
Event Breakpoints PRD

Intro Goal
Events are the binding glue of the web and need first-class debugging methods.

Related
●​ UX

○​ Victoria’s initial mockups (M1, but no event handlers - the 3rd level)
○​ Matt: https://mozilla.invisionapp.com/share/F5OAI2MM3QY

●​ Callstacks & Stacktraces PRD
●​ DOM Mutation Breakpoints PRD

Resources
●​ Dynamic and Graphical Web Page Breakpoints (pdf)
●​ Pause Your Code With Breakpoints (post)

Stakeholders

DevTools Product Harald Kirschner

DevTools Frontend Lead David Walsh

DevTools Server Lead Logan Smyth

DevTools UX Matt Croud

Sponsor Mike Taylor

Why? Problem Statement
1.​ Blocks removal of old debugger. We still get reports that power users enable the old

debugger to get the old event breakpoints panel.
2.​ Web compat priority. Events is what that team debugs for breakfast, lunch and dinner.

https://mozilla.invisionapp.com/share/2XEEY0RYA#/screens/282681260
https://mozilla.invisionapp.com/share/F5OAI2MM3QY
https://docs.google.com/document/d/17XzcgIqHk1qjEXLi-Sk7VHaMTr_76tCO6iV7txg_d_E/edit
https://docs.google.com/document/d/15eEdxfdUIwTgxMSsuZM59t8mXmEIN-WAMkZtIZEu0fA/edit#
https://getfirebug.com/doc/breakpoints/paper/breakpoints.pdf
https://developers.google.com/web/tools/chrome-devtools/javascript/breakpoints

Who benefits? Target Audience/Market
1.​ Web Compat team. Main target customer for this and informs success.
2.​ Frontend developers. Frequently asking about this and possibly cause of DevTools

losing power users.

What? Functional Requirements

See Use Cases for longer stories.

Milestone 1: Pause on Event Types in Debugger
Why only event types vs handlers: Pausing on event types solves all the event pausing use
cases while only adding minor nuisance of stepping through multiple handlers to find the right
one. On the other side, pausing on specific event handlers depends on handlers persisting
across time and sessions. In highly dynamic apps, handlers can come and go quickly within
interactions like hover or timed animations; making finding and selecting the handler in time
impossible.

Must Have: MVP Goals. Should Have: Stretch Goals. Could Have: Future Backlog

Requirement Job Story Priority Notes

Pause on Event Type When trying to understand click
issues,​
I want to pause on all click events,​
so that I can step through every
single handler.

Must Have Covers most use cases as it provides
the basic pausing.

Bug 1549999 - Pause on Event Type

Notes, see also Bug 1451594

Skip Blackboxed
Scripts

When pausing on a click event,​
I want to skip blackboxed code that
handles event delegation,​
so that I pause directly in the actual
code.

Should Have

Group Event Types When browsing event types,​
I want to have them grouped
thematically,​

Should Have MDN has event categories.
Chrome has these event categories.

https://bugzilla.mozilla.org/show_bug.cgi?id=1549999
https://bugzilla.mozilla.org/show_bug.cgi?id=1451594
https://developer.mozilla.org/en-US/docs/Web/Events
https://github.com/ChromeDevTools/devtools-frontend/blob/eb9103486291007dde1f06b2ad6b228afb92c36e/front_end/sdk/DOMDebuggerModel.js#L567

so that the list becomes easier to
browse.

Selectable Groups When debugging mouse behaviour,​
I want to select and deselect all
events in the Mouse group,​
so that I don’t have to manually
enable them all.

Should Have

Selection
represented in
top-level groups

When having one of many sub event
selected, I want to see that the
group is “active”, so that I don’t have
to expand it to see.

Should Have Chrome’s intermediate checkbox
state

Persist selected
events

When reloading and reopening the
Debugger,​
I want the selected events to persist,
so that debugging continues

Must Have Bug 1550001 - Persist selected
events

MDN Links When browsing events, I want links
to their MDN docs, so I can learn
how they work.

Should Have Right click or question mark icon on
hover

Milestone 2: Parity & Usability

Requirement Job Story Priority Notes

Filter Types When trying to find a specific event
type,​
I want to filter the list to specific
types (like “mouse”),​
so that I can find the types I am
looking for.

