/**

Module

PIC32_SPI _HAL.c
Description

Source file for the PIC32 SPI Hardware Abstraction Layer used in ME218
Notes

This is the prototype. Students will re-create this functionality
History
When Who What/Why

10/03/21 12:32 jec started coding
***/
YA L e P Include Files ----------mmmmmmi oo */
#include <xc.h>
#include <stdbool.h>
#include "PIC32_SPI_HAL.h"

[o e Module Defines ----------------o-cmoo-—- */
// this is based on a 13 bit (max=8191) BRG register and 20MHz (50ns) PBCLK
#define MAX_SPI_PERIOD ((8191+1)*2*50)

#tdefine MAP_SS1 0bee11l

#tdefine MAP_SS2 0bo1lee

#define MAP_SDO1 0bo011

#tdefine MAP_SDO2 ©bo100

F AR e Module Types -------------mommmmmm oo */

[e Module Functions --------------------------- */
static void selectModuleRegisters(SPI_Module_t WhichModule);
static bool isSPI_ModulelLegal(SPI_Module_t WhichModule);
static bool isSS_OutputPinLegal(SPI_Module_t WhichModule,
SPI_PinMap_t WhichPin);
static bool isSDOPinLegal(SPI_PinMap_t WhichPin);
static bool isSDIPinLegal(SPI_PinMap_t WhichPin);

A e L L L e L L e Module Variables -------------------"------- */
// these will allow us to reference both SPI1 & SPI2 through these pointers

static volatile __ SPI1CONbits_t * pSPICON;

static volatile __ SPI1CON2bits_t * pSPICON2;

static volatile uint32_t * pSPIBRG;

static volatile uint32_t * pSPIBUF;

// these are the output mapping registers indexed by the SPI_PinMap_t value
static volatile uint32 t * const outputMapRegisters[] = { &RPA®@R, &RPAIR,
&RPA2R, &RPA3R, &RPA4R,
&RPBOR, &RPB1R, &RPB2R, &RPB3R, &RPB4R, &RPBS5R,
&RPB6R, &RPB7R, &RPB8R, &RPBO9R, &RPB1OR, &RPB11R, &RPB12R,
&RPB13R, &RPB14R, &RPB15R

}s

// these are the TRISXSET registers indexed by the SPI_PinMap_t value

static volatile uint32 t * const setTRISRegisters[] = { &TRISASET, &TRISASET,
&TRISASET, &TRISASET, &TRISASET,
&TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET,
&TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET,
&TRISBSET, &TRISBSET, &TRISBSET, &TRISBSET

}s

// these are the TRISXCLR registers indexed by the SPI_PinMap_t value

static volatile uint32_t * const clrTRISRegisters[] = { &TRISACLR, &TRISACLR,
&TRISACLR, &TRISACLR, &TRISACLR,
&TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR,
&TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR,
&TRISBCLR, &TRISBCLR, &TRISBCLR, &TRISBCLR

}s

// these are the ANSELXCLR registers indexed by the SPI_PinMap_t value

static volatile uint32 t * const clrANSELRegisters[] = { &ANSELACLR, &ANSELACLR,
&ANSELACLR, &ANSELACLR, &ANSELACLR,
&ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR,
&ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR,
&ANSELBCLR, &ANSELBCLR, &ANSELBCLR, &ANSELBCLR

}s

// these are the bit positions indexed by the SPI_PinMap_t value
static uint32_t const mapPinMap2BitPosn[] = { 1<<@, 1«1,

1<<2, 1<<3, 1<<4,

1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5,

1<<6, 1<<7, 1<<8, 1<<9, 1«10, 1«<11,

1<<12, 1<<13, 1<<14, 1<<15

}s

// these are the INT pin mapping constants indexed by the SPI_PinMap_t value

static uint32_t const mapPinMap2INTConst[] = { ©boooo/*RAO*/, ©b0BOO/*RAL*/,
0boooO/*RA2*/, ©bOOOO/*RA3*/, 0bOO10/*RA4*/,
0bo010/*RBO*/,0b0010/*RB1*/, ©bO100/*RB2*/, ©b0OOO1/*RB3*/,
0b0010/*RB4*/, 0b0OOO1/*RB5*/, 0b0O0O1/*RB6*/, 0b0O100/*RB7*/,
0b0100/*RB8*/, 0b0100/*RB9*/, 0b0011/*RB10*/, 0b0O11/*RB11*/,
0/*RB12*/, 0b0011/*RB13*/, 0©boO001/*RB14*/, ©b0011/*RB15*/

