Дисциплина: ОД.07 Математика

Занятие № 47 Группа БУ и ТД 1/1-9/25 Дата: 27.11.2025

Тип занятия: практическое занятие 23 Преподаватель: Бережная В.А.

По теме: «Практико-ориентированные задачи на координатной плоскости»

Цель занятия:

Деятельностная:

 создать условия для усвоения учащимися понятий векторов в пространстве, угла между векторами и скалярного произведения, через активное участие в различных видах деятельности.

Содержательная:

- актуализировать знания о векторах на плоскости: сложении векторов, умножении вектора на число, скалярное произведение векторов;
- обобщить скалярное произведение векторов на плоскости до пространственного случая;
- расширить знания учеников за счет включения новых определений: вектор в пространстве, компланарные векторы;
- познакомиться с задачами на сложение векторов, скалярное произведение векторов.

План занятия:

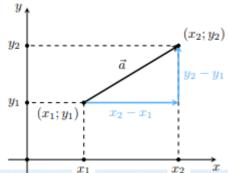
- 1. Скалярное произведение векторов в координатах.
- 2. Уравнение плоскости. Геометрический смысл определителя 2х2
- 3. Угол между векторами, угол между прямой и плоскостью, угол между плоскостями.
- 4. Площадь параллелограмма. Площадь треугольника.

Ход занятия

1. Скалярное произведение векторов в координатах.

Координаты вектора

Пусть есть вектор \vec{c} началом в точке $(x_1; y_1)$ и концом в точке $(x_2; y_2)$.



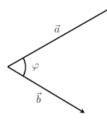
Вектор — последовательное перемещение по горизонтали и по вертикали. Тогда для перемещения из начала вектора, точки $(x_1; y_1)$, в его конец, точку $(x_2; y_2)$, надо сначала сместиться по горизонтали на $x_2 - x_1$, а затем по вертикали на $y_2 - y_1$. Таким образом, координаты вектора \vec{a} равны $(x_2 - x_1; y_2 - y_1)$, то есть для получения координат вектора нужно вычесть из координат его конца координаты его начала.

Скалярное произведение векторов в координатах

Скалярным произведением ^{*}а · ^{*}b двух векторов ^{*}а и ^{*}b с углом ф между ними называют следующее выражение:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi$$
.

Здесь $|\vec{a}|$ и $|\vec{b}|$ — длины соответствующих векторов. Иногда скалярное произведение векторов \vec{a} и \vec{b} обозначают как (\vec{a}, \vec{b}) .



Координатный метод

Если есть векторы \vec{a} $(x_a; y_a)$ и \vec{b} $(x_b; y_b)$, то $\vec{a} \cdot \vec{b} = x_a \cdot x_b + y_a \cdot y_b$.

Свойства скалярного произведения

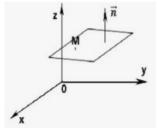
- $1. \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.
- 2. $\vec{k} \cdot \vec{a} \cdot \vec{b} = \vec{k} (\vec{a} \cdot \vec{b});$
- $3. \vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c};$
- 4. $\vec{a} \cdot \vec{a} = |\vec{a}|^2 \geqslant 0$, причем равенство достигается, только если $\vec{a} = \vec{0}$;
- 5. $(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2$
- 6. Для ненулевых векторов \vec{a} и \vec{b} верно, что $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

2. Уравнение плоскости. Геометрический смысл определителя 2х2

уравнение плоскости в прямоугольной системе Общее координат:

$$ax + by + cz + d = 0,$$

где a, b, c и d – набор коэффициентов, полностью определяющий плоскость в пространстве, а вектор нормали – $\vec{n}(a;b;c)$.



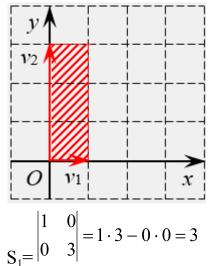
Определитель матрицы размера 2×2 – это просто площадь параллелограмма, а для матрицы 3×3 это уже объём 3-мерного параллелепипеда.

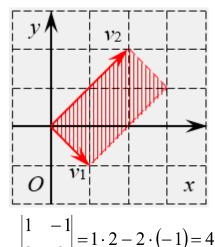
На первый взгляд это определение может показаться совершенно неадекватным. Но давайте не будем спешить с выводами – глянем на примеры.