Should Have

Pause on
Script/Scheduling/Me
ssaging Lifecycle
(aka non-events)

When I want to debug side effects
caused by script execution or timers,​
I want to pause on those lifecycle
points

Should
Have?​
(needs to be
broken down)

Chrome comparison

Scheduling (request & callback)

setTimeout/setInterval​
requestAnimationFrame
call/callback
requestIdleCallback
call/callback

Parse

https://bugzilla.mozilla.org/show_bug.cgi?id=1550001

Set innerHTML
Document.write

Canvas
Canvas context creation
WebGL Error Fired
WebGL Warning Fired

Script
Script First Statement
Script Blocked by Content
Security Policy

Web Audio
Create AudioContext
Close AudioContext
Resume AudioContext
Suspend AudioContext

Map Framework
Handlers​
(aka blackbox
frameworks)

When I use frameworks to attach &
delegate events,
I want pausing to happen in my
code’s event handlers,
so that I don’t have to step through
the framework event handler to my
handler.

Should
Have?

Top Frameworks

How can this support unknown
frameworks, maybe by allowing
users blackboxing internals?

Milestone 3: Event Handler Inspector
This part is Inspector specific and has its own PRD.

Milestone X: Future Backlog

Requirement Job Story Priority Notes

Pause on Web
Extension Lifecycle

When I want to debug web
extension content script,​
I want to pause on content script
lifecycle and message hooks,​
so that I can

Could Have Content script cues:​
tabs.executeScript()​
content_scripts: document_start,
document_end, document_idle​
contentScripts.register()

Indicate used Event
Types

When diagnosing event handler
issues,​
I want to see which event types are
actively used,​

Could Have Clicking the “used” indicator should
link to a filtered view of Inspector
Events panel.

https://docs.google.com/document/d/1cZc48RAsaV1amAXdGunOCkkCVNxqCgcb7q6ymkFSlUs/edit#heading=h.2m82jhmb9s3z
https://docs.google.com/document/d/1tbFN3mqBGTBMJRh5-oqtHwAI5za8YnrYW9UyOebqaIs/edit#
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts

so that I can understand which
scripts control events on the page
and how.

Constrain Event
Breakpoints to
specific with by CSS
rules

 ?

Change Event
Breakpoints to
Logpoints

 ? Web Compat P1

Console command
for adding event
listeners

 ?

Debugger Event
panel links to
Inspector Events
Panel

When looking at event types,​
I want a quick way to jump to the
Inspector’s event handler panel,​
so that I can switch tracks to inspect
and toggle event handlers.

Could Have

What not? Constraints
1.​ Solve breakpoint issues

How? Technical Requirements

Events and Categories

Chrome & MDN (Events only)

MDN Chrome

Resource
 cached
 error
 abort
 load

Media
 play
 pause
 playing

 beforeunload
 unload
Network
 online
 offline
Focus
 focus
 blur
WebSocket
 open
 message
 error
 close
Session History
 pagehide
 pageshow
 popstate
CSS Animation
 animationstart
 animationend
 animationiteration
CSS Transition
 transitionstart
 transitioncancel
 transitionend
 transitionrun
Form
 reset
 submit
Printing
 beforeprint
 afterprint
Text Composition
 compositionstart
 compositionupdate
 compositionend
View
 fullscreenchange
 fullscreenerror
 resize
 scroll
Clipboard
 cut
 copy
 paste
Keyboard
 keydown

 canplay
 canplaythrough
 seeking
 seeked
 timeupdate
 ended
 ratechange
 durationchange
 volumechange
 loadstart
 progress
 suspend
 abort
 error
 emptied
 stalled
 loadedmetadata
 loadeddata
 waitingaudio
 video
Clipboard
 copy
 cut
 paste
 beforecopy
 beforecut
 beforepaste
Control
 resize
 scroll
 zoom
 focus
 blur
 select
 change
 submit
 reset
Device
 deviceorientation
 devicemotion
DOM Mutation
 DOMActivate

 keypress
 keyup
Mouse
 auxclick
 click
 contextmenu
 dblclick
 mousedown
 mouseenter
 mouseleave
 mousemove
 mouseover
 mouseout
 mouseup
 pointerlockchange
 pointerlockerror
 select
 wheel
Drag & Drop
 drag
 dragend
 dragenter
 dragstart
 dragleave
 dragover
 drop
Media
 audioprocess
 canplay
 canplaythrough
 complete
 durationchange
 emptied
 ended
 loadeddata
 loadedmetadata
 pause
 play
 playing
 ratechange
 seeked
 seeking
 stalled
 suspend
 timeupdate
 volumechange
 waiting

