Event Breakpoints PRD

Intro

Events are the binding glue of the web and need first-class debugging methods.

Related

o UX
o Victoria’s initial mockups (M1, but no event handlers - the 3rd level)

o Matt: https://mozilla.invisionapp.com/share/F50AI2ZMM3QY
e Callstacks & Stacktraces PRD

DOM Mutation Breakpoints PRD

Resources

e Dynamic and Graphical Web Page Breakpoints (pdf)
e Pause Your Code With Breakpoints (post)

Stakeholders
DevTools Product Harald Kirschner
DevTools Frontend Lead David Walsh
DevTools Server Lead Logan Smyth
DevTools UX Matt Croud
Sponsor Mike Taylor

Why?

1. Blocks removal of old debugger. We still get reports that power users enable the old
debugger to get the old event breakpoints panel.
2. Web compat priority. Events is what that team debugs for breakfast, lunch and dinner.

https://mozilla.invisionapp.com/share/2XEEY0RYA#/screens/282681260
https://mozilla.invisionapp.com/share/F5OAI2MM3QY
https://docs.google.com/document/d/17XzcgIqHk1qjEXLi-Sk7VHaMTr_76tCO6iV7txg_d_E/edit
https://docs.google.com/document/d/15eEdxfdUIwTgxMSsuZM59t8mXmEIN-WAMkZtIZEu0fA/edit#
https://getfirebug.com/doc/breakpoints/paper/breakpoints.pdf
https://developers.google.com/web/tools/chrome-devtools/javascript/breakpoints

Who benefits?

1. Web Compat team. Main target customer for this and informs success.
2. Frontend developers. Frequently asking about this and possibly cause of DevTools
losing power users.

What?

See Use Cases for longer stories.

Milestone 1: Pause on Event Types in Debugger

Why only event types vs handlers: Pausing on event types solves all the event pausing use
cases while only adding minor nuisance of stepping through multiple handlers to find the right
one. On the other side, pausing on specific event handlers depends on handlers persisting
across time and sessions. In highly dynamic apps, handlers can come and go quickly within
interactions like hover or timed animations; making finding and selecting the handler in time

impossible.

Must Have: MVP Goals. Should Have: Stretch Goals. Could Have: Future Backlog

Requirement Job Story Priority Notes
Pause on Event Type | When trying to understand click Must Have Covers most use cases as it provides
issues, the basic pausing.
| want to pause on all click events,
so that | can step through every Bug 1549999 - Pause on Event Type
ingle handler.
single handler Notes, see also Bug 1451594
Skip Blackboxed When pausing on a click event, Should Have
Scripts | want to skip blackboxed code that
handles event delegation,
so that | pause directly in the actual
code.
Group Event Types When browsing event types, Should Have | MDN has event categories.

| want to have them grouped
thematically,

Chrome has these event categories.

https://bugzilla.mozilla.org/show_bug.cgi?id=1549999
https://bugzilla.mozilla.org/show_bug.cgi?id=1451594
https://developer.mozilla.org/en-US/docs/Web/Events
https://github.com/ChromeDevTools/devtools-frontend/blob/eb9103486291007dde1f06b2ad6b228afb92c36e/front_end/sdk/DOMDebuggerModel.js#L567

so that the list becomes easier to
browse.

Selectable Groups

When debugging mouse behaviour,
| want to select and deselect all
events in the Mouse group,

so that | don’t have to manually
enable them all.

Should Have

Selection
represented in
top-level groups

When having one of many sub event
selected, | want to see that the
group is “active”, so that | don’t have
to expand it to see.

Should Have

Chrome’s intermediate checkbox
state

Persist selected
events

When reloading and reopening the
Debugger,

| want the selected events to persist,
so that debugging continues

Must Have

Bug 1550001 - Persist selected
events

MDN Links

When browsing events, | want links
to their MDN docs, so | can learn
how they work.

Should Have

Right click or question mark icon on
hover

Milestone 2: Parity & Usability

Requirement

Job Story

Priority

Notes

Filter Types

When trying to find a specific event
type,

| want to filter the list to specific
types (like “mouse”),

so that | can find the types | am
looking for.

Should Have

Pause on
Script/Scheduling/Me
ssaging Lifecycle
(aka non-events)

When | want to debug side effects
caused by script execution or timers,
| want to pause on those lifecycle
points

Should
Have?

(needs to be
broken down)

Chrome comparison

Scheduling (request & callback)
setTimeout/setinterval
requestAnimationFrame
call/callback
requestldleCallback
call/callback

Parse

https://bugzilla.mozilla.org/show_bug.cgi?id=1550001

Set innerHTML
Document.write

Canvas
Canvas context creation
WebGL Error Fired
WebGL Warning Fired

Script
Script First Statement
Script Blocked by Content
Security Policy

Web Audio
Create AudioContext
Close AudioContext
Resume AudioContext
Suspend AudioContext

Map Framework When | use frameworks to attach & | Should
Handlers delegate events, Have?
(aka blackbox | want pausing to happen in my

frameworks) code’s event handlers,

so that | don’t have to step through
the framework event handler to my
handler.