}s

static SPI_PinMap_t const LegalSSOutPins[][5] = {{ SPI_RPA®, SPI_RPB3, SPI_RPB4,
SPI_RPB7,SPI_RPB15 },
{ SPI_RPA3, SPI_RPB@, SPI_RPB9,
SPI_RPB10,SPI_RPB14 }

}s

static SPI_PinMap_t const LegalSDOxPins[]

{ SPI_NO_PIN, SPI_RPA1l, SPI_RPA2,
SPI_RPA4, SPI_RPB1, SPI_RPB2,
SPI_RPB5, SPI_RPB6, SPI_RPBS,
SPI_RPB11, SPI_RPB13

}s

static SPI_PinMap_t const LegalSDIxPins[] = { SPI_NO_PIN, SPI_RPA1, SPI_RPBS,
SPI_RPB1, SPI_RPB11, SPI_RPB8,SPI_RPA2,

SPI_RPB6,SPI_RPA4,SPI_RPB13,SPI_RPB2

/**

Function
SPISetup_BasicConfig

b
{

}
/

b
{

Description

Should be the first function called when setting up an SPI module.

1) Disables the selected SPI Module

2) Configures the SPI clock to be based on PBCLK

3) Disables the Framed mode

4) Disables the Audio mode

Further function calls from the SPI HAL will be necessary to complete

the module setup.
***/

0ol SPISetup BasicConfig(SPI_Module_t WhichModule)
bool Returnval = true;

// Make sure that we have a legal module specified
if (false == isSPI_Modulelegal(WhichModule))
{
Returnval = false;
}else // Legal module so set it up

{
selectModuleRegisters(WhichModule);

pSPICON->ON = 0; // Disable the selected SPI Module
pSPICON->MCLKSEL = 0; // Configure the SPI clock to be based on PBCLK
pSPICON->FRMEN = 0; // Disable the Framed mode
pSPICON2->AUDEN = 0; // Disable the Audio mode

}

return Returnval;

>k 3k 3k >k 3k 3k >k 3k 5k >k 3k 5k >k ok 5k 5k 3k 3k >k 3k 3k >k >k 3k 3k >k 3k ok >k 3k 3k >k 3k ok >k 3k ok >k 3k ok >k 3k 5k >k 3k 5k >k 3k 5k >k 3k 5k >k >k 5k >k 3k 3k >k 3k 3k >k >k 5k >k >k 3k >k >k 3k >k %k %k k >k k

Function
SPISetup_SetFollower

Description
Sets the selected SPI Module to Follower mode and configures the SPI CLK
pin as an input. NOTE:
1) Either this function or the SPISetup_SetLeader function
should be called immediately after the call to SPISetup_BasicConfig.
2) the PIC32 documentation refers to this mode as slave mode.
***/

ool SPISetup SetFollower(SPI_Module_t WhichModule)

bool Returnval = true;
// Your Code goes here :-)

if (isSPI_ModuleLegal(WhichModule)) {//If WhichModule is legal
selectModuleRegisters(WhichModule);//select correct registers

if (pSPICON->ON == 0){ //if SPI is off
pSPICON->MSTEN = 0;//set MSTEN bit to follower mode (©)
SPI_PinMap_t clkPin;
if (WhichModule == SPI_SPI1){
//CLK pin is B14 for SPI1
clkPin = SPI_RPB14;
} else{
//CLK pin is B15 for SPI2
clkPin = SPI_RPB15;
}
// set the TRIS bit to make it an input
*setTRISRegisters[clkPin] = mapPinMap2BitPosn[clkPin];

// clear the ANSEL bit to disable analog on the pin
*clrANSELRegisters[clkPin] = mapPinMap2BitPosn[clkPin];
}
} else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPISetup_SetlLeader

Description

Sets the selected SPI Module to leader mode, configures the SPI CLK

pin as an output, and sets the input sample phase.