Задача. Найдите определители матриц:

$$\begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} \quad \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix}$$

Решение. Два определителя имеют размер 2х2. Значит, это просто площади параллелограммов. Начертим их и посчитаем площадь. Первый параллелограмм построен на векторах $v_1=(1;0)$ и $v_2=(0;3)$, второй параллелограмм построен на векторах $v_1 = (1; -1)_{\mathsf{H}} v_2 = (2; 2)_{\mathsf{L}}$





$$\begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} = 1 \cdot 2 - 2 \cdot (-1) = 4$$

3. Угол между векторами, угол между прямой и плоскостью, угол между плоскостями.

Угол между векторами

Для ненулевых векторов \vec{a} и \vec{b} верно, что

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$
.

Если векторы перпендикулярны, то угол между ними равен 90° и косинус угла между этими векторами равен 0. Поэтому скалярное произведение перпендикулярных векторов равно 0:

$$\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos 90^{\circ} = |\vec{a}| \cdot |\vec{b}| \cdot 0 = 0.$$

Верно и обратное утверждение: если скалярное произведение ненулевых векторов равно 0, то эти векторы перпендикулярны:

$$\vec{a} \cdot \vec{b} = 0 \Rightarrow |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi = 0 \Rightarrow \varphi = 90^{\circ} \Rightarrow \vec{a} \perp \vec{b}.$$

Таким образом,

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$
.

Так как в координатах $|\vec{a}|=\sqrt{x_a^2+y_a^2}$ и $|\vec{b}|=\sqrt{x_b^2+y_b^2}$, то с помощью координат можно определить угол между векторами через его косинус:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_a \cdot x_b + y_a \cdot y_b}{\sqrt{x_a^2 + y_a^2} \cdot \sqrt{x_b^2 + y_b^2}}$$

Угол между прямой и плоскостью

Общее уравнение плоскости в прямоугольной системе координат:

$$ax + by + cz + d = 0$$
,

где a, b, c и d — набор коэффициентов, полностью определяющий плоскость в пространстве, а вектор нормали — $\vec{n}(a;b;c)$.

По определению, угол между прямой и плоскостью — это угол α между прямой и её проекцией на эту плоскость. Часто бывает удобно вместо угла α искать угол ϕ между прямой и нормалью к плоскости (ясно, что это решает задачу, поскольку $\alpha+\phi=90^\circ$). Тем самым задача сводится к нахождению угла между направляющим вектором \sim данной прямой и нормальным вектором \uparrow п данной плоскости. В результате имеем

$$\sin \alpha = \cos \varphi = \frac{|\vec{\ell} \cdot \vec{n}|}{|\vec{\ell}||\vec{n}|}$$

Модуль в числителе поставлен на случай, если вдруг окажется $\vec{l} \cdot \vec{n} < 0$; тогда острый угол ф будет смежным с тупым углом между векторами $\vec{l} \cdot \vec{n} \cdot \vec{n} = 0$.

Угол между плоскостями

Общее уравнение плоскости в прямоугольной системе координат:

$$ax + by + cz + d = 0,$$

где a, b, c и d — набор коэффициентов, полностью определяющий плоскость в пространстве, а вектор нормали — $\mathring{n}(a;b;c)$.

При использовании векторно-координатного метода в качестве угла между плоскостями используют угол между векторами, перпендикулярными данным плоскостям. Их называют нормальными векторами или векторами нормали.

Алгоритм нахождения угла между плоскостями:

- 1 Ввести систему координат и вписать в нее данную фигуру.
- 2 Найти векторы $\vec{n}_1 = (a_1; b_1; c_1)$ и $\vec{n}_2 = (a_2; b_2; c_2)$, перпендикулярные к данным плоскостям (векторы нормали).
 - 3. Вычислить искомый угол ф по формуле:

$$\cos\varphi = \left|\cos(\vec{n}_1, \vec{n}_2)\right| = \frac{\left|\vec{n}_1 \cdot \vec{n}_2\right|}{\mid \vec{n}_1 \mid \cdot \mid \vec{n}_2 \mid} = \frac{\mid a_1 a_2 + b_1 b_2 + c_1 c_2 \mid}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

4. Площадь параллелограмма. Площадь треугольника

Площадь параллелограмма

Определитель матрицы размера 2×2 — это просто площадь параллелограмма, столбцы которого — координаты векторов.

