

République Algérienne Démocratique et الجمهورية الجزائرية الديمقر اطية الشعبية Populaire

وزارة التعليم العالي والبحث العلمي

Comité Pédagogique National du domaine Sciences et Technologies

MASTER ACADEMIQUE HARMONISE

Programme national

Mise à jour : 2022

Domaine	Filière	Spécialité
Sciences et Technologies	Hydraulique	Hydraulique Urbaine

الجمهورية الجزائرية الديمقراطية République Algérienne الشعبية Démocratique et Populaire وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique اللجنة البيداغوجية الوطنية لميدان العلوم والتكنولوجيا Comité Pédagogique National du domaine Sciences et Technologies

مواءمة ماستر أكاديمي برنامج وطني

تحديث: 2022

التخصص	الفرع	الميدان
الري الحضري	ري	علوم وتكنولوجيا

I – Fiche d'identité du Master

Conditions d'accès

(Indiquer les spécialités de licence qui peuvent donner accès au Master)

Filière	Master harmonisé	Licences ouvrant accès au master	Classement selon la compatibilité de la licence	Coefficient affecté à la licence
		Hydraulique	1	1.00
Undrauliana	Hydraulique	Energétique	3	0.70
Hydraulique	urbaine	Génie des procédés	3	0.70
		Autres licences du domaine ST	5	0.60

<u>II - Fiches d'organisations semestrielles des enseignements</u> <u>de la spécialité</u>

<u>Semestre 1 : Master Hydraulique Urbaine</u>

	Matières	Crédits	C		me hora domadai			Travail Complémentaire en Consultation (15 semaines)	Mode d'évaluation	
Unité d'enseignement	Intitulé		ef fi ci e nt	Cours	TD	TP	Volume Horaire Semestriel (15 semaines)		Contrôle Continu	Examen
UE Fondamentale Code : UEF 1.1.1	Hydraulique appliquée	6	3	3h00	1h30		67h30	82h30	40%	60%
Crédits : 10 Coefficients : 5	Analyse et modélisation hydrologique	4	2	1h30	1h30		45h00	55h00	40%	60%
UE Fondamentale Code : UEF 1.1.2	Les écoulements à surface libre	4	2	1h30	1h30		45h00	55h00	40%	60%
Crédits : 8 Coefficients : 4	Les écoulements en charge	4	2	1h30	1h30		45h00	55h00	40%	60%
	Hydraulique numérique	3	2			2h30	37h30	37h30	100%	
UE Méthodologique Code : UEM 1.1 Crédits : 9	Systèmes d'Informations Géographiques (SIG)	4	2	1h30		1h30	45h00	55h00	40%	60%
Coefficients : 5	TP Hydraulique	2	1			1h30	22h30	27h30	100%	
UE Découverte Code : UED 1.1	Matière au choix	1	1	1h30			22h30	02h30		100%
Crédits : 2 Coefficients : 2	Matière au choix	1	1	1h30			22h30	02h30		100%
UE Transversale Code : UET 1.1 Crédits : 1 Coefficients : 1	Anglais technique et terminologie	1	1	1h30			22h30	02h30		100%
Total semestre 1		30	17	13h30	06h00	05h30	375h00	375h00		