NOTE: 1) Either this function or the SPISetup_SetFollower function should

be called immediately after the call to SPISetup_BasicConfig.

2) the PIC32 documentation refers to this mode as master mode.
**/
bool SPISetup_SetlLeader(SPI_Module_t WhichModule, SPI_SamplePhase_t WhichPhase)
{

bool Returnval = true;
// Your Code goes here :-)

if (isSPI_ModuleLegal(WhichModule)) {//If WhichModule is legal
selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == ©){ //if SPI is off
pSPICON->MSTEN = 1;//set MSTEN bit to leader mode (1)

SPI_PinMap_t clkPin;
if (WhichModule == SPI_SPI1){//SPI1

//CLK pin is B14 for SPI1

clkPin = SPI_RPB14;
} else{//SPI2

//CLK pin is B15 for SPI2

clkPin = SPI_RPB15;
}
// clear the TRIS bit to make it an output
*clrTRISRegisters[clkPin] = mapPinMap2BitPosn[clkPin];
// clear the ANSEL bit to disable analog on the pin
*clrANSELRegisters[clkPin] = mapPinMap2BitPosn[clkPin];

//set the SMP to WhichPhase
pSPICON->SMP = WhichPhase;

}
} else{//illegal module

Returnval = false;

}

return Returnval;

}

/**

Function
SPISetup_SetBitTime

Description
Based on a 20MHz PBCLK, calculates and programs the SPIBRG register for the
specified SPI module to achieve the requested bit time.
**/
bool SPISetup SetBitTime(SPI_Module_t WhichModule, uint32 t SPI_ClkPeriodIn_ns)

{

bool Returnval = true;

if (isSPI_ModulelLegal(WhichModule) && SPI_ClkPeriodIn_ns <= MAX_SPI_PERIOD) {//If
WhichModule is legal and given period is valid
selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == 0){ //if SPI is off and
pSPIBRG = 0.01 SPI_ClkPeriodIn_ns - 1;

}

Yelse{
Returnval = false;

}

return Returnval;

}

/**

Function
SPISetup_MapSSInput

Description

Sets the designated pin to be the SS input if the selected SPI Module

is configured in Follower mode.

Legal port pins for the SS1 input are:

SPI_RPA@, SPI_RPB3, SPI_RPB4, SPI_RPB7,SPI_RPB15.

Legal port pins for the SS2 input are:

SPI_RPA3, SPI_RPBO, SPI_RPB9, SPI_RPB10,SPI_RPB14.
**/
bool SPISetup_MapSSInput(SPI_Module_t WhichModule, SPI_PinMap_t WhichPin)

{

bool Returnval = true;

// Make sure that we have a legal module specified & legal pin
if ((false == isSPI_ModulelLegal(WhichModule)) ||
(false == isSS OutputPinLegal(WhichModule, WhichPin)))//legal input pins are
same as output pins
{
ReturnVal = false;
}else
{ // Legal module & pin so set try setting it up
selectModuleRegisters(WhichModule);
if (@ == pSPICON->MSTEN) // configured in Follower mode?
{
if (SPI_NO_PIN == WhichPin)
{
pSPICON->SSEN = 0; // disable SS
}else //there is an SS pin so map it
{
pSPICON->SSEN = 1; // enable SS
// set the TRIS bit to make it an input
*setTRISRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];
// clear the ANSEL bit to disable analog on the pin
*clrANSELRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];

if (SPI_SPI1 == WhichModule)

{
SS1R = mapPinMap2INTConst[WhichPin];// Map SS1 to chosen pin
}else
{
SS2R = mapPinMap2INTConst[WhichPin];// Map SS2 to chosen pin
}
}
telse // not in follower mode
{

ReturnVal = false; // then we can't config an SS input
}
}

return Returnval;

}

/**

Function
SPISetup_MapSSOutput

Description

Sets the designated pin to be the SS output if the selected SPI Module

is configured in Leader mode. Clears TRIS and ANSEL to make pin an output.

