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Objective 
Each tensor framework has its own strengths and weaknesses. We want to make Funsor 
backend-agnostic to be able to use the suitable frameworks for some specific problems. 
 
Another motivation is PPL such as NumPyro needs to use Funsor to support models with 
discrete latent variables. 

Design Overview 
Currently, the issue https://github.com/pyro-ppl/funsor/issues/207 tracks the progress on this 
project. So far, there are three approaches: 

Approach 1 
 
For each backend, we implement the corresponding set of modules: tensor, gaussian, cnf, 
distributions,... The file structure will then look like 

​
funsor/​
  ops.py​
  domains.py​
  terms.py​
  ...​
  torch/​
    tensor.py​
    gaussian.py​

https://github.com/pyro-ppl/funsor/issues/207


    distributions.py​
    ... 
  numpy/ 
    tensor.py​
    gaussian.py​
    distributions.py​
    ... 

 
We could in principle add an auto-import snippet in funsor/__init__.py like 
 

FUNSOR_BACKEND = os.environ.get("FUNSOR_BACKEND", "")​
if FUNSOR_BACKEND == "torch":​
    from .torch import *​
elif FUNSOR_BACKEND == "numpy":​
    from .numpy import * 

 
Advantages: 

●​ We just need to change several import statements to use the corresponding 
functionalities. 

 
Disadvantages: 

●​ Most codes are duplicated. 
●​ The overhead to maintain the same api/mechanism for different backends is large. 

Approach 2 
 
Having a unified class Tensor, subclass it into TorchTensor and NumpyTensor (currently, the 
corresponding class names are Tensor and Array). Replace all PyTorch operators 
torch.foo(*) or *.foo() where * is a numeric tensor by terms.foo(*) or *.foo(), where 
* is a funsor Tensor, in the implementation of gaussian, cnf,... 
 
Advantages: 

●​ Can use the same import statements. 
●​ Less duplicated code. 

 
Disadvantages: 

●​ Need to rewrite the logics of gaussian, cnf,... because in the current implementation, 
many computations are applied directly to the data (torch.Tensor) of input funsors. 

●​ Implement terms.foo(*) or *.foo() for a funsor is non-trivial. 
●​ This would incur interpreter overhead for all low-level numerical math, and would require 

wrapping all low-level math with an @eager or @eager_only interpretation context. 



Approach 3 
 
Same as 2 but keep the current implementations of gaussian, cnf,... Replace all PyTorch 
operators torch.foo(*) or *.foo() by ops.foo(*) where * is a numeric tensor. 
 
Advantages: 

●​ Can use the same import statements. 
●​ Less duplicated code. 
●​ No need to rewrite the logics of gaussian, cnf,... 
●​ Implement ops.foo(*) for a numeric tensor is quite straightforward. 

 
Disadvantages: 

●​ ... 
 
We can also mix approaches 2 and 3 together, depending on specific functions. 
 

Approach 4 
Create a unified low-level wrapper layer around torch and numpy. Make funsor.Tensor agnostic 
to which backend it uses. The file structure will then look like 

​
funsor/​
  ops.py​
  domains.py​
  terms.py​
  ... 
  backends/ 
    torch/ 
      tensor.py 
      distributions.py 
    numpy/ 
      tensor.py 
      distributions.py​
  tensor.py  # agnostic​
  gaussian.py 
 

We could in principle add a funsor.set_backend() similar to 
torch.set_default_tensor_type(). In particular, we will never need to work with both 
backends at the same time, so a global config is fine. 
 
We might be able to use a global import to set backend (as in approach 1)? 



​
# in funsor/__init__.py 
if FUNSOR_BACKEND == "torch":​
    from .torch import distributions, tensor 
elif FUNSOR_BACKEND == "numpy":​
    from .torch import distributions, tensor 

 
Advantages: 

●​ There is clear separation of the two abstraction mechanisms 
●​ funsor.Tensor code is shared across backends 
●​ does not incur interpreter overhead for low-level numerics 

 
Disadvantages: 

●​ Requires rewriting funsor.Tensor 
●​ Incurs coding overhead when creating new funsor.torch.function()s 
●​ Distributions implementations still differ across backend 

Detailed Design 
In approaches 2 and 3, currently, instead of having a unified class Tensor, subclass it into 
TorchTensor and NumpyTensor, we implemented Tensor and Array for torch and numpy 
backends separately. Either way, we need a mechanism to create a new Tensor because in 
funsor, many functions involve constructing new Tensors: 
 

●​ If we have a unified class Tensor, then we can replace all Tensor constructions in 
gaussian, cnf,... by a method *.new_tensor(...) (for example). 

 
●​ In https://github.com/pyro-ppl/funsor/pull/302, dispatches of a function call Tensor(...) 

to TorchTensor, NumpyTensor are used depending on input tensor types of those 
constructions. This is not elegant but will keep the current Tensor construction 
statements the same as before. 

... 

Plan 

Make basic functionalities backend-agnostic. 
 
In approaches 2 and 3, it is hard to recognize which statements in the current implementations 
are numeric ops. So we need to gradually add numpy tests and make corresponding changes. 

https://github.com/pyro-ppl/funsor/pull/302


Replace numpy by jax.numpy. 
 
This is to prepare for later steps. 

Make sample mechanism backend-agnostic. 
 
We will need to import numpyro at this step. 

Make inference backend-agnostic. 

… 

Possible coding steps 
1.​ Remove funsor.Tensor and logic from torch.py but keep op registrations 
2.​ Remove funsor.Array class from numpy.py but keep op registrations 
3.​ Make a funsor/tensor.py with a new backend-agnostic Tensor class 
4.​ Refactor funsor/gaussian.py to be backend-agnostic (similar to 3 and Du's current PR) 
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