<u>Semestre 2</u>: <u>Master</u> Hydraulique Urbaine

П/	Matières		Co eff		me hora domada		Volume Horaire	Travail Complémentaire	Mode d'é	valuation
Unité d'enseignement	Intitulé	Crédits	ici en t	Cours	TD	TP	Semestriel (15 semaines)	en Consultation (15 semaines)	Contrôle Continu	Examen
UE Fondamentale Code : UEF 1.2.1	Traitement et dessalement des eaux	6	3	3h00	1h30		67h30	82h30	40%	60%
Crédits : 10 Coefficients : 5	Ouvrages hydrauliques	4	2	1h30	1h30		45h00	55h00	40%	60%
Code : UEF 1.2.2	Machines hydrauliques et stations de pompage	4	2	1h30	1h30		45h00	55h00	40%	60%
Crédits : 8 Coefficients : 4	Hydraulique souterraine	4	2	1h30	1h30		45h00	55h00	40%	60%
	Modélisation et simulation en hydraulique	3	2			2h30	37h30	37h30	100%	
	TP Traitement et dessalement des eaux	2	1			1h30	22h30	27h30	100%	
Crédits : 9 Coefficients : 5	TP Machines hydrauliques et stations de pompage	2	1			1h30	22h30	27h30	100%	
	Organisation et mécanisation des travaux	2	1	1h30			22h30	27h30		100%
UE Découverte Code : UED 1.2	Matière au choix	1	1	1h30			22h30	02h30		100%
Crédits : 2 Coefficients : 2	Matière au choix	1	1	1h30			22h30	02h30		100%
Code: UET 1.2 Crédits: 1	Respect des normes et règles d'éthique et d'intégrité	1	1	1h30			22h30	02h30		100%
Total semestre 2		30	17	13h30	06h00	05h30	375h00	375h00		

$\underline{\textbf{Semestre 3}: \textit{Master}} \textit{Hydraulique Urbaine}$

Unité	Matières		Co eff		Volume horaire hebdomadaire		Volume Horaire	Travail	Mode d'évaluation	
d'enseignement	Intitulé	Crédits	ici en t	Cours	TD	TP	Semestriel (15 semaines)	Complémentaire en Consultation (15 semaines)	Contrôle Continu	Examen
UE Fondamentale	Distribution et collecte des eaux urbaines	4	2	1h30	1h30		45h00	55h00	40%	60%
Code : UEF 2.1.1 Crédits : 10	Épuration et réutilisation des eaux résiduaires	4	2	1h30	1h30		45h00	55h00	40%	60%
Coefficients : 5	Techniques de reconnaissance et forage	2	1	1h30			22h30	27h30		100%
UE Fondamentale Code : UEF 2.1.2	Aménagement des cours d'eau et transport solide	4	2	1h30	1h30		45h00	55h00	40%	60%
Crédits : 8 Coefficients : 4	Préservation et protection contre les crues et inondations	4	2	1h30	1h30		45h00	55h00	40%	60%
	Logiciels spécialisés	3	2			2h30	37h30	37h30	100%	
Code : UEM 2.1	TP traitement et Épuration des eaux	2	1			1h30	22h30	27h30	100%	
Crédits : 9 Coefficients : 5	Management intégré des ressources en eau	2	1	1h30			22h30	27h30		100%
	Management des projets	2	1	1h30			22h30	27h30		100%
UE Découverte Code : UED 2.1	Matière au choix	1	1	1h30			22h30	02h30		100%
Crédits : 2 Coefficients : 2	Matière au choix	1	1	1h30		_	22h30	02h30		100%
UE Transversale Code : UET 2.1		1	1	1h30			22h30	02h30		100%

	Recherche documentaire et conception de mémoire								
Total semestre 3		30	17	15h00	06h00	04h00	375h00	375h00	

UE Découverte (S1, S2, S3)

- 1. Notions de TIC
- 2. Automatisme
- 3. Protection et gestion des périmètres irrigués
- 4. Agriculture durable et développement du territoire
- 5. Economie et législation de l'eau
- 6. Législation environnementale
- 7. Economie de l'eau
- 8. Notions d'Environnement
- 9. Organisation de chantier
- 10. Hydro-économie

Semestre 4

Stage en entreprise sanctionné par un mémoire et une soutenance.