Also configures INT4/INT1 to monitor for rising edges on the SS output pin.

Legal port pins for the SS1 output are:

SPI_NO_PIN, SPI_RPA@, SPI_RPB3, SPI_RPB4, SPI_RPB7,SPI_RPB15.

Legal port pins for the SS2 output are:

SPI_NO_PIN, SPI_RPA3, SPI_RPBO, SPI_RPB9, SPI_RPB10,SPI_RPB14.
**/
bool SPISetup_MapSSOutput(SPI_Module_t WhichModule, SPI_PinMap_t WhichPin)

{

bool Returnval = true;

// Make sure that we have a legal module specified & legal pin
if ((false == isSPI_ModulelLegal(WhichModule)) ||
(false == isSS_OutputPinLegal(WhichModule, WhichPin)))
{
ReturnVal = false;
}else
{ // Legal module & pin so set try setting it up
selectModuleRegisters(WhichModule);
if (1 == pSPICON->MSTEN) // configured in Leader mode?
{
if (SPI_NO_PIN == WhichPin)
{
pSPICON->MSSEN = ©; // disable SS
}else //there is an SS pin so map it
{
pSPICON->MSSEN = 1; // enable SS
// clear the TRIS bit to make it an output
*clrTRISRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];
// clear the ANSEL bit to disable analog on the pin
*clrANSELRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];

if (SPI_SPI1 == WhichModule)

{
*outputMapRegisters[WhichPin] = MAP_SS1; // Map SS to chosen pin
// set up to use INT4 to capture the rising edge of SS
INTCONbits.INT4EP = 1; // set for rising edge sensitivity
IFSOCLR = _IFS@_INT4IF_MASK; // clear any pending flag

INT4R = mapPinMap2INTConst[WhichPin]; // map INT4 to SS as well
}else
{ // must be SPI2 so set up INT1
*outputMapRegisters[WhichPin] = MAP_SS2; // Map SS to chosen pin
// set up to use INT1 to capture the rising edge of SS
INTCONbits.INT1EP = 1; // set for rising edge sensitivity
IFSOCLR = _IFS@_INT1IF_MASK; // clear any pending flag
INTIR = mapPinMap2INTConst[WhichPin]; // map INT1 to SS as well

}
}

Yelse // not in Leader mode

{
ReturnVal = false; // then we can't config an SS output
}
}

return Returnval;

}

/**

Function
SPISetup_MapSDInput

Description

Sets the designated pin to be the SD input.

Legal port pins for the SDI1 input are:

SPI_NO_PIN, SPI_RPA1, SPI_RPB1, SPI_RPB5, SPI_RPB8,SPI_RPB11.

Legal port pins for the SDI2 input are:

SPI_NO_PIN, SPI_RPA2, SPI_RPA4, SPI_RPB2, SPI_RPB6,SPI_RPB13.
**/
bool SPISetup_MapSDInput(SPI_Module_t WhichModule, SPI_PinMap_t WhichPin)
{

bool Returnval = true;

// Your Code goes here :-)

//If WhichModule is legal and provided pin is legal:
if (isSPI_ModulelLegal(WhichModule) && isSDIPinLegal(WhichPin)) {
selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == 0){ //if SPI is off
if (WhichModule == SPI_SPI1){//SPI1
SDI1R = mapPinMap2INTConst[WhichPin];// Map SDI1 to chosen pin
} else{//SPI2
SDI2R = mapPinMap2INTConst[WhichPin];// Map SDI1 to chosen pin

}

// set the TRIS bit to make it an input
*setTRISRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];
// clear the ANSEL bit to disable analog on the pin
*clrANSELRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];
}
Yelse{
Returnval = false;

}

return Returnval;

}

/**

Function
SPISetup_MapSDOutput

Description

Sets the designated pin to be the SD output.
**/
bool SPISetup_MapSDOutput(SPI_Module_t WhichModule, SPI_PinMap_t WhichPin)
{

bool Returnval = true;

// Your Code goes here :-)