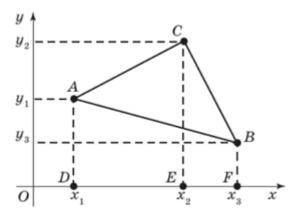
Чтобы вычислить определитель второго порядка, нужно перемножить элементы, стоящие на главной диагонали, и вычесть произведение элементов, стоящих на побочной диагонали.

$$\Delta_2 = \det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

Площадь треугольника

Для любых точек A $(x1_{5}y_{1})$, C $(x_{2};y_{2})$ и B $(x_{3};y_{3})$, не лежащих на одной прямой, площадь S треугольника ABC вычисляется по формуле:

$$S = \frac{1}{2} |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|$$



Разобранные задания

Задание1. Угол между векторами простые примеры

1.1. Векторы:
$$\vec{a} = (1; \sqrt{3})_{\text{и}} \vec{b} = (2; 0)$$

Найдем скалярное произведение векторов и их длины:

1)
$$\vec{a} \cdot \vec{b} = 1 \cdot 2 + \sqrt{3} \cdot 0 = 2$$

2)
$$|\vec{a}| = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{1+3} = \sqrt{4} = 2$$
; $|\vec{b}| = \sqrt{2^2 + 0^2} = \sqrt{4+0} = \sqrt{4} = 2$

Найдем значение косинуса угла между векторами и сделаем вывод о величине угла:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{a}\right| \cdot \left|\vec{b}\right|} = \frac{2}{2 \cdot 2} = \frac{1}{2}$$
 $\varphi = \arccos\left(\frac{1}{2}\right) = 60^{\circ}$

1.2. Векторы: $\vec{a} = (1;1)$ _И $\vec{b} = (1;-1)$

Найдем скалярное произведение векторов и их длины:

1)
$$\vec{a} \cdot \vec{b} = 1 \cdot 1 + 1 \cdot (-1) = 0$$

2)
$$|\vec{a}| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$$
; $|\vec{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$

Найдем значение косинуса угла между векторами и сделаем вывод о величине угла:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{0}{\sqrt{2} \cdot \sqrt{2}} = \frac{0}{2} = 0$$

тогда $\varphi = \arccos(0) = 90^\circ$

1.3. Векторы: $\vec{a} = (1,1)$ _И $\vec{b} = (1,0)$

Найдем скалярное произведение векторов и их длины:

1)
$$\vec{a} \cdot \vec{b} = 1 \cdot 1 + 1 \cdot 0 = 1$$

2)
$$|\vec{a}| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$$
; $|\vec{b}| = \sqrt{1^2 + 0^2} = \sqrt{1 + 0} = 1$

Найдем значение косинуса угла между векторами и сделаем вывод о величине угла:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{1}{\sqrt{2} \cdot 1} = \frac{\sqrt{2}}{2}$$
 $\varphi = \arccos\left(\frac{\sqrt{2}}{2}\right) = 45^{\circ}$

Задание 2. Угол между прямой и плоскостью простые примеры

2.1. Вектор, направляющий к прямой $\vec{a} = (1;1;1)$ и плоскость x + y + z = 3 (вектор нормали к плоскости $\vec{n} = (1;1;1)$).

Найдем скалярное произведение векторов и их длины:

1)
$$\vec{a} \cdot \vec{n} = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 3$$

2)
$$|\vec{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$$

$$\left| \vec{n} \right| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$$

Найдем значение синуса угла между векторами и сделаем вывод о величине угла:

$$\sin \varphi = \frac{\overrightarrow{a} \cdot \overrightarrow{n}}{|\overrightarrow{a}| \cdot |\overrightarrow{n}|} = \frac{3}{\sqrt{3} \cdot \sqrt{3}} = \frac{3}{3} = 1$$

тогда $\varphi = \arcsin(1) = 90^\circ$

2.2. Вектор, направляющий к прямой $\vec{a} = (1;0;1)$ и плоскость y = 0 (вектор нормали к плоскости $\vec{n} = (0;1;0)$).