Top Frameworks

How can this support unknown
frameworks, maybe by allowing
users blackboxing internals?

Milestone 3: Event Handler Inspector

This part is Inspector specific and has its own PRD.

Milestone X: Future Backlog

Requirement Job Story Priority

Notes

Pause on Web When | want to debug web Could Have
Extension Lifecycle extension content script,

| want to pause on content script
lifecycle and message hooks,

Content script cues:
tabs.executeScript()
content_scripts: document_start,
document_end, document_idle
contentScripts.register()

so that | can
Indicate used Event | When diagnosing event handler Could Have | Clicking the “used” indicator should
Types issues, link to a filtered view of Inspector

| want to see which event types are
actively used,

Events panel.

https://docs.google.com/document/d/1cZc48RAsaV1amAXdGunOCkkCVNxqCgcb7q6ymkFSlUs/edit#heading=h.2m82jhmb9s3z
https://docs.google.com/document/d/1tbFN3mqBGTBMJRh5-oqtHwAI5za8YnrYW9UyOebqaIs/edit#
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts

so that | can understand which
scripts control events on the page
and how.
Constrain Event ?
Breakpoints to
specific with by CSS
rules
Change Event ? Web Compat P1
Breakpoints to
Logpoints
Console command ?
for adding event
listeners
Debugger Event When looking at event types, Could Have
panel links to | want a quick way to jump to the
Inspector Events Inspector’s event handler panel,
Panel so that | can switch tracks to inspect
and toggle event handlers.
What not?
1. Solve breakpoint issues
How?
Events and Categories
Chrome & MDN (Events only)
MDN Chrome
Resource Media
cached play
error pause
abort playlng
load

beforeunload
unload
Network
online
offline
Focus
focus
blur
WebSocket
open
message
error
close
Session History
pagehide
pageshow
popstate
CSS Animation
animationstart
animationend
animationiteration
CSS Transition
transitionstart
transitioncancel
transitionend
transitionrun
Form
reset
submit
Printing
beforeprint
afterprint
Text Composition
compositionstart
compositionupdate
compositionend
View
fullscreenchange
fullscreenerror
resize
scroll
Clipboard
cut
copy
paste
Keyboard
keydown

canplay
canplaythrough
seeking
seeked
timeupdate
ended
ratechange
durationchange
volumechange
loadstart
progress
suspend
abort
error
emptied
stalled
loadedmetadata
loadeddata
waitingaudio
video
Clipboard
copy
cut
paste
beforecopy
beforecut
beforepaste
Control
resize
scroll
zoom
focus
blur
select
change
submit
reset
Device
deviceorientation
devicemotion
DOM Mutation
DOMActivate

keypress
keyup

Mouse
auxclick
click
contextmenu
dblclick
mousedown
mouseenter
mouseleave
mousemove
mouseover
mouseout
mouseup
pointerlockchange
pointerlockerror
select
wheel

Drag & Drop
drag
dragend
dragenter
dragstart
dragleave
dragover
drop

Media
audioprocess
canplay
canplaythrough
complete
durationchange
emptied
ended
loadeddata
loadedmetadata
pause
play
playing
ratechange
seeked
seeking
stalled
suspend
timeupdate
volumechange
waiting

DOMFocusln
DOMFocusOut
DOMAttrModified
DOMCharacterDataModified
DOMNodelnserted
DOMNodelnsertedintoDocument
DOMNodeRemoved
DOMNodeRemovedFromDocument
DOMSubtreeModified
DOMContentLoaded
Drag / drop
drag
dragstart
dragend
dragenter
dragover
dragleave
drop
Keyboard
keydown
keyup
keypress
input
Load
load
beforeunload
unload
abort
error
hashchange
popstate
Mouse
auxclick
click
dblclick
mousedown
mouseup
mouseover
mousemove
mouseout
mouseenter
mouseleave

More from MDN.

Progress mousewheel
abort wheel
error contextmenu
02c Pointer
:gzg:’;drt pointerover
progress pointerout
Timeout pointerenter

pointerleave

pointerdown

pointerup

pointermove

pointercancel

gotpointercapture

lostpointercapture
Touch

touchstart

touchmove

touchend

touchcancel
Worker

message

messageerror
XHR

readystatechange

load

loadstart

loadend

abort

error

progress

timeout

Implementation

Old Debugger / Jason’s version
- Enumerate handlers
- Enabling would add a breakpoint at the location of the handler

https://developer.mozilla.org/en-US/docs/Web/Events#Less_common_and_non-standard_events

Chrome

- Event handlers are added internally
- The pane more is more category oriented - pause on the JS that is run

Cases

- We don’t know about new listeners
- Do we want to pause in onClick for non click events

Logan’s Approach

- Listen to event dispatches, and then pause in the “click” events handler
- Equivalent to listening to DOM mutations
- Similar to XHR, which means we can improve XHR if we invest in this approach

Milestone 1

New Events (Pause on Type) panel in the Debugger.

