked Symints in
framework code, and then failed to discover that they are equal. We have fixed many of them
but this may also potentially be the cause of a problem. Example:
https://github.com/pytorch/pytorch/pull/117862 Note that if we allocate an unbacked Symint, but then
immediately set it equal to another one, these are benign (and not so easy for us to eliminate entirely
from the framework).

uO is a Tensor
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Another reason you might be overallocating unbacked Symints is that you are passing around a
Tensor and relying on implicit conversion to int. For example, most functions which accept an int,
also accept a Tensor, and will automatically call item() on the int argument. It is worthwhile to study
TORCH_LOGS=dynamic and decide if you expect to see all the unbacked Symints you see, or if
there are too many. When this happens, a new Symint will be allocated on the line where a PyTorch
function is called

(This is less likely to cause problems now, because we memoize the return value of t.item(), so you'll
consistently get the same unbacked symint if you call it multiple times)

You are overspecializing

Consider the following code in non-strict export mode:

ue = x.sum().item()
return y[:u0]

This will fail trying to evaluate u0 (sic; not a boolean expression). The reason for this is that
when a Symint is used inside a Python slice directly (e.g., not with Dynamo), Python will actually
force the integer to be specialized, and fail if it is unbacked.

This can be fixed by rewriting the program not to specialize. For the particular example above,
you can fix it by rewriting the code not to use slices:

ue = x.sum().item()
return y.narrow(0, 0, u@)

Example: https://qgithub.com/pytorch/pytorch/issues/111950

Use lengths instead of offsets

When working with variable sequence lengths, it is common to have tensors representing the
lengths or offsets of the sequences involved. For example, if | have values = [[1, 2, 3], [4, 5], [6,
7, 8, 9]], | might have lengths = [3, 2, 4] and offsets = [0, 3, 5, 9]. The two representations are
interconvertible but if you are working with them as integers (by calling lengths.tolist()), it is
better to call tolist on lengths, not offsets.

The reason for this is if you perform a torch.split() on your values tensor, we need to create
Tensors for each sub-sequence involved, e.g., a size 3, 2 and 4 tensor. If you have unbacked
Symints for sizes, these sizes become u0, u1 and u2; you indicate that they are size-like and
you are done. But if you have unbacked Symints for offsets, they become u1 - u0, u2 - ut, u3 -
u2. This is a pain, because you cannot conveniently mark these quantities as size-like and there
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are problems. Because it is relatively simple to write code to do either lengths or offsets, you
should prefer lengths.

More discussion at https://github.com/pytorch/pytorch/issues/119468

How to diagnose your problem

Step 1: Look at the potential framework culprit (aka the Python
backtrace)

The exception has a backtrace, and often it will tell you what the problem is. Since PT2
backtraces are quite long, the error message will also give you its best guess for what the
framework culprit is, e.g.,

Potential framework code culprit (scroll up for full backtrace):
File "/data/users/ezyang/a/pytorch/torch/_prims_common/__init__.py", line
855, in infer_size
if d == -1:

Look at the condition in question.

Does it make sense that this is triggering a guard on data-dependent symbol?
Should we know if the quantity in question is size-like (the exception tells you which
symbols are size-like; if a symbol is not in the list, we are assuming it could be an
arbitrary integer)?

e If the equation is between two distinct symbols, should we know that these are actually
equal?

e |[f all the symbols are size-like, but the equation involves 0 or 1, are we missing a
guard_size_oblivious wrapper on the equation? (Don’t forget that to do a
guard_size_oblivious between two size tuples, you have to use sym_eq and not regular
equality.)

In this particular example, we are testing if d (ostensibly the data dependent value) is -1; if d
were a size, we would know it was definitely non-negative. So this would suggest that we are
missing a torch._check _is_size somewhere. Or if d is already size-like, but numel() == 0 is
failing, it sounds like you need to wrap it in guard_size_oblivious.

TORCH_LOGS=dynamic and the user stack trace are in practice important for understanding
how exactly to fix the problem, because they will help you determine how exactly you should
change the user program.
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[INFO] create_unbacked_symint u@ [-9223372036854775808,
9223372036854775807] (w.py:40 in custom_op_meta)

This log message tells you where (w.py:40) this particular unbacked Symint was allocated. A
given unbacked Symint may get allocated multiple times, so you may need to keep track of
equalities on them:

[INFO] set replacement ul = u@ (trivial lhs) ValueRanges(lower=0,
upper=9223372036854775807, is_bool=False)

Step 2: Look at the C++ backtrace

If the potential framework code culprit is completely uninformative, your guard may potentially
be happening in C++. You can force a best effort C++ backtrace by running with
TORCHDYNAMO_EXTENDED_DEBUG_CPP=1. This will give you an extremely long C++
backtrace with Python frames, CPython frames and C10/ATen/libtorch proper frames all
interspersed together. You're looking for some symboils in at:: or c10:: namespace that look like
kernel specific code (likely related to the kernel that was being executed as per the Python
backtrace.) If you’re running on a non debug build of PyTorch, due to inlining, you may be
missing frames, so you will also have to do some sleuthing in the source code to find the source

code location. Example: https://github.com/pytorch/pytorch/pull/118579

Here is an example C++ backtrace from a debugging session at
https://fb.workplace.com/groups/6829516587176185/posts/6829896033804907

[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO] File
"./buck-out/v2/gen/fbcode/aale544c619c762d/caffe2/ _gen_aten__ /out/RegisterComposit
eImplicitAutograd.cpp", line 2025, in at::(anonymous namespace)::(anonymous
namespace): :wrapper_CompositeImplicitAutograd_Tensor_narrow(at::Tensor const&,
long, at::Tensor const&, c1@::SymInt)

214[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO] File
"./fbcode/caffe2/aten/src/ATen/native/TensorShape.cpp"”, line 1410, in
at::native::narrow_tensor_symint(at::Tensor const&, long, at::Tensor const&,
c10::SymInt)

215[2024-02-08 ©8:20:45,259] torch.fx.experimental.symbolic shapes: [INFO] File
"./buck-out/v2/gen/fbcode/aale544c619c762d/caffe2/ _gen_aten__/out/core/TensorMetho
ds.cpp", line 52, in long at::Tensor::item<long>() const

216[2024-02-08 08:20:45,259] torch.fx.experimental.symbolic_shapes: [INFO] File
"./fbcode/ATen/core/TensorBody.h", line 4274, in at::Tensor::item() const

Here, you can see that at::native::narrow_tensor_symint calls into item (which in our case is what
triggers the guard on data-dependent SymNode). You can then modify the C++ code to avoid
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specializing, or perhaps you weren’t supposed to be in this C++ code in the first place (in this case,
start was not expected to be a Tensor, and modifying this fixed the problem.)

By the way, the C++ backtraces are much better in focode than in OSS (although | find | usually get
enough information from the OSS trace), so if you are having trouble understanding your C++
backtrace, consider trying with an fbcode build.

Common issues

torch.tensor_split: Could not guard on data-dependent expression
ul <0

Alas, torch.tensor_split(tensor, indices_tensor) will basically always fail to trace. This is because
tensor_split technically supports negative values in the indices tensor, and we have no idea how
to generate a generic kernel that works both with positive and negative indices. If you know that
int_indices must not be negative, you can rewrite your code to:

int_indices = indices.tolist()
for i in int_indices:
torch. _check_is size(i)
return torch.tensor_split(tensor, int_indices)

TorchScript compatibility
If the code to be modified must work under TorchScript, you can gate calls to

torch._check_is_size and co with:

if not torch.jit.is scripting() and is_torchdynamo compiling():
torch._check_is _size(blah)
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