Travail Personnel	550	09	18
Stage en entreprise	100	04	06
Séminaires	50	02	03
Autre	50	02	03
(Encadrement)			
Total Semestre 4	750	17	30

Ce tableau est donné à titre indicatif

Evaluation du Projet de Fin de Cycle de Master

•	Valeur scientifique (Appréciation du jury)	/6	
•	Rédaction du Mémoire (Appréciation du jury)		/4
•	Présentation et réponse aux questions (Appréciation du jury)		/4
•	Appréciation de l'encadreur	/3	
•	Présentation du rapport de stage (Appréciation du jury)	/3	

Daga	110
Page	110

	Page 10
III - Programme détaillé par matière du semestre S1	
in 110gramme detame par matiere du semestre si	

Semestre: 1

Unité d'enseignement : UEF 1.1.1 Matière : Hydraulique appliquée

VHS: 67 h30 (Cours: 3h00, TD: 1h30)

Crédits : 6 Coefficient : 3

Objectifs de l'enseignement :

Cette matière a pour but d'approfondir les notions de l'alimentation en eau potable et de l'hydraulique générale acquises en licence, et de faire comprendre aux étudiants les phénomènes hydrauliques, les équations qui les régissent et leurs solution. Ainsi que la présentation des ouvrages de stockages et de distributions et leurs dimensionnements.

Connaissances préalables recommandées

- Bases en mathématique
- Connaissances en MDF et hydraulique
- Notions d'hydrologie

Contenu de la matière :

Chapitre 1 : Captages de sources

(2 semaines)

- 1.1 Généralités
- 1.2 Etude du projet et travaux préliminaires
- 1.3 Exécution des ouvrages
- 1.4 Captage de l'eau de fond
- 1.5 Captage des eaux de surface

Chapitre 2 : Consommation en eau potable

(3 semaines)

- 2.1 Système d'Alimentation en Eau Potable
- 2.2 Eau de consommation
- 2.3 Consommation totale par personne
- 2.4 Consommation domestique
- 2.5 Consommation publique
- 2.6 Consommation dans les zones industrielles
- 2.7 Pertes
- 2.8 Lutte contre l'Incendie
- 2.9 Facteurs affectant la consommation
- 2.10 Variation de la consommation

Chapitre 3 : Réservoirs

(3 semaines)

- 3.1 Avantages
- 3.2 Répartition des débits de distribution
- 3.3 Consommation
- 3.4 Emplacement du réservoir
- 3.5 Capacité des réservoirs
- 3.6 De la forme et implantation
- 3.7 Principe de construction
- 3.8 Besoins en eau pour la défense incendie
- 3.9 Installation de signalisation et de commande a distance (télécommande)

Chapitre 4 : Nature des canalisations (sous pression et a écoulement Gravitaire)

(2 semaines)

- 4.1 Tuyaux en fonte
- 4.2 Tuyaux en acier
- 4.3 Tuyaux en béton
- 4.4 Tuyaux en matière plastique
- 4.5 Mise en service
- 4.6 Repérage, plans d'exécution et signalisation

Chapitre 5 : Réseaux de distribution des eaux

(2 semaines)

- 5.1 Types des réseaux
- 5.2 Conditions sur les vitesses et les pressions
- 5.3 Débit de calcul
- 5.4 Calcul des réseaux ramifiés
- 5.5 Calcul des réseaux maillés
- 5.6 Rendements des réseaux
- 5.7 Recherches des fuites

Chapitre 6 : Organes accessoires – robinetterie

(2 semaines)

- 6.1 Robinets-vannes
- 6.2 Crépines
- 6.3 Purgeurs ventouses
- 6.4 Réducteurs de pression et de débit
- 6.5 Stabilisateurs de débit de pression
- 6.6 Vannes de régulation
- 6.7 Organes de sécurité

Mode d'évaluation :

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. Briere F G. Distribution et collecte des eaux. Editions de l'Ecole Polytechnique de Montréal, 1994, 365 p.
- 2. Valiron F., Lyonnaise des Eaux. Mémento du Gestionnaire de l'alimentation en eau et de l'assainissement. Tome I Eau dans la ville Alimentation en Eau. Paris, Technique et documentation Lavoisier, 1994. 435 p.
- 3. Dupont A. Hydraulique urbaine, Tome 2 : Ouvrages de transport Elévation et distribution des eaux. Paris, Eyrolles, 1979, 484 p. 4èmeed.
- 4. Bonnin J. Hydraulique urbaine appliquée aux agglomérations de petite et moyenne importance. Paris, Eyrolles, 1986, 228 p.