Old Victoria Mockups

Question

Outcome

Cost of Blackboxing

Name of the Debugger panel

Rational: Chrome parity

Decision: “Event Breakpoints”

Translate category titles or not?

Maybe?

Decision: No until we get requests

Event list stored in backend or frontend

Chrome has frontend

Frontend would make it easier to add new events to older targets
Depends on how generic the backend is. David will follow up with
Logan.

How reactive do we want we want the
event listing to be? Do we need
dynamic events (event listeners added
via console, or within other event
listeners) to be part of milestone 1?

A few notes:

https://mozilla.invisionapp.com/share/2XEEY0RYA#/screens/282657763

https://gist.github.com/darkwing/1d779e
15667e316e2c8857e6e638242a

Milestone 3

New Events (Inspect Handlers) panel in Inspector

Question Outcome

Will pretty-printing be considered? Decision: Yes! (PRD)

What additional event listener properties | Assumptions ...

do we wish to expose i.e. useCapture,
once? Needs decision.

Design 1

Design 1 presents two different approaches. A checkbox tree similar to Chrome, and a
next/previous panel mechanism similar to Firefox flexbox panel, designed to reduce the “chaotic
checkbox tree” which concerns were raised about. There are other variations in concepts 1 and
2 such as different filter methods etc.

Questions:

https://docs.google.com/document/d/10K-INIEofPa9ckGuw-qqbXhcyAkVj_QxOU-JABTww1Q/edit#

Chrome parity - Checkbox tree

mousedown ¥ Blocking mouse down
v Passive

Large Image | Feedback

Search

What's success?

1. 5% of debugger DAU use the event breakpoints.
2. Web compat team successfully applies event breakpoints in the wild

Why now?

P1 issue for web compat.
Often reported from users as badly lacking feature.

What must be true?

1. Breakpoint quality and mapping must be excellent for the breakpoints to work and
correctly step.

2. We need to have a good update cycle for un-mapping/blackboxing framework’s event
delegation for the relevant.

https://drive.google.com/open?id=1-3HYws8Eui7VE9t9aR76GxKuoGjBUagX
https://docs.google.com/document/d/185Obo8qjqBa7ODsQsYBcpuJL3HRlsmUEE-eVLBPXvdM/edit

What could go wrong?

Bad performance. Mitigate by measuring

Who else?

Chrome: Event Listener Breakpoints

e This panel shows all available event types grouped by event-category (e.g. mouse) and
event-type (e.g. click)

e Every group (i.e. category and type) has a checkbox allowing to break on an event type.
No extra breakpoint entry in the Breakpoints panel if a checkbox in this list is marked.

mockup

Firefox: Event Listener Bubble in the Inspector Panel

The inspector panel show a little bubble next to an element in case there is an existing listener
registered.

Clicking on this little bubble shows a popup window:

onclick="void(8)" > B3

¥ click /http://10.8.3.111:8888/www/xhr-spy [poMol
function onclick(event) {

void(@)
T

ir XHR</buttons (&

e over XHR</butt

The user can see URL of the parent file where the listener lives

It's also possible to see the source code of the event listener

It should be possible to switch on Framework support - skip event handlers bound by
frameworks and show user source code.

Possible improvements:

e Offer a link navigating the user to the source code.

https://mozilla.invisionapp.com/share/2XEEY0RYA#/screens/282681260

e Removing the listener
e Disabling the listener
e Showing event targets

See the next screenshot showing how we could display event targets for specific event handler
(see also screenshot from EventBug extension at the bottom of this doc):

onclick="void{@)">

¥ click /http://10.0.3.111:8088/www/xhr-spy [poMol
- : : , divgscreens
v unction onclickievent
o XHR</button: |e . () A div#content
vold(@) . .
divmain
e over ¥HR</butt I body
html

Document getfirebug.com
Window getfirebug.com

e Mockup

Firefox DevTools (Previous Ul)

Pause on Event Type was previously known as Break on DOM Event (mdn) and was offered
through an Events panel available on the right side of the Debugger panel. See the screenshot
taken from the previous (XUL based) debugger Ul:

https://docs.google.com/document/d/1HPTnwnYydsRBRZw3XqGoiOSaMSIeHBvKRQENm4RegPI/edit?ts=5b97e9f5#
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Break_on_a_DOM_event

Search scripts (3£P) Bl &=
Variables Events
~| Composition
compositionend on #twotabsearchtextbox
compositionstart on #twotabsearchtextbox
| Display
resize on window in www.amazon.com/
resize on window in B1IMbSiwBL.js
scroll window in www.amazon.com/
scroll B nodes in 611INbSiwBL.js
| Interaction
blur on window in www.amazon.comy
blur on 25 nodes in 611INbSiwBL.js
change on & nodes in 611IMbSiwBL.js
focus on window in www.amazon.com/
focus 30 nodes in B11INbSiwBL.js
reset on 3 nodes in 611INbSiwBL.js
~| Keyboard
keydown on B nodes in 611INbSiwBL.js
keypress on #twotabsearchtextbox in 6111...L.js
keyup on window in www.amazon.com/
keyup on 28 nodes in B11INbSiwBL.js
_| Mouse
click on window in www.amazon.comy/
click 32 nodes in B11INbSiwBL.js

click .a-carousel in 31-JuiQo7ol js

[ETS PN EE SR [=2 E T P AR T

e The events panel lists all events for which you have assigned a listener (together with
element count and file name)
e The user can check any checkbox to break in the event handler when executed.

