
KeyedServiceFactory design document

This document aims to provide a way for reusing the KeyedService factories infrastructure
for the Chrome on iOS code.

Currently Chrome on iOS code is in a forked repository of the Chromium repository (aka.
downstream repository). There is a project to upstream into the Chromium repository (aka.
upstream repository).

The componentization of features was a first step in that direction. However, the upstream
code does not include an embedder for iOS. Before such an embedder can be contributed,
we need infrastructure to build KeyedService.

iOS constraints

The code targeting iOS has a major restriction in that it cannot use //content. This is
because //content is based on WebKit and v8 but iOS browser must use UIWebView or
WKWebView classes from UIKit to render HTML content.

The current KeyedService factory infrastructure is based on content::BrowserContext
and cannot be used on iOS. The only dependencies on content::BrowserContext are:

1.​ content::BrowserContext::IsOffTheRecord(),
2.​ content::BrowserContext::GetPath(), only for DEBUG build,
3.​ casting between content::BrowserContext and Profile (as Profile is the only

class implementing content::BrowserContext interface in //chrome/browser
code).

The downstream iOS code offer an interface similar to content::BrowserContext called
ios::BrowserState. It is almost ready for upstreaming. It offers the same required interface
and has a single implementation in the iOS code, so we can have the same type-safe
conversion to the implementation class if needed.

Previous effort showed us that switch day solution, i.e. waiting for everything to be ready
before making the transition from one implementation to another, does not work. On the
other hand, the ability to gradually transition from one implementation to another by step
gets much more traction.

To allow for gradual transitioning, our design needs to allow
BrowserStateKeyedServiceFactories to depend on
BrowserContextKeyedServiceFactories and vice versa during the transition phase
only.

Proposed Solution: Use Inheritance of Factories

Overview

Both ios::BrowserState and content::BrowserContext inherit from
base::SupportsUserData. Since this class is in base, it is usable from core code of the
component; thus, we can have a KeyedServiceFactory superclass that deals with
base::SupportsUserData keys, and have the real classes do the conversion to the correct
type with a static_cast.

Suggested solution is:

●​ Implement the inheritance-based design described in detail below upstream, with the
contract that upstream content::BrowserContext and ios::BrowserState
factories cannot depend on each other,

●​ Fork the downstream implementation of BrowserStateKeyedServiceFactory to
allow cross-dependencies during the transition, this fork is small (only two methods
have to be touched),

●​ Shift the downstream code to start using the BrowserStateKeyedServiceFactory
for the clients, and upstream them when they only depend on other
ios::BrowserState factories.

The inheritance based solution has been prototyped in downstream code in 95947013. It is
less clean than a template-based solution (see below) but allow us to gradually move from
using BrowserContextKeyedServiceFactory to using
BrowserStateKeyedServiceFactory.

Detailed Design

class KeyedServiceFactory;

class DependencyManager {
 protected:
 DependencyManager();
 virtual ~DependencyManager();

 void AddEdge(KeyedServiceFactory* depended,
 KeyedServiceFactory* dependee);

 void CreateContextServices(base::SupportsUserData* context);
 void DestroyContextServices(base::SupportsUserData* context);

 // And so on…
 private:
#ifndef NDEBUG_
 virtual base::FilePath GetPath(base::SupportsUserData* context) const = 0;
#endif
};

class KeyedServiceFactory {
 protected:
 KeyedServiceFactory(const char* name, DependencyManager* manager);
 virtual ~KeyedServiceFactory();

 private:
 virtual base::SupportsUserData* GetContextToUse(
 base::SupportsUserData* context) const = 0;

https://chromereviews.googleplex.com/95947013/

 // And so on...
 private:
 DependencyManager* dependency_manager_;
};

class BrowserContextKeyedServiceFactory : public KeyedServiceFactory {
 private:
 virtual content::BrowserContext* GetBrowserContextToUse(
 content::BrowserContext* context) const {
 // Safe default for Incognito mode: no profile.
 if (context->IsOffTheRecord())
 return nullptr;
 return context;
 }

 virtual base::SupportsUserData* GetContextToUse(
 base::SupportsUserData* context) const final {
 // This cast is safe since BrowserContextKeyedService will only ever be used
 // with content::BrowserContext contexts.
 return GetBrowserContextToUse(static_cast<content::BrowserContext*>(context));
 }
};

This introduce a slight weakness in the interface, but by making all the method of the base
class protected and by sealing the virtual methods used (using the C++11 final feature),
we can make it as safe as it currently is (i.e. BrowserContextKeyedServiceFactory will
only deal with content::BrowserContext*).

Moreover, in the downstream code, there is a content::BrowserContext associated to
each ios::BrowserState (since downstream code is forked and need a way to use the
current factories). With this design, we can have BrowserContextKeyedServiceFactory
and BrowserStateKeyedServiceFactory depends on each other, facilitating the migration
of the code in the downstream repository by introducing factories for already componentized
features without waiting for the componentization to be complete.

This cross-dependency will only be used in downstream repository while the features are
converted. The upstream code will be clean and only use ios::BrowserState.

Other considered designs

Template-based design

Since content::BrowserContext and ios::BrowserState offer the same methods
required by KeyedService factories infrastructure it is possible to templatize the factories on
the type of context to use.

template <typename Context>
class KeyedServiceFactory;

template <typename Context>
class DependencyManager {
 public:

 void AddEdge(KeyedServiceFactory<Context>* depended,
 KeyedServiceFactory<Context>* dependee);

 void CreateContextServices(Context* context);
 void DestroyContextServices(Context* context);

 // And so on...
 protected:
 DependencyManager();
 ~DependencyManager();
};

template <typename Context>
class KeyedServiceFactory {
 public:
 void DependsOn(KeyedServiceFactory<Context>* rhs);
 protected:
 KeyedServiceFactory(const char* name, DependencyManager<Context>* manager);
 virtual ~KeyedServiceFactory();

 virtual Context* GetContextToUse(Context* context) const {
 // Safe default for Incognito mode: no service.
 if (context->IsOffTheRecord())
 return nullptr;
 return context;
 }

 // And so on...
 private:
 DependencyManager<Context*> dependency_manager_;
};

class BrowserContextDependencyManager
 : public DependencyManager<content::BrowserContext> {
};

class BrowserContextKeyedServiceFactory
 : public KeyedServiceFactory<content::BrowserContext> {
}

class BrowserStateDependencyManager
 : public DependencyManager<ios::BrowserState> {
};

class BrowserStateKeyedServiceFactory
 : public KeyedServiceFactory<ios::BrowserState> {
}

This solution is the safest since it does not require any new cast of the context from. It
requires renaming some virtual methods but this can be dealt by tools/git/mffr.py.

It prevents having dependencies between BrowserContextKeyedServiceFactory and
BrowserStateKeyedServiceFactory as the two types are different and don’t share a base
type.

	KeyedServiceFactory design document
	iOS constraints
	Proposed Solution: Use Inheritance of Factories
	Detailed Design

	Other considered designs
	Template-based design