//If WhichModule is legal and provided pin is legal:
if (isSPI_ModulelLegal(WhichModule) && isSDOPinLegal(WhichPin)) {
selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == 0){ //if SPI is off
if (WhichModule == SPI_SPI1){//SPI1
*outputMapRegisters[WhichPin] = MAP_SDO1; // Map SDO1 to chosen pin
} else{//SPI2
*outputMapRegisters[WhichPin] = MAP_SD02; // Map SD0O2 to chosen pin

}

// clear the TRIS bit to make it an output
*clrTRISRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];
// clear the ANSEL bit to disable analog on the pin
*clrANSELRegisters[WhichPin] = mapPinMap2BitPosn[WhichPin];
}
Yelse{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPISetup_SetClockIdleState

Description

Sets the idle state of the SPI clock.
**/
bool SPISetup SetClockIdleState(SPI_Module_t WhichModule,

SPI_Clock_t WhichState)

{

bool Returnval = true;

// Your Code goes here :-)

//If WhichModule is legal and and provided pin is legal:
if (isSPI_ModulelLegal(WhichModule)) {
selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == 0){ //if SPI is off
if (WhichState == SPI_CLK_HI){
pSPICON->CKP = 1; //set CKP bit
}else if (WhichState == SPI_CLK_LO){
pSPICON->CKP = 0; //clear CKP bit
}else{ //WhichState was not legal
Returnval = false;
}
}

} else{

ReturnVal = false;

}

return Returnval;

}

/**

Function
SPISetup_SetActiveEdge

Description

Sets the active edge of the SPI clock.
**/
bool SPISetup_SetActiveEdge(SPI_Module_t WhichModule,

SPI_ActiveEdge_t WhichEdge)

{

bool Returnval = true;

// Your Code goes here :-)

//if WhichModule is legal
if (isSPI_ModulelLegal(WhichModule)) {
selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == 0){ //if SPI is off

if (WhichEdge == SPI_FIRST_EDGE){
pSPICON->CKE = 1;//set CKE

}else if (WhichEdge == SPI_SECOND_EDGE){
pSPICON->CKE = ©; //clear CKE

}else{ //WhichEdge was not legal
Returnval = false;

}

}
}else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPISetup_SetXferWidth

Description

Sets the width of the transfers that the SPI module will perform.
**/
bool SPISetup SetXferWidth(SPI_Module_t WhichModule,

SPI_XferWidth_t DataWidth)

{

bool Returnval = true;

// Your Code goes here :-)

//if WhichModule is legal

if (isSPI_ModulelLegal(WhichModule)) {

selectModuleRegisters(WhichModule); //select correct registers

if (pSPICON->ON == 0){ //if SPI is off
if (DataWidth == SPI_8BIT){
pSPICON->MODE32 = 0; //clear MODE32

pSPICON->MODE16 = 0; //clear MODE1l6

}else if (DataWidth SPI_16BIT){
pSPICON->MODE32 = ©; //clear MODE32
pSPICON->MODE16 //set MODE1l6

}else if (DataWidth SPI_32BIT){
pSPICON->MODE32 = 1;//set MODE32

}else{ //DataWidth was not legal
Returnval = false;

= o I
-

[

}else{
ReturnVal = false;
return Returnval;
/**
Function
SPISetEnhancedBuffer
Description

Enables/disables the enhanced buffer on a module based on the second param
**/

bool SPISetEnhancedBuffer(SPI_Module_t WhichModule, bool IsEnhanced)
{

bool Returnval = true;

// Your Code goes here :-)

//if SPI module is legal

if (isSPI_ModulelLegal(WhichModule)) {
selectModuleRegisters(WhichModule); //select correct registers
if (pSPICON->ON == 0){ //if SPI is off

if(IsEnhanced)({
pSPICON->ENHBUF = 1;//set ENHBUF
} else{
pSPICON->ENHBUF = ©;//clear ENHBUF
}
}
}else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPISetup DisableSPI

Description

Disables the selected SPI Module
**/
bool SPISetup_DisableSPI(SPI_Module_t WhichModule)
{

bool Returnval = true;

// Your Code goes here :-)

//if SPI module is legal
if (isSPI_ModulelLegal(WhichModule)) {

selectModuleRegisters(WhichModule); //select correct registers
pSPICON->ON = @;//clear ON bit