Chrome: Event Listeners

Chrome implements quite complex and exhaustive Ul to offer features related to event
breakpoints. Let’s start with the Elements panel.

(% ﬂ Elements Console Sources Network Performance Memary Application Security Audits @3 : X

“ | Styles Computed Event listeners DOM Breakpoints

html:
<script id="harapi® src="chrome-extension:// C @ Ancestors A ¥ [Framework listeners
nohilpmikfdjclplgkcaphijifkfahni/lib/harapi.js"»</script>

P HAR.onRequestFinished
* HAR.triggerExport-Response

P cheads.</head
==« ¥ {body id="body" data-attr="my-data" class="test a b -

onclick="void{@)"> == £8 volick
Sn1:HTTP Test Page</hl ¥ Window event-listeners.js:3
Images: » body#body.test.a.b |Remove findex):24
<putton onclick="on3mallImage()">Get small image over XHR
</button:
<putton onclick="onGetBiggerImage()" -Get bigger image over
¥HR</button:
<spans</span -

html body#body.testab

The list of event handlers registered for selected element is displayed in the side panel.
Ancestor are optional (on by default)

All, Passive or Blocking listeners are displayed

Hovering over element (in the side panel) highlights the element on the page and also
displays a Remove button for unregistering the event handler.

e There is no way to create a breakpoint from this panel directly. The user needs to use
the source link to go to the Sources panel. The proper line is auto highlighted, so the
breakpoint can be easily created there.

Handler instances can be inspected

Framework listeners - resolve event listeners bound with framework (see below)
Collects ancestor handlers by default

For reference, the old events panel had a filter Ul for all events:

Styles Computed | Event Listeners| DOM Breakpoints Properties

¥<html itemscope itemtype="http://schema.org/QAPage">

» #shadow-root P blur V- e
P <head>..</head> »click
P <body class="question-page new-topbar">.</body> » closePopups
</html>
¥ contextmenu
kerror
» keydown
¥ keyup
¥ document jauery.min.js:3
¥ load
¥ mousedown
¥ body. question-page.new-topbar jquery.min.js:3
¥ document iguery.min.js:3
Q D | Elements | Network Sources Timeline Profiles Resources Audits Console @6 = 'ﬂ' |E|‘ X
w<htnl itemscope itemtype=http://schema.org/QAPage"s Styles Computed | Event Listeners | DOM Breakpaints Properties All Nodes]
» #shadow-root »click v Selected Node Only
» <head>..</head> » mousedown

P <body class="question-page new-topbar"=.</body>
</html>

https://developers.google.com/web/tools/chrome-devtools/inspect-styles/edit-dom#view_element_event_listeners

Here is couple more screenshots showing the difference when toggling framework listeners.

The location link points to jQuery code
base to the place where a listener is
added.

b puttongjquery-t
* buttongjguery-t

Styles Computed Event Listeners Styles Computed Event Listeners »
c Ancestors A ¥ || Framework listeners c Ancestors A ¥ ¥ Framework listeners
¥ click v click

* button#jguery-test jouery-3.3.1.j5:4986 tests.js5:55

tests.j5:51

The location link points to user code
base to the place where a listener is
added. Note that there are actually
two listeners created by the user.

The Sources panel has Event Listener Breakpoints section. It allows to break on event type.

[= I,]

AL Pad Pd P Pd P
(=PRI = R |

<h1>HTTP Test Page</hl>

Images:
<button onclick="onSmallImage()"»Get small image o

[ﬂ Elements Console Sources Metwork Performance Memory » o3 : X
[*] (index) ¥ event- Isteners.js 0 m E’f‘ 0
7 TETIPT sro— Jor pUS TS S F IO Py
18 ¢script src="js/headers.js"»</script> - ¥ Breakpoints
19 <script src="js/xml.js"»</scripts
28 ¢script src="js/cookies.js"»</script> ¥ (index):24
21| «script src="js/fevent-listeners.js"»</script> ¢body id="body" data-attr="my-data" c..
22 ¢script src="js/testing.js"»< /script> .
73| ¢ /heads » XHR/fetch Breakpoints
<:c::'_-,- id="body" data-attr="my-data" class="test a b

» DOM Breakpoints
¥ Global Listeners

¥ Event Listener Breakpoints

<button onclick="onGetBiggerImage()">»Get bigger im L Animation
ispanr</spanyNon existing image: <img src="non-exi | » [Canvas
i I * » [Clipboard
13 r ¥ Contro
{} Line 24 Column 75 4 DOM Mutation -
e Breaking on any event (for which there is an event handler) is possible through Event

Listener Breakpoints panel.