 DOMFocusIn
 DOMFocusOut
 DOMAttrModified
 DOMCharacterDataModified
 DOMNodeInserted
 DOMNodeInsertedIntoDocument
 DOMNodeRemoved
 DOMNodeRemovedFromDocument
 DOMSubtreeModified
 DOMContentLoaded
Drag / drop
 drag
 dragstart
 dragend
 dragenter
 dragover
 dragleave
 drop
Keyboard
 keydown
 keyup
 keypress
 input
Load
 load
 beforeunload
 unload
 abort
 error
 hashchange
 popstate
Mouse
 auxclick
 click
 dblclick
 mousedown
 mouseup
 mouseover
 mousemove
 mouseout
 mouseenter
 mouseleave

Progress
 abort
 error
 load
 loadend
 loadstart
 progress
 Timeout

More from MDN.

 mousewheel
 wheel
 contextmenu
Pointer
 pointerover
 pointerout
 pointerenter
 pointerleave
 pointerdown
 pointerup
 pointermove
 pointercancel
 gotpointercapture
 lostpointercapture
Touch
 touchstart
 touchmove
 touchend
 touchcancel
Worker
 message
 messageerror
XHR
 readystatechange
 load
 loadstart
 loadend
 abort
 error
 progress
 timeout

Implementation

Old Debugger / Jason’s version

-​ Enumerate handlers
-​ Enabling would add a breakpoint at the location of the handler

https://developer.mozilla.org/en-US/docs/Web/Events#Less_common_and_non-standard_events

Chrome
-​ Event handlers are added internally
-​ The pane more is more category oriented - pause on the JS that is run

Cases

-​ We don’t know about new listeners
-​ Do we want to pause in onClick for non click events

Logan’s Approach

-​ Listen to event dispatches, and then pause in the “click” events handler
-​ Equivalent to listening to DOM mutations
-​ Similar to XHR, which means we can improve XHR if we invest in this approach

Milestone 1
New Events (Pause on Type) panel in the Debugger.

Old Victoria Mockups

Question Outcome

Cost of Blackboxing

Name of the Debugger panel Rational: Chrome parity

Decision: “Event Breakpoints”

Translate category titles or not? Maybe?

Decision: No until we get requests

Event list stored in backend or frontend Chrome has frontend
Frontend would make it easier to add new events to older targets
Depends on how generic the backend is. David will follow up with
Logan.

How reactive do we want we want the
event listing to be? Do we need
dynamic events (event listeners added
via console, or within other event
listeners) to be part of milestone 1?

A few notes:

https://mozilla.invisionapp.com/share/2XEEY0RYA#/screens/282657763

https://gist.github.com/darkwing/1d779e
15667e316e2c8857e6e638242a

Milestone 3
New Events (Inspect Handlers) panel in Inspector

Question Outcome

Will pretty-printing be considered? Decision: Yes! (PRD)

What additional event listener properties
do we wish to expose i.e. useCapture,
once?

Assumptions …

Needs decision.

Design 1
Design 1 presents two different approaches. A checkbox tree similar to Chrome, and a
next/previous panel mechanism similar to Firefox flexbox panel, designed to reduce the “chaotic
checkbox tree” which concerns were raised about. There are other variations in concepts 1 and
2 such as different filter methods etc.
​
Questions:

https://docs.google.com/document/d/10K-INIEofPa9ckGuw-qqbXhcyAkVj_QxOU-JABTww1Q/edit#

Large Image | Feedback

Search

What’s success? Success Metrics
1.​ 5% of debugger DAU use the event breakpoints.
2.​ Web compat team successfully applies event breakpoints in the wild

Why now? Market Window
P1 issue for web compat.
Often reported from users as badly lacking feature.

What must be true? Assumptions
1.​ Breakpoint quality and mapping must be excellent for the breakpoints to work and

correctly step.
2.​ We need to have a good update cycle for un-mapping/blackboxing framework’s event

delegation for the relevant.

https://drive.google.com/open?id=1-3HYws8Eui7VE9t9aR76GxKuoGjBUagX
https://docs.google.com/document/d/185Obo8qjqBa7ODsQsYBcpuJL3HRlsmUEE-eVLBPXvdM/edit

What could go wrong? Risks
Bad performance. Mitigate by measuring

Who else? Competitive Landscape & Product Inspiration

Chrome: Event Listener Breakpoints

●​ This panel shows all available event types grouped by event-category (e.g. mouse) and
event-type (e.g. click)

●​ Every group (i.e. category and type) has a checkbox allowing to break on an event type.
No extra breakpoint entry in the Breakpoints panel if a checkbox in this list is marked.

 mockup

Firefox: Event Listener Bubble in the Inspector Panel
The inspector panel show a little bubble next to an element in case there is an existing listener
registered.