}else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPISetup_EnableSPI

Description

Enables the selected SPI Module
**/
bool SPISetup_EnableSPI(SPI_Module_t WhichModule)
{

bool Returnval = true;

// Your Code goes here :-)

//if SPI module is legal
if (isSPI_ModulelLegal(WhichModule)) {
selectModuleRegisters(WhichModule); //select correct registers
pSPICON->ON = 1;//set ON bit

}else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPIOperate_SPI1_Send8

Description

Writes the 8-bit data to the selected SPI Module data register

Does not check if there is room in the buffer.

Note: separate functions provided for SPI1 & SPI2 in order to speed operation

and allow the SPI to be run at higher bit rates
**/
void SPIOperate_SPI1_Send8(uint8_ t TheData)

{
// not needed for ME218a Labs

}

/**

Function
SPIOperate_SPI1_Sendl6

Description

Writes the 16-bit data to the SPI1 Module data register

Does not check if there is room in the buffer.

Note: separate functions provided for SPI1 & SPI2 in order to speed operation

and allow the SPI to be run at higher bit rates
**/
void SPIOperate_SPI1_Sendl6(uintl6_t TheData)

{

SPI1BUF = TheData;
}

/**

Function
SPIOperate_SPI1_Send32

Description
Writes the 32-bit data to the selected SPI Module data register

Does not check if there is room in the buffer.

Note: separate functions provided for SPI1 & SPI2 in order to speed operation

and allow the SPI to be run at higher bit rates
**/
void SPIOperate_SPI1_Send32(uint32_t TheData)
{

// not needed for ME218a Labs

}

/**

Function
SPIOperate_SPI1_Send8Wait

Description
Writes the 8-bit data to the selected SPI Module data register and waits
for the SS line to rise. NOTE: this is blocking code and should only be
used when the bit-time on the SPI is sufficiently fast so as need to wait
less than 200 micro-seconds to complete.
Does not check if there is room in the buffer.
Note: separate functions provided for SPI1 & SPI2 in order to speed operation
and allow the SPI to be run at higher bit rates
**/

void SPIOperate_SPI1_Send8Wait(uint8_ t TheData)

{
SPI1BUF = TheData;
while (!SPIOperate_HasSS1 Risen()){
}

}

/**

Function
SPIOperate_SPI1 Sendl6Wait

Description
Writes the 16-bit data to the SPI1 Module data register and waits
for the SS1 line to rise. NOTE: this is blocking code and should only be
used when the bit-time on the SPI is sufficiently fast so as need to wait
less than 200 micro-seconds to complete.
Does not check if there is room in the buffer.
Note: separate functions provided for SPI1 & SPI2 in order to speed operation
and allow the SPI to be run at higher bit rates
**/
void SPIOperate_SPI1_Sendl6Wait(uintl6_t TheData)
{

// Your Code goes here :-)

SPI1BUF = TheData;
while (!SPIOperate_HasSS1 Risen()){

}

}

/**

Function
SPIOperate_SPI1 Send32Wait

Description
Writes the 32-bit data to the selected SPI Module data register and waits
for the SS line to rise. NOTE: this is blocking code and should only be
used when the bit-time on the SPI is sufficiently fast so as need to wait
less than 200 micro-seconds to complete.
Does not check if there is room in the buffer.
Note: separate functions provided for SPI1 & SPI2 in order to speed operation
and allow the SPI to be run at higher bit rates
**/
void SPIOperate_SPI1_Send32Wait(uint32_t TheData)
{
// not needed for ME218a Labs

}

/**

Function
SPIOperate_ReadData

Description

Reads the data register for the selected SPI Module. Note: If the selected

module is in 8-bit or 16-bit mode, then you should cast the result of this

function to a uint8_t or uintl6_t before assignment to a result variable.
**/
uint32_ t SPIOperate_ReadData(SPI_Module_t WhichModule)
{