Non-Event Events Breakpoints

Chrome mixes the Event Listener panel with more non-web-exposed browser events:

v Animation
Request Animation Frame
Cancel Animation Frame
Animation Frame Fired

Canvas

Clipboard

Control

DOM Mutation

Device

Drag / drop

Geolocation

Keyboard

Load

Media

Mouse

Notification

Parse
Set innerHTML
document.write

4 YV VvV VVVVVVYVY

v

Pointer
v Script
Script First Statement
Script Blocked by Content
v Timer
setTimeout
clearTimeout
setInterval
clearInterval
setTimeout fired

setInterval fired
[S Tanirh

Note that existing event breakpoints are displayed together with standard JS breakpoints (within
Breakpoints side panel)

Chrome: XHR Breakpoints

List of XHR breakpoints is displayed in its own section in the Source panel at the right side.

[w ﬂ Elements Consocle Sources Metwork Performance Memory Application » @4 : X
[(index) event-listeners,js images.js *]] % 0
1| /% 5ee License.txt for terms af usage */ k Watch
2
3| pas ¥ Call Stack
4| * Fetching small imoge Not paused
5| *
6| function onSmallImage() { ¥ Scope
7 var reguest = new XMLHttpRequest();
8 request.open("GET", "images/small-imsge.pngla=100085%b=260 Mot paused
9 reguest.send(null); i
18/ 3 ¥ Breakpoints
H Mo breakpoints
12| s reakpoints
13| * Fetching bigger image ¥ XHR/fetch Breakpoints +
14| */
15| function onGetBiggerImage() { #| URL centains "image"
16 var reguest = new XMLHttpRequest(); ¥ UEL - "
.) . _ . contains "google
17 request.open("GET", "imsges/imzge.pngiwidth=528&height=1: goog
18 request.send({null); » DOM Breakpoints
19|}
28 » Global Listeners
4
» Event Listener Breakpoints
{} Line 9, Column 11
¥ XHR/fetch Breakpoints + ¥ XHR/fetch Breakpoints + ¥ XHR/fetch Breakpoints +
Break when URL contains: Break when URL contains: #| Any ¥HR or fetch

image|

¥ Any XHR or fetch

URL contains "image"

e Adding a new XHR breakpoint is done through a + button.

e Aninput field is displayed for specifying keyword to break on
e Leaving that field empty results with “Break on any XHR or fetch event”

Firebug

Firebug had also Ul for creating a breakpoint in an event handler.

Later version with event delegation

= = F——
@ Firebug - javascript - How to find event attached to a dom element - Stack Overflc L £
Y { > Y= Console HTML~ | (S5 Script DOM Net Cookies Pearch by tetor C5ccle A~ | EIEIE
les | Edit | body.ques...w-topbar < html Style Computed Layout DOM | Events v)
<IDOCTYFE html> 1 o dick
B <html itemtype="http://schema. org/QAPage" itemscopa=""» E Function(a) iquery.mings (line 3)
<head> , ¥ funeticon(e, n) (.close-question-link,

B[<body elass="guestion-page new-topbar"> -close—question-button) full.en...43dafod (line 4)
<nocacriptr<diwv :i_r.‘l=nnscript—padding)—<;‘div>—) function{e] {.flag-post-link flag-
</noseriptr) _ post-button) full.en...434afod (line 4)
<div id="notify-container™» </diwv>

verlay-header"> </diwv = mousedown
ustom—header"> <, function{a) jguery.min.js (line 3)
<div class="topbar"> ¥ function (o) stub.en...fd33300 (line 1)
<soripts>
X - . . =l Listeners from Document how-to-find-event-sttached-to-a-dom-
B <div clasa="container"»
<div id="header"» 4 element
. - - I - . - = dick
Earlier version

3 0l —

K Il console | HTML~ | CS5 Script DOM Net Cookies Events P | SE0

Edit | div#screens < divEcontent < divEmain < body < html Style Computed Layout DOM | Events

Coeeg SRRERETTREEEEE . | mouseout { onMo. .. (event); }
| cornerTopRight™ src="blank.gif"/>
[+ mouseover { cnMo. .. (event); }

E <«div id="content"> _||= click { onCl... (event); }
3] <div id="screens” onmnuseout="om{ouseOu1:Iab(1 function onclick(event) {
2 onClickTab(event);

" <p class="screenCaption"> (Click the tabs
3|}

L gbove to see screenshots of each.) </p> -

< | m | 3

Done Py

The list of event handlers registered for selected element is displayed in the side panel.
Source code is visible after expand offering also breakpoint gutter.

Note that Firebug allowed to create event breakpoint through the Command line (post,
docs) using getEventListener and debug commands.