Найдем скалярное произведение векторов и их длины:

1)
$$\vec{a} \cdot \vec{n} = 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 = 0$$

2)
$$|\vec{a}| = \sqrt{1^2 + 0^2 + 1^2} = \sqrt{1 + 0 + 1} = \sqrt{2}$$

$$|\vec{n}| = \sqrt{0^2 + 1^2 + 0^2} = \sqrt{0 + 1 + 0} = 1$$

Найдем значение синуса угла между векторами и сделаем вывод о величине угла:

$$sin \varphi = \frac{\vec{a} \cdot \vec{n}}{\left|\vec{a}\right| \cdot \left|\vec{n}\right|} = \frac{0}{\sqrt{2} \cdot 1} = 0$$

тогда $\varphi = arcsin(0) = 0^{\circ}$

2.3. Вектор, направляющий к прямой $\vec{a} = (1;1;0)$ и плоскость x + y = 0 (вектор нормали к плоскости $\vec{n} = (1;1;0)$).

Найдем скалярное произведение векторов и их длины:

1)
$$\vec{a} \cdot \vec{n} = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 2$$

$$\begin{vmatrix} \vec{a} \end{vmatrix} = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{1 + 1 + 0} = \sqrt{2}$$

$$\begin{vmatrix} \vec{n} \end{vmatrix} = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{1 + 1 + 0} = \sqrt{2}$$

Найдем значение синуса угла между векторами и сделаем вывод о величине угла:

$$\sin \varphi = \frac{\vec{a} \cdot \vec{n}}{|\vec{a}| \cdot |\vec{n}|} = \frac{2}{\sqrt{2} \cdot \sqrt{2}} = 1$$

$$\text{TOFAB} \quad \varphi = \arcsin(1) = 90^{\circ}$$

Задание 3. Угол между плоскостями простые примеры

3.1. Плоскость y=0 (вектор нормали к плоскости $\vec{n}_1=(0;1;0)$). и плоскость z=0 (вектор нормали к плоскости $\vec{n}_2=(0;0;1)$).

Найдем скалярное произведение векторов и их длины:

1)
$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0$$

$$|\overrightarrow{n_1}| = \sqrt{0^2 + 1^2 + 0^2} = \sqrt{0 + 1 + 0} = 1$$

$$|\overrightarrow{n_2}| = \sqrt{0^2 + 0^2 + 1^2} = \sqrt{0 + 0 + 1} = 1$$

Найдем значение косинуса угла между векторами и сделаем вывод о величине угла:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{a}\right| \cdot \left|\vec{b}\right|} = \frac{0}{1 \cdot 1} = \frac{0}{1} = 0$$

тогда $\varphi = \arccos(0) = 90^\circ$

3.2. Плоскость x + 2y + 3z = 1 (вектор нормали к плоскости $\vec{n}_1 = (1;2;3)$). и плоскость 3x - y + 2z = 4 (вектор нормали к плоскости $\vec{n}_2 = (3;-1;2)$).

Найдем скалярное произведение векторов и их длины:

1)
$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 1 \cdot 3 + 2 \cdot (-1) + 3 \cdot 2 = 7$$

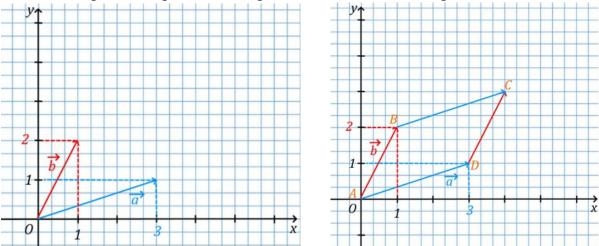
2)
$$\left| \overrightarrow{n_1} \right| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

$$\left| \overrightarrow{n_2} \right| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14}$$

Найдем значение косинуса угла между векторами и сделаем вывод о величине угла:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{a}\right| \cdot \left|\vec{b}\right|} = \frac{7}{\sqrt{14} \cdot \sqrt{14}} = \frac{1}{2}$$
 $\varphi = \arccos\left(\frac{1}{2}\right) = 60^{\circ}$

Задание 4. У вектора \vec{a} координаты (3; 1), а у вектора \vec{b} координаты (2; 1). Найдите площадь параллелограмма, построенного на этих векторах.