// not needed for ME218a Labs

}

/**

Function
SPIOperate_HasSS1 _Risen
Description
Tests if the SS1 line has risen since the last time this
function was called.
Note: This is an event checking function, not a state test. If the SS line
is found to have risen, then the hardware will be reset until the next time
that data is written to the SPI module. After a call to this function
returns true, subsequent calls will return false until new data is written
and another rising edge on the SS line is detected.
Note: separate functions provided for SS1 & SS2 in order to speed operation
and allow the SPI to be run at higher bit rates
**/
bool SPIOperate_HasSS1_Risen(void)
{
bool Returnval = false;
// Your Code goes here :-)

//if INTAIF flag is set:
if(IFSObits.INTAIF == 1){
IFSOCLR = _IFSO_INT4IF_MASK;// clear any pending flag

Returnval = true;
}else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
SPIOperate_HasSS2_Risen
Description
Tests if the SS2 line has gone low then back high since the last time this
function was called.
Note: This is an event checking function, not a state test. If the SS line
is found to have risen, then the hardware will be reset until the next time
that data is written to the SPI module. After a call to this function
returns true, subsequent calls will return false until new data is written
and another rising edge on the SS line is detected.
Note: separate functions provided for SS1 & SS2 in order to speed operation
and allow the SPI to be run at higher bit rates
**/
bool SPIOperate_HasSS2_Risen(void)
{
// not needed for ME218a

}

//*********************************

// private functions

//*********************************
/**

Function
selectModuleRegisters

Description
based in the requested module, initializes the pointers to the various
SPI module registers.
**/
static void selectModuleRegisters(SPI_Module_t WhichModule)
{
if (SPI_SPI1 == WhichModule)
{
pSPICON = (__SPI1CONbits_t *)&SPI1CON;
pSPICON2 = (__SPI1CON2bits_t *)&SPI1CON2;
pSPIBRG = &SPI1BRG;
pSPIBUF = &SPI1BUF;
Yelse if (SPI_SPI2 == WhichModule)
{
pSPICON = (__SPI1CONbits_t *)&SPI2CON;
pSPICON2 = (__SPI1CON2bits_t *)&SPI2CON2;
pSPIBRG = &SPI2BRG;
pSPIBUF = &SPI2BUF;
}
}

/**

Function
isSPI_Modulelegal

Description
Compares the requested module to the legal modules.

**/
static bool isSPI_ModulelLegal(SPI_Module_t WhichModule)

// Your Code goes here :-)
bool Returnval = true;

if (WhichModule == SPI_SPI1 || WhichModule == SPI_SPI2){//check if module is 1 or 2

} else{
ReturnVal = false;

}

return Returnval;

}

/**

Function
isSS_OutputPinLegal

Description

Loops through the LegalSSOutPins array comparing the requested pin to each

of the entries in the array. If a match is found, sets RetrnVal to true and

breaks out of the loop.
**/
static bool isSS_OutputPinLegal(SPI_Module_t WhichModule, SPI_PinMap_t WhichPin)
{

bool Returnval = false;

uint8 t index;

for(index = 09;
index <= ((sizeof(LegalSSOutPins[0])/sizeof(LegalSSOutPins[0][0]))-1);
index++)
{
if (LegalSSOutPins[WhichModule][index] == WhichPin)
{
Returnval = true;
break;
}
}

return Returnval;

}

/**

Function
isSDOPinLegal

Description
Loops through the LegalSDOxPins array comparing the requested pin to each
of the entries in the array. If a match is found, sets RetrnVal to true and
breaks out of the loop.
**/
static bool isSDOPinLegal(SPI_PinMap_t WhichPin)
{
bool Returnval = false;
// Your Code goes here :-)

uint8 t index;

for(index = 9;
index < (sizeof(LegalSDOxPins));
index++)

{
if (LegalSDOxPins[index] == WhichPin){

Returnval = true;
break;
}
}

return Returnval;

}

static bool isSDIPinLegal(SPI_PinMap_t WhichPin)
{

bool Returnval = false;

// Your Code goes here :-)

uint8 t index;
for(index = 9;
index < (sizeof(LegalSDIxPins));
index++)
{
if (LegalSDIxPins[index] == WhichPin){
Returnval = true;
break;
}
}

return Returnval;

}