Remarque:

Pour renforcer plus les connaissances de l'étudiant en matière Hydraulique Appliquée (matière commune entre les trois masters), le programme de cette matière est enrichi par l'ajout d'un chapitre 'chapitre 2 : consommation en eau potable'.

Les chapitres 5 et 6 seront abordés superficiellement, car ces derniers ont été étudiés au parcours Licence : 3ème année Hydraulique (Semestre 6 - Matière : Technologie des conduites et équipements de réseaux).

Semestre: 1

Unité d'enseignement : UEF1.1.1

Matière: Analyse et modélisation hydrologique

VHS: 45h (Cours: 01h30, TD: 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement

- Résolution orientée vers l'exécution précise et l'analyse rationnelle des mesures et observations portant sur les facteurs hydrométéorologiques d'un phénomène, en vue d'élucider son mécanisme et ses lois de probabilité, son objectif sera souvent de mettre sur pied des méthodes de prédétermination quantitative de l'amplitude ou de la probabilité d'occurrence du dit phénomène.
- Etude est la prévision du débit des crues, soit en fonction des débits exceptionnels observés sur une longue série d'années, soit en fonction des précipitations qui les produisent.
- Utiliser différentes approches de modélisation hydrologique pour déterminer la relation pluie-débit, dans le but de prévision ou d'utilisation de tels modèles pour des bassins non jaugés

Connaissances préalables recommandées

- Bases de l'hydrologie et de la climatologie
- Statistiques appliquées
- Utilisation de l'outil informatique.

Contenu de la matière :

Chapitre 1 : Analyse fréquentielle et statistique appliquée à l'hydrologie (5 semaines)

- 1.1. Introduction et rappel des notions de bases
 - 1.1.1 La prévision et la prédiction
 - 1.1.2 Le Principe de l'analyse fréquentielle
 - 1.1.3 Utilisation de modèles fréquentiels
 - 1.1.3.1 Loi normale
 - 1.1.3.2 Loi log-normale
 - 1.1.3.3 Loi de Gumbel
 - 1.1.3.4 Loi généralisée des valeurs extrêmes (GEV)
- 1.2 Estimation des paramètres du modèle fréquentiel
 - 1.2.1. La méthode du maximum de vraisemblance
 - 1.2.2. La Méthode des Moments
 - 1.2.3. Intervalles de confiance
- 1.3. Tests d'adéquation
 - 1.3.1 Test du Chi carré
 - 1.3.2 Test de Kolmogorov-Smirnov
 - 1.3.3 Test d'Anderson Darling
- 1.3.4 Comparaison des modèles (Critère d'information d'Akaike (AIC) et Critère d'information bayésien (BIC)).

1.4. Utilisation de modèle fréquentiel pour la construction des courbes IDF.

Chapitre 2 : Corrélations et analyse des données

5 semaines)

- 2.1 Définitions
 - 2.1.1 Valeurs caractéristiques d'une série chronologique
 - 2.1.2 Corrélation linéaire
 - 2.1.3 Corrélation multiple
 - 2.1.4 Les différents types de régressions (linéaire, puissance, exponentielle.)
 - 2.1.5 Analyse primaire de qualité des données
- 2.2 Test d'Homogénéité
- 2. 2.1 Le test de Wilcoxon
- 2.2.2 Le test de la médiane
- 2.3 Test de conformité
 - 2.3.1 Le test Z
 - 2.3.2 Le test de Student

Chapitre 3 : Modélisation hydrologique

(4 semaines)