Площадь данного параллелограмма и будет являться определителем матрицы. Площадь данного параллелограмм S_{ABCD} =5. И определитель матрицы:

$$det A = \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 3 \cdot 2 - 1 \cdot 1 = 6 - 1 = 5$$

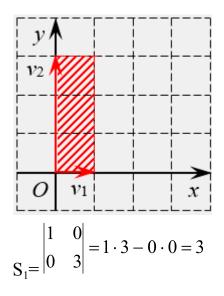
Задание 5. Вычислить площадь параллелограмма, если его образующие отрезки задаются векторами $\stackrel{\rightarrow}{m}$ с координатами $\{2;3\}$ и $\stackrel{\rightarrow}{d}$ с координатами $\{-5;6\}$.

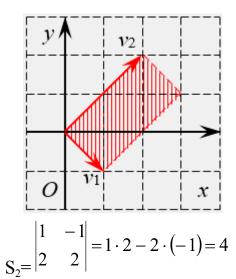
$$S = \begin{vmatrix} 2 & 3 \\ -5 & 6 \end{vmatrix} = \sqrt{12 + 15} = 3\sqrt{3}.$$

Задание 6. Найдите определители матриц:

$$egin{bmatrix} 1 & 0 \ 0 & 3 \end{bmatrix} \quad egin{bmatrix} 1 & -1 \ 2 & 2 \end{bmatrix}$$

Решение. Два определителя имеют размер 2x2. Значит, это просто площади параллелограммов. Начертим их и посчитаем площадь. Первый параллелограмм построен на векторах $v_1=(1;0)$ и $v_2=(0;3)$, второй параллелограмм построен на векторах $v_1=(1;-1)$ и $v_2=(2;2)$.





Задание 7. Даны точки A(1;1), B(6,4), C(8,2). Найдите площадь треугольника ABC. Решение: воспользуемся формулой

$$S = \frac{1}{2} |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|.$$

$$S = \frac{1}{2} |((6 - 1)(2 - 1) - (8 - 1)(4 - 1))| = \frac{1}{2} |-15| = 7.5.$$

Otbet: $S_{\Delta ABC} = 7,5$

(!) Домашнее задание (!)

- 1. Ответьте на контрольные вопросы (письменно):
 - 1.1. Как вычисляется скалярное произведение векторов в координатах?
 - 1.2. Приведите запись уравнения плоскости.
 - 1.2. В чем заключается геометрический смысл определителя 2х2.
 - 1.4. Как вычисляются:
 - угол между векторами;
 - угол между прямой и плоскостью;
 - угол между плоскостями.
 - 1.5. Запишите формулу для вычисления площади параллелограмма через векторное задание смежных сторон.
 - 1.6. Запишите формулу для вычисления площади треугольника через координаты вершин.
- 2. Решите предложенные задания (письменно):
 - 2.1. Найдите угол между векторами

$$\vec{a} = (1,0) \text{ if } \vec{b} = (1,0);$$
 $\vec{a} = (1,0) \text{ if } \vec{b} = (1,0)$

$$\vec{a} = (1,1) \text{ if } \vec{b} = (1,-1);$$
 $\vec{a} = (1,3) \text{ if } \vec{b} = (2,0).$

- 2.2. Найдите угол между прямой, заданной вектором $\vec{a} = (1, \sqrt{3}, 2)$ и плоскостью $x + \sqrt{3}y 2z = 0$.
- 2.3. Найдите угол между плоскостями z=0 и x+z=1.

Отчетность

Работы принимаются до 3 декабря 2025 г.

Задания выполняются от руки на тетрадных листах в клетку. Каждый лист на полях подписываете: Фамилия Имя, группа, дата (в формате ДД.ММ.ГГГГ). По выполнению фотографии каждого листа (в правильном порядке и вертикальной ориентации – без перевернутых страниц) высылаете на проверку преподавателю.

Выполненное задание контрольной работы вы присылаете на @mail:

pushistav@mail.ru

В теме письма указываем:

ОД.07 Математика 26.11.25 (Фамилия Имя, группа)

К примеру:

OД.07 Математика 26.11.25 (Иванов Иван, TД и БУ 1/1-9/25)

Обязательно проверьте, что Вы состоите в чате:

https://t.me/+RX9Nb2N84woxOTdi

С уважением!

Преподаватель математики ШТЭК ДОННУЭТ

Бережная Валерия Александровна

Основная литература: Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10-11 классы : базовый и углубленный уровни : учебник / Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачёва [и др.]. – 10-е изд., стер. – Москва : Просвещение, 2022. – 463.