Clicking on this little bubble shows a popup window:

●​ The user can see URL of the parent file where the listener lives
●​ It’s also possible to see the source code of the event listener
●​ It should be possible to switch on Framework support - skip event handlers bound by

frameworks and show user source code.

Possible improvements:

●​ Offer a link navigating the user to the source code.

https://mozilla.invisionapp.com/share/2XEEY0RYA#/screens/282681260

●​ Removing the listener
●​ Disabling the listener
●​ Showing event targets

See the next screenshot showing how we could display event targets for specific event handler
(see also screenshot from EventBug extension at the bottom of this doc):

●​ Mockup

Firefox DevTools (Previous UI)
Pause on Event Type was previously known as Break on DOM Event (mdn) and was offered
through an Events panel available on the right side of the Debugger panel. See the screenshot
taken from the previous (XUL based) debugger UI:

https://docs.google.com/document/d/1HPTnwnYydsRBRZw3XqGoiOSaMSIeHBvKRQENm4RegPI/edit?ts=5b97e9f5#
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Break_on_a_DOM_event

​

●​ The events panel lists all events for which you have assigned a listener (together with
element count and file name)

●​ The user can check any checkbox to break in the event handler when executed.

Chrome: Event Listeners
Chrome implements quite complex and exhaustive UI to offer features related to event
breakpoints. Let’s start with the Elements panel.

●​ The list of event handlers registered for selected element is displayed in the side panel.
●​ Ancestor are optional (on by default)
●​ All, Passive or Blocking listeners are displayed
●​ Hovering over element (in the side panel) highlights the element on the page and also

displays a Remove button for unregistering the event handler.
●​ There is no way to create a breakpoint from this panel directly. The user needs to use

the source link to go to the Sources panel. The proper line is auto highlighted, so the
breakpoint can be easily created there.

●​ Handler instances can be inspected
●​ Framework listeners - resolve event listeners bound with framework (see below)
●​ Collects ancestor handlers by default

For reference, the old events panel had a filter UI for all events:

https://developers.google.com/web/tools/chrome-devtools/inspect-styles/edit-dom#view_element_event_listeners

Here is couple more screenshots showing the difference when toggling framework listeners.

●​ The location link points to jQuery code
base to the place where a listener is
added.

●​ The location link points to user code

base to the place where a listener is
added. Note that there are actually
two listeners created by the user.

The Sources panel has Event Listener Breakpoints section. It allows to break on event type.

●​ Breaking on any event (for which there is an event handler) is possible through Event
Listener Breakpoints panel.

Non-Event Events Breakpoints
Chrome mixes the Event Listener panel with more non-web-exposed browser events:

Note that existing event breakpoints are displayed together with standard JS breakpoints (within
Breakpoints side panel)

Chrome: XHR Breakpoints
List of XHR breakpoints is displayed in its own section in the Source panel at the right side.

●​ Adding a new XHR breakpoint is done through a + button.
●​ An input field is displayed for specifying keyword to break on
●​ Leaving that field empty results with “Break on any XHR or fetch event”

Firebug
Firebug had also UI for creating a breakpoint in an event handler.

Later version with event delegation

Earlier version

●​ The list of event handlers registered for selected element is displayed in the side panel.
●​ Source code is visible after expand offering also breakpoint gutter.
●​ Note that Firebug allowed to create event breakpoint through the Command line (post,

docs) using getEventListener and debug commands.

Firebug also has monitorEvents exposed as console command and menu:

http://www.softwareishard.com/blog/planet-mozilla/firebug-tip-geteventlisteners-command/
http://web.archive.org/web/20160304145129/https://getfirebug.com/wiki/index.php/Events_Side_Panel

●​ Brian wrote about it here and Chrome documents it here.