- 3.1 Généralité sur la modélisation hydrologique
- 3.2 Différentes approches de modélisation
 - 3.2.1 Types de modèles (conceptuels, empiriques, à base physique ...etc.)
 - 3.2.2 Les fonctions de productions
 - 3.2.3 Les fonctions de transfert
 - 3.2.4 Présentation de quelques modèles de bassin versant (GR, HBV)
- 3.3 Le calage et la validation
- 3.4 Mise en application de logiciels utilisés dans les études hydrologiques pour l'ajustement aux lois de probabilité et l'estimation des quantiles par rapport aux périodes de retour, tels que : Hydrolab ou Hyfran
- 3.5 Mise en application d'un modèle hydrologique (par exemple, HEC-HMS),

Mise en application de logiciels utilisés dans les études hydrologiques pour l'ajustement aux lois de probabilité et l'estimation des quantiles par rapport aux périodes de retour, tels que : Hydrolab ou Hyfran **Mode d'évaluation :**

Contrôle continu : 40% ; examen : 60%.

Références bibliographiques :

- 1. Hydrologie de l'Ingénieur G. Réméniéras, ed. EYROLLES
- 2. Hydrologie générale José Liamas, ed. Gaëtan Morin
- 3. Initiation à l'analyse hydrologique P. Dubreuil, ed. Masson et Cie
- 4. Hydrologie Eric Gaume, polycopie de l'Ecole Nationale des Ponts et Chaussées
- 5. Hydrologie statistique (Introduction à l'Etude des Processus Hydrométéorologiques
- 6. Application à la Prédétermination des Débits de Crues)- Jacques MIQUEL, polycopie de l'Ecole Nationale des Ponts et Chaussées

Semestre: 1

Unité d'enseignement : UEF 1.1.2

Matière : Les écoulements à surface libre VHS : 45h (Cours : 01h30, TD : 01h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement :

Cette matière a pour but d'approfondir les notions de la MDF et de l'hydraulique générale acquises en licences, elle a pour but de faire comprendre les phénomènes des écoulements à surface libre, les équations qui les régissent et leurs solutions. Cette matière est une base théorique de plusieurs domaines de l'hydraulique (assainissement, les turbo machine, l'irrigation, ouvrages hydrauliques).

Connaissances préalables recommandées

- Bases en mathématique
- Notions en MDF

Contenu de la matière :

Chapitre 1 : Rappel de quelques notions d'hydraulique général

(2 semaines)

Chapitre 2: Régime uniforme

(3 semaines)

- 2.1 Formule général de l'écoulement
- 2.2 Formules de l'écoulement dans les canaux artificiels et le cours d'eaux naturels
- 2.3 Vitesse d'écoulement
- 2.4 Section transversales et profils en travers
- 2.5 Les Aqueducs

Chapitre 3 : Régime permanent varie

(2 semaines)

- 3.1 Utilisation des théorèmes fondamentaux (Bernoulli et Euler)
- 3.2 Energie spécifique
- 3.3 Régime critique
- 3.4 Etude des régimes variés

Chapitre 4: Mouvement graduellement varie

(2 semaines)

- 4.1 Généralités et hypothèses
- 4.2 Equation différentielle du mouvement graduellement varié
- 4.3 Courbes de remous
- 4.4 Calcul le la ligne d'eau en mouvement permanent graduellement varié (courbes de remous)

Chapitre 5: Mouvement brusquement varie (le ressaut hydraulique) (3 semaines)

- 5.1 Définition
- 5.2 Formule de Lagrange

- 5.3 Célérité de l'onde et vitesse critique
- 5.4 Ressaut hydraulique stationnaire
 - 5.4.1 Calcul des hauteurs conjuguées et la longueur d'un ressaut
 - 5.4.2 Pertes de charge dans un ressaut
 - 5.4.3 Recherche de la position d'un ressaut
 - 5.4.4 Utilisation d'un ressaut

Chapitre 6 : Application a l'étude d'autres régimes varies

(2 semaines)