Firebug also has monitorEvents exposed as console command and menu:

http://www.softwareishard.com/blog/planet-mozilla/firebug-tip-geteventlisteners-command/
http://web.archive.org/web/20160304145129/https://getfirebug.com/wiki/index.php/Events_Side_Panel

' Lid LE| < > | = |- con. [HML~ | c{ WP | BEE
| Edit | bedy < htm @« | sy~ | com.. tay. (»
<IDOCTYPE himl> body testcase.css (line 19) %
B <html> { -
<head> background: -moz-lined
<body ient (center top
</html> Copy HTML AF1FB, $FFFFFF |
Copy innerHTML prl no-repeat
11 0 O #FFFFFF;
Copy XPath Ffamily: "Trebuche
o COP)" CSS Path Helwetics, sans— i
Paste HTML »

v LogEvents ‘ L4) compaosition
contextmenu

Scroll Into View
¥ drag

focus

Mleane Attrib e
Muonitor drag events:
dragenter, dragover, dragexit, dragdrop, draggesture | ¢4

Command Line Example: key
menitorEvents(${'body"], 'drag'] load
Break On Attribute Change mouse
Break On Child Addition or Removal mutation
Break On Element Remaoval paint
scroll
Inspect in DOM Panel —
ui
clipboard
touch

e Brian wrote about it here and Chrome documents it here.

Firebug was also having EventBug extension:

-
-’f' “k' Ul console HTML ©S5 Script DOM Met Cookies | Evenits SE.
Show Mative Refresh Targets Script | HTML =
=1 clags="header”™ src="header. pn .
= mouseout i g P
= tdiv ids"content™>
i4 nr - onM L 1=
diviscreens.{ onMo lavant) ; bl <div id="screens" ommousecut="4
) 'S MESeOVer <p class="screenCaption™> -
diviacreansa. { onMo... [event]; } {Click the tabs abowve =
=] dlc-k o ses screenshocs of
each.) </p>
divgascreens { onCl... (event); } B s
| L L 3
Done -}*
= -

The extension introduced a new panel listing all event handlers on the left side.

The right side offered details for selected event handler.

The details tab displayed e.g. Targets - Showing list of event targets that would be used
as DOMEvent.currentTarget when event bubbles. All targets are clickable and navigate
the user to the HTML panel.

https://briangrinstead.com/blog/chrome-developer-tools-monitorevents/
https://developers.google.com/web/tools/chrome-devtools/console/utilities#monitorevents
http://www.softwareishard.com/blog/firebug/eventbug-alpha-released/

Targets | Script HTML

divEscreens

divicontent

divimain

body

html

Document getfirebug.com
o

o

Window geffirebug.com

Edge

Edge implements offers very similar user experience like Chrome. The Elements panel has a list
of events available on the right side:

Network Performance Memory

Debugger

Elements Console %1

O o &
<!DOCTYPE html>
4 <html>

P <head>.</head>
4 <body class="test a b " id="body™ onclick="void(®)" data-attr="my

Find (Ctrl+F)

Styles Com... Events DO... Fonts Acce.. Ch:

El Ancestors Group By: [Event] 5

4 click
-data"> 4 bodyZbodytesta b
<h1>HTTP Test Page</hl> function() event-listenersjs (3)
Images: onclick xhr-spy (24)
<button onclick="onSmallImage()">Get small image over XHR A4 Window
</button> function() event-listeners.js (3)
<button onclick="onGetBiggerImage()"»>Get bigger image over XHR
{/button>
{span></span: "
1 html body#body

e It's possible to see existing event handlers for selected node
e Displaying listeners for node ancestors is optional

e It's possible to group by event/element

[] Ancestors Group By: Bonil ~ | &

Ancestors Group By: m A=

4 click 4 bhodyEbody.test a b
4 body#bodytesta b 4 click
function() event-listeners.js (3) cnclick xhr-spy (24)
onclick xhr-spy (24) function() event-listeners.js (3)
4 Window P Window
function() event-listeners.js (3)

The Elements panel can also show list of DOM breakpoints for selected node:

Elements [EEGETEE 4 Debugger Network Performance Memory

o o &
LIDOCTYPE html:>
4 <html>
b <head>..</head> C/-
[] 4 <body class="test a b " id="body" cnclick="void(®)" 4 [7] @ bodyEbody
data-attr="my-data">»
MNode removed

Styles Comp...

[] <h1>»HTTP Test Page</hl> Subtree modified
Images: Attribute modified
<button onclick="onSmallImage()">Get small image over XHR
</button> 4 @ bodyEbody > hi
<button onclick="onGetBiggerImage()"»>Get bigger image over } Subtree madified
HR</button>

W
P T LS T LY
4 b

4 html body#body h1

e It's possible to remove/disable an existing breakpoint

The Debugger panel has exactly the same DOM breakpoints side-panel:

Debugger MNetwork Performance
' N0 Find (Ctrl+F)
L ESEEEEy R WS E | Weche

/* See license.txt for terms of usage */ %

1 -~]
2
. . . Add watch
L 3 window.addEventListener({"click", event =» { = Ve
® 4 console.log{"Click on Window!", event);
5 1)
° Call stack Breakpoints DOM breakpoint
7 window.document.bodyaddEventListener("click”, event => { all stack Breakpoin reakpoints
8 console.log("Click on Body!", event); E)
9 }, false);
o ’ 4 [@ bodyzbody
11 function onAddDocumentClickListener() { Mode removed

Subtree modified

12 document . addEventListener("click”, event =» { Attribut dified
ribute madifie

13 console.log("Click on Document!™, event);
14 3); 4 [7] @ bodygbody » h1
15 3} Subtree modified

Firefox DevTools

Firefox DevTools already have a support for event handler breakpoints hidden behind the
following pref: devtools.debugger. features.event-listeners

The user can see a new Event Listener side panel after enabling this feature.