Firebug was also having EventBug extension:

●​ The extension introduced a new panel listing all event handlers on the left side.
●​ The right side offered details for selected event handler.
●​ The details tab displayed e.g. Targets - Showing list of event targets that would be used

as DOMEvent.currentTarget when event bubbles. All targets are clickable and navigate
the user to the HTML panel.

https://briangrinstead.com/blog/chrome-developer-tools-monitorevents/
https://developers.google.com/web/tools/chrome-devtools/console/utilities#monitorevents
http://www.softwareishard.com/blog/firebug/eventbug-alpha-released/

Edge
Edge implements offers very similar user experience like Chrome. The Elements panel has a list
of events available on the right side:

●​ It’s possible to see existing event handlers for selected node
●​ Displaying listeners for node ancestors is optional
●​ It’s possible to group by event/element

The Elements panel can also show list of DOM breakpoints for selected node:

●​ It’s possible to remove/disable an existing breakpoint

The Debugger panel has exactly the same DOM breakpoints side-panel:

Firefox DevTools
Firefox DevTools already have a support for event handler breakpoints hidden behind the
following pref: devtools.debugger.features.event-listeners

The user can see a new Event Listener side panel after enabling this feature.

●​ The panel shows all event listeners registered in the current page.
●​ Clicking on the checkbox displayed in the list creates a breakpoint in the Breakpoints

panel and collapses the EventListener panel

Appendix

Use Cases

Use Case #1: Searching for event listener implementation
The goal is to find implementation (location in the source) of a listener registered for specific
element.

The user is asking where is the click listener for specific button on the page. Here is what should
happen from the user perspective:

1.​ The user inspects the button on the page and opens the Inspector panel highlighting the
inspected <button> element.

2.​ Clicking on a little event bubble displayed next to the element opens a tooltip-panel with
a list of all event listeners added to the element.

3.​ In order to jump into the right location in the source code (Debugger panel) where the
listener is implemented, the user can click an icon displayed at the right side

There is yet another way how to find the location:

1.​ The user inspects the <button> element using Inspector.
2.​ The inspector panel has Event Listeners side panel showing list of event listeners added

to the selected element.
3.​ Clicking on a link within that panel navigates the user to the source code.

Use Case #2: Breaking in event listener
The goal is to break in specific event listener when it’s executed.

The user wants to debug the listener without the knowledge where it’s implemented in the code.
The user could use case #1 to find the location, but if the Debugger panel is currently opened it
should be possible to do it right away (and avoid switching between panels).

Here is list of steps the user needs to do:

1.​ The user opens Event Listeners side panel (available within the Debugger panel). This
panel shows all existing event listeners on the page grouped by type (e.g. Mouse).

2.​ The user expands desired group (e.g. Mouse) and tries to locate the listener.
3.​ Clicking on a link displayed next to the listener entry navigates the user to the location of

the listener in the source, and so it’s the matter of a second click on breakpoint gutter to
create the breakpoint.

Use Case #3: Breaking on event type
The goal here is to break on specific event type.

It might be hard to locate specific listener if there are too many of them. But, knowing at least
the type of the event (e.g. click) might be enough to break at the right place.

Steps:

1.​ The user is in the Debugger panel and wants to break in the first click listener that is
executed when click on the page.

2.​ The user opens Event Listeners Breakpoints side panel and checks click event type
3.​ The user performs the user action - click on the page and JS execution is automatically

halted in the debugger on the first statement of the first click listeners that is executed.
4.​ Resuming debugger should break in the next click listener (if there is one).

Use Case #4: Breaking in Framework event listener
Some JavaScript frameworks (React, jQuery, ...) can use helper functions that are bound to
DOM instead of the user provided functions.

In such case the user might want to break in a listener bound by the framework (in framework
code base) or the user defined listener (in user code base).

Break in user defined listener

1.​ The user inspects an element using the Inspector and selects the element in the
Inspector panel.

2.​ The user checks Framework listeners checkbox in Event Listeners side panel to make
sure that navigation links point to the user code base

3.​ The user clicks one of the navigation links to get to the Debugger panel.
4.​ The user clicks on breakpoint gutter to create a breakpoint.

The location links point to the user defined code base.

Use Case #5: Inspecting chain of targets
The goal is visualizing the list of parent ancestor listeners.

The user wants the see all event targets (only those with a listener) that would be used as
DOMEvent.currentTarget when an event bubbles.​

1.​ The user highlights proper element in the Inspector panel and selects the Event listeners
side panel.

2.​ The user checks Ancestor checkbox to show listeners on ancestors.

●​ Only listeners registered on selected
button element are displayed.

●​ Event listeners registered on

ancestors of the button element are
also displayed.

Use Case #7: Pause on XHR/Fetch
The goal is to break when XHR/Fetch happens on the page.

The user might be asking what line of code is responsible for triggering a network request. For
example, what line is responsible for appending a new element or into the page.

Here is what needs to happen:

1.​ The user opens the Debugger panel and clicks a little + icon in the XHR/fetch side panel.
2.​ An input field appears allowing the user to specify what keyword the network URL needs

to include for the break to happen.