- 6.1 Ecoulements noyés et dénoyés
- 6.2 Singularité de la section transversale
- 6.3 Singularité du profil au long

Chapitre 7 : Jaugeage des écoulements a surface libre

(A supprimer)

- 7.1 Classification des méthodes de jaugeage
- 7.2 Méthodes volumétrique
- 7.3 Méthodes chimique ou de délutions
- 7.4 Méthode de l'écran Anderson et de l'écran Allen
- 7.5 Méthode du flotteur
- 7.6 Méthode par exploitation du champ des vitesses
- 7.7 Méthode par déversoir
- 7.8 Méthode des veines contractées

Mode d'évaluation :

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. *Carlier.* m (1972), hydraulique generale et appliquée, edition eyrolles
- 2. Comolet. r(2002), mecanique experimentale des fluides, edition dunod.
- 3. Viollet. p.l, chabard. j.p, esposito. p et laurence. d (2002), mecanique des fluides appliquees, edition presse de l'ecole nationale des ponts et chaussees.

Semestre: 1

Unité d'enseignement : UEF 1.1.2

Matière: Les écoulements en charge VHS: 45h (Cours: 01h30, TD: 01h30)

Crédits : 4 Semestre : 2

Objectifs de l'enseignement :

Ce cours permet l'approfondissement des connaissances relatives aux écoulements sous pression aux régimes permanents et non-permanents ainsi que la familiarisation avec les instruments de mesure couramment utilisés dans les installations hydrauliques et pétrochimiques sous pression.

Connaissances préalables recommandées :

Connaissance des bases de la mécanique des fluides.

Contenu de la matière :

Chapitre 1: RAPPELS

Régimes d'écoulement, Ecoulement permanent, Ecoulement uniforme, Ecoulement non permanent, problèmes en écoulement en charge (recherche de dH, débit, Diamètre))

Chapitre 2 : Ecoulement à potentiel de vitesse

(4 semaines)

- 2.1 Equation d'un écoulement à potentiel des vitesses, solutions de l'équation de Laplace
- 2.2 Ecoulements plans à potentiel des vitesses
- 2.3 Fonctions analytiques d'une variable complexe
- 2.4 Débit unitaire
- 2.5 Ecoulements simples, (Puits ou sources, écoulement uniforme, écoulement entre deux parois solides, écoulement autour d'un tourbillon placé à l'origine)
- 2.6 Ecoulements composés
- 2.7 Méthode transformation conforme, Transformation de Joukovski
- 2.8 Etude graphique des écoulements irrotationnels
- 2.9 Etude analogique des écoulements irrotationnels

Chapitre 3: Les écoulements permanents dans les conduites en charge (5 semaines)

3.1 Ecoulements laminaires dans une conduite cylindrique.

(Répartition des vitesses dans un écoulement laminaire, Expression de coefficient de frottement, Répartition des tensions de cisaillement, Facteur de correction de l'énergie cinétique, Facteur de quantité de mouvement, Longueur initiales des écoulements laminaires, Ecoulement laminaire entre deux plaques planes parallèles ,écoulement plan poiseuille, écoulement couette, développement couche limite laminaire).

3.2 Ecoulements Turbulents

Répartition des vitesses dans un écoulement turbulent, Notion de couche limite, turbulente, sous couche limite laminaire, Longueur de mélange : Equation de Prandtl, Tension de cisaillement, Loi de distribution de vitesses, Ecoulement turbulent dans une conduite, cylindrique lisse. Influence de la rugosité, Expérience de Nikuradsé – Diagramme de Moody, Formules générales de l'écoulement permanent en régime turbulent dans les canalisations cylindriques de diamètre constant (Formules anciennes, Formules modernes), régime turbulent lisse, régime turbulent rugueux, régime turbulent semi rugueux.