Watch expressions

Breakpoints

[] Pause on exceptions

['1 Pause on caught exceptions

event-listeners,js

b1

[+ console.log("click on Window!™, event); 4
Event listeners
O elick

click

[click

The panel shows all event listeners registered in the current page.
Clicking on the checkbox displayed in the list creates a breakpoint in the Breakpoints

panel and collapses the EventListener panel

Appendix

Use Cases

Use Case #1: Searching for event listener implementation

The goal is to find implementation (location in the source) of a listener registered for specific
element.

The user is asking where is the click listener for specific button on the page. Here is what should
happen from the user perspective:

1. The user inspects the button on the page and opens the Inspector panel highlighting the
inspected <button> element.

2. Clicking on a little event bubble displayed next to the element opens a tooltip-panel with
a list of all event listeners added to the element.

3. In order to jump into the right location in the source code (Debugger panel) where the
listener is implemented, the user can click an icon displayed at the right side =

¥ click _/rt=i/d=1/dg=2/rs=ACTS80GEPEYECIFNVTewONUgLE2akn51Tg: 652 = m

» function(a) {
c.Qa.search{c.wh(}, b);
return s_uda(a)

¥

Bubing foowz]

> kE}I’I.IP _t=j/d=1/dg=2/rs=ACT980GEPEYRCLFNV7ewDNUgLI2Zakn51Ig: 652

There is yet another way how to find the location:

1. The user inspects the <button> element using Inspector.

2. The inspector panel has Event Listeners side panel showing list of event listeners added
to the selected element.

3. Clicking on a link within that panel navigates the user to the source code.

Styles Computed Event Listeners DOM EBreakpoints Properties Accessibility

C Ancestors A ¥ ¥ Framewocrk listeners
¥ click

* input rs=ACT98c0Gi4CAYcoRIMIFEfecImi2 IPT4caw: 688
F keyup

Use Case #2: Breaking in event listener

The goal is to break in specific event listener when it's executed.

The user wants to debug the listener without the knowledge where it's implemented in the code.
The user could use case #1 to find the location, but if the Debugger panel is currently opened it
should be possible to do it right away (and avoid switching between panels).

Here is list of steps the user needs to do:

The user opens Event Listeners side panel (available within the Debugger panel). This
panel shows all existing event listeners on the page grouped by type (e.g. Mouse).

The user expands desired group (e.g. Mouse) and tries to locate the listener.

Clicking on a link displayed next to the listener entry navigates the user to the location of
the listener in the source, and so it’'s the matter of a second click on breakpoint gutter to
create the breakpoint.

Use Case #3: Breaking on event type

The goal here is to break on specific event type.

It might be hard to locate specific listener if there are too many of them. But, knowing at least
the type of the event (e.g. click) might be enough to break at the right place.

Steps:
1.

The user is in the Debugger panel and wants to break in the first click listener that is
executed when click on the page.

The user opens Event Listeners Breakpoints side panel and checks click event type
The user performs the user action - click on the page and JS execution is automatically
halted in the debugger on the first statement of the first click listeners that is executed.
Resuming debugger should break in the next click listener (if there is one).

* = Mouse
auxclick
o click
dblclick
mousedown
mouseup

Use Case #4: Breaking in Framework event listener

Some JavaScript frameworks (React, jQuery, ...) can use helper functions that are bound to
DOM instead of the user provided functions.

In such case the user might want to break in a listener bound by the framework (in framework
code base) or the user defined listener (in user code base).

Break in user defined listener

1. The user inspects an element using the Inspector and selects the element in the
Inspector panel.

2. The user checks Framework listeners checkbox in Event Listeners side panel to make
sure that navigation links point to the user code base

3. The user clicks one of the navigation links to get to the Debugger panel.

4. The user clicks on breakpoint gutter to create a breakpoint. »

The location links point to the user defined code base.

Styles Computed EventListeners DOM Breakpoints #

C Ancestors A ¥ ¥ Framework listensrs

v click
F button#jquery-test tests.js:55
F button#jquery-test tests.js:51

Use Case #5: Inspecting chain of targets

The goal is visualizing the list of parent ancestor listeners.

The user wants the see all event targets (only those with a listener) that would be used as
DOMEvent.currentTarget when an event bubbles.

1. The user highlights proper element in the Inspector panel and selects the Event listeners
side panel.
2. The user checks Ancestor checkbox to show listeners on ancestors.