The use can also check `Pause on all requests` checkbox to pause on all requests (with JS
callstack) similarly to what we know as `Pause on exceptions`.

Event Listener Breakpoint
There is already a Event Listeners panel in the Debugger (hidden behind
devtools.debugger.features.event-listeners pref). This panel displays list of
existing event handlers on the page.

The current state:

●​ Showing all event handlers in flat list
●​ Every item in the list has a checkbox that can be used to create a breakpoint.

Improvements:

●​ Individual event handlers displayed in this panel should be grouped by event type. E.g.

all click handlers should be in one group collapsed by default.
●​ Removing a breakpoint in the Breakpoints panel should not collapse the Event Listeners

Panel
●​ The panel shows CSS selector for the associated element (takes quite a bit of space).

There should rather be a link to source location or both (if enough space).
●​ It should be possible to filter by event type: All/Passive/Blocking
●​ It should be possible to switch on Framework support - skip event handlers bound by

frameworks and show user defined functions.

Improvements when the panel is in the Inspector panel:

●​ The same panel should also be available in the Inspector panel and filtered according to
the currently selected element (i.e. show only handlers attached to the selected element)

●​ It should be possible to show/hide ancestor event handlers (for selected element)

To Discuss:

●​ Creating a breakpoint using the event handler checkbox feature should be removed. It
doesn’t work well when the panel is displayed in the Inspector panel. The breakpoint
existence could be indicated by an icon in front of the event handler.

Decisions
1.​ Decision: Show types of events, each event type with event handlers
2.​ Decision: Enable breaking on all click events
3.​ How does clicking an event type affect the child event handlers

a.​ Event handlers list can be noisy, added and removed a lot (even more so with
delegated events)

b.​ Decision: Keep it simple. Disabled+checked state for event handler checkboxes
4.​ Decision: Interactions on event handlers:

a.​ Click on DOM element to navigate to Inspector
b.​ Highlight DOM element on hover
c.​ Click on event handler source
d.​ Discussion

i.​ Remove event handler?
5.​ Should framework events be mapped (original vs generated FOREVER)

a.​ Honza will investigate state of Events Bubble
b.​ Follow up: Should we allow switching between original/delegated and unmapped

event handlers
6.​ Live-updating events or manual refresh

a.​ The platform allows registration of a callback for event listener changes. See
nsIListenerChangeListener interface

7.​ Filtering logic, filter categories, types, sources & nodes
a.​ Explore limitations

8.​ Show web compat warnings for events with known issues
9.​ Define MVP:

a.​ Maybe not filtering
b.​ Maybe not live-updating
c.​ Maybe not framework mapping

TODO: mockup

Meeting Notes
September 13

●​ Make sure the UI offers the user events (not the frameworks handlers)

○​ We should support jQuery and React
○​ Some frameworks can add one handler for document root to get all e.g. mouse

events. E.g. React has its own internal map with all users events, so the browser
sees just one event listener.

○​ jQuery has it’s own event handler that calls user callback.

	Event Breakpoints PRD
	Intro Goal
	Related
	Resources
	Stakeholders

	Why? Problem Statement
	Who benefits? Target Audience/Market
	What? Functional Requirements
	Milestone 1: Pause on Event Types in Debugger
	Milestone 2: Parity & Usability
	Milestone 3: Event Handler Inspector
	Milestone X: Future Backlog

	What not? Constraints
	How? Technical Requirements
	Events and Categories
	Chrome & MDN (Events only)

	Implementation
	Milestone 1
	Milestone 3
	Design 1

	Search

	What’s success? Success Metrics
	Why now? Market Window
	What must be true? Assumptions
	What could go wrong? Risks
	Who else? Competitive Landscape & Product Inspiration
	Chrome: Event Listener Breakpoints
	Firefox: Event Listener Bubble in the Inspector Panel

	Firefox DevTools (Previous UI)
	Chrome: Event Listeners
	Non-Event Events Breakpoints
	Chrome: XHR Breakpoints

	
	
	Firebug
	Edge
	
	Firefox DevTools

	
	Appendix
	Use Cases
	Use Case #1: Searching for event listener implementation
	Use Case #2: Breaking in event listener
	Use Case #3: Breaking on event type
	Use Case #4: Breaking in Framework event listener
	Use Case #5: Inspecting chain of targets
	Use Case #7: Pause on XHR/Fetch

	Event Listener Breakpoint
	Decisions

	Meeting Notes