Styles Computed Event Listeners DOM Breakpoints » Styles Computed Eventlisteners DOM Breakpoints
C Ancestors Al ¥ ¥ Framework listeners C [# Ancestors A ¥ & Framework listeners
v click ¥ click

* button#jquery-test tests.js:55 ¥ button#jquery-test

P lWindew event-liste
* document event-1isteners.is:19

e Only listeners registered on selected

button element are displayed e Event listeners registered on

ancestors of the button element are
also displayed.

Use Case #7: Pause on XHR/Fetch
The goal is to break when XHR/Fetch happens on the page.

The user might be asking what line of code is responsible for triggering a network request. For
example, what line is responsible for appending a new element or into the page.

Here is what needs to happen:

1. The user opens the Debugger panel and clicks a little + icon in the XHR/fetch side panel.
2. An input field appears allowing the user to specify what keyword the network URL needs
to include for the break to happen.

The use can also check "Pause on all requests’ checkbox to pause on all requests (with JS
callstack) similarly to what we know as “Pause on exceptions’.

Event Listener Breakpoint

There is already a Event Listeners panel in the Debugger (hidden behind
devtools.debugger.features.event-listeners pref). This panel displays list of
existing event handlers on the page.

The current state:
e Showing all event handlers in flat list

e Every item in the list has a checkbox that can be used to create a breakpoint.

Improvements:

e Individual event handlers displayed in this panel should be grouped by event type. E.g.
all click handlers should be in one group collapsed by default.

e Removing a breakpoint in the Breakpoints panel should not collapse the Event Listeners
Panel

e The panel shows CSS selector for the associated element (takes quite a bit of space).
There should rather be a link to source location or both (if enough space).
It should be possible to filter by event type: All/Passive/Blocking
It should be possible to switch on Framework support - skip event handlers bound by
frameworks and show user defined functions.

Improvements when the panel is in the Inspector panel:

e The same panel should also be available in the Inspector panel and filtered according to
the currently selected element (i.e. show only handlers attached to the selected element)
e |t should be possible to show/hide ancestor event handlers (for selected element)

To Discuss:
e Creating a breakpoint using the event handler checkbox feature should be removed. It
doesn’t work well when the panel is displayed in the Inspector panel. The breakpoint
existence could be indicated by an icon in front of the event handler.

Decisions

1. Decision: Show types of events, each event type with event handlers
2. Decision: Enable breaking on all click events
3. How does clicking an event type affect the child event handlers
a. Event handlers list can be noisy, added and removed a lot (even more so with
delegated events)
b. Decision: Keep it simple. Disabled+checked state for event handler checkboxes
4. Decision: Interactions on event handlers:
a. Click on DOM element to navigate to Inspector
b. Highlight DOM element on hover
c. Click on event handler source
d. Discussion
i. Remove event handler?
5. Should framework events be mapped (original vs generated FOREVER)
a. Honza will investigate state of Events Bubble
b. Follow up: Should we allow switching between original/delegated and unmapped
event handlers
6. Live-updating events or manual refresh
a. The platform allows registration of a callback for event listener changes. See
nsIListenerChangelistener interface

7. Filtering logic, filter categories, types, sources & nodes

a. Explore limitations
8. Show web compat warnings for events with known issues
9. Define MVP:

a. Maybe not filtering

b. Maybe not live-updating

c. Maybe not framework mapping

TODO: mockup

Meeting Notes

September 13

e Make sure the Ul offers the user events (not the frameworks handlers)
o We should support jQuery and React
o Some frameworks can add one handler for document root to get all e.g. mouse
events. E.g. React has its own internal map with all users events, so the browser
sees just one event listener.
o jQuery has it's own event handler that calls user callback.

	Event Breakpoints PRD
	Intro Goal
	Related
	Resources
	Stakeholders

	Why? Problem Statement
	Who benefits? Target Audience/Market
	What? Functional Requirements
	Milestone 1: Pause on Event Types in Debugger
	Milestone 2: Parity & Usability
	Milestone 3: Event Handler Inspector
	Milestone X: Future Backlog

	What not? Constraints
	How? Technical Requirements
	Events and Categories
	Chrome & MDN (Events only)

	Implementation
	Milestone 1
	Milestone 3
	Design 1

	Search

	What’s success? Success Metrics
	Why now? Market Window
	What must be true? Assumptions
	What could go wrong? Risks
	Who else? Competitive Landscape & Product Inspiration
	Chrome: Event Listener Breakpoints
	Firefox: Event Listener Bubble in the Inspector Panel

	Firefox DevTools (Previous UI)
	Chrome: Event Listeners
	Non-Event Events Breakpoints
	Chrome: XHR Breakpoints

	
	
	Firebug
	Edge
	
	Firefox DevTools

	
	Appendix
	Use Cases
	Use Case #1: Searching for event listener implementation
	Use Case #2: Breaking in event listener
	Use Case #3: Breaking on event type
	Use Case #4: Breaking in Framework event listener
	Use Case #5: Inspecting chain of targets
	Use Case #7: Pause on XHR/Fetch

	Event Listener Breakpoint
	Decisions

	Meeting Notes