3.3 Instruments de mesure des fluides :

Mesure des densités des fluides (balance de Westphal, densimètre à volume constant et densimètre à poids constants, tube en U). Mesure de la viscosité des fluides (viscosimètre Mac Michael, viscosimètre Stormer, viscosimètre Saybolts, viscosimètre Engler, viscosimètre Ostwald, viscosimètres à chute de bille). Mesures des pressions statiques et totales (manomètres, micromanomètres, capteurs et procédés de conversion). Mesure des contraintes visqueuses (tube de Stanton, tube de Preston). Mesures des niveaux (niveau à glass, détecteur résistif, détecteur capacitif). Mesure des vitesses (sonde de Prandtl, anémomètres à coupelles et à hélices, anémomètres à fil chaud et à film chaud). Mesure des débits (diaphragme, venturi, tuyères, débitmètre à turbine, rotamètre, débitmètre à palette et à coude, gazomètre).

Chapitre 4 : Les écoulements non permanents dans les conduites en charge (5 semaines)

- 4.1 Ecoulements quasi-permanents (vidange d'un réservoir vers une rivière, vidange d'un réservoir vers un autre).
- 4.2 Mouvements oscillatoires des liquides (dans un tube en U et entre deux réservoirs, sans résistance hydraulique, avec une résistance laminaire et avec une résistance turbulente).
- 4.3 Ecoulement transitoire (temps d'établissement de l'écoulement)
- 4.5 Coup de bélier (fluide parfait, fluide réel, célérité de l'onde de choc, étude des phases, intensité du coup de bélier).
- 4.6 Protections contre le coup de bélier (cheminée d'équilibre, fermeture lente, soupape de décharge, volant d'inertie et réservoir anti-bélier).

Mode d'évaluation :

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. Irving H. Shames, 2003, Mechanics of fluids, 4th ed., McGraw Hill, International Ed. ISBN 0-07-119889-X.
- 2. S. Candel, 1995, Mécanique des fluides cours, 2e ed, Dunod, Paris 1995, ISBN 2-10-002585-6.
- 3. B.S. Massy, 1975, Mechanics of fluids, 3rd ed., VNR, London 1975, ISBN 0442300212.
- 4. T. Allen Jr. and R. L. Ditsworth, 1972, Fluid Mechanics, Int. Student ed. McGraw-Hill Koqakusha,
- 5. Merzak. Damou, Mécanique des fluides, O.P.U. 03-1994. Code 2.05.3887.
- 6. Pump Engineering Manual, IDURCO, 1968.

Semestre: 1

Unité d'enseignement : UEM 1.1

Matière: Hydraulique numérique

VHS: 37h30 (TP: 2h30)

Crédits : 3 Coefficient : 2

Objectifs de l'enseignement :

L'objectif de cet enseignement est de faire apprendre à l'étudiant les différentes méthodes numériques utilisées en hydraulique des écoulements en charge et à surface libre Ouvrir à l'étudiant un autre horizon de techniques numériques utilisées dans la simulation en hydraulique.

Connaissances préalables recommandées :

Hydraulique générale, programmation.

Contenu de la matière :

TP 01: Ecoulements graduellement varie: application sur des codes et logiciels tel que L'HEC RAS (5 semaines)

TP 02 : Ecoulements brusquement varie : application sur canal pédagogique (chute brusque, ressaut hydraulique, déversoir etc...). (5 semaines)

TP 03 : Ecoulements en charge (réseau ramifie, réseau maille, distribution et adduction) application sur des codes et logiciels tel que : EPANET, WATERCAD (4 semaines)

Mode d'évaluation:

Contrôle continu: 100%.

Références bibliographiques :

- 1. Analyse mathématiques et calcul numérique pour les sciences et les techniques (volume 6), Robert Dautray; Lions, Jacques-Louis.
- 2. Le logiciel HEC-RAS (version 2.1) du USArmy Corps of Engineers
- 3. Le logiciel EPANET du USEnvironmental Protection Agency.
- 4. Epanet 2.0 'Simulation hydraulique et qualité pour les réseaux d'eau sous pression', Manuel de l'utilisateur, version Française, 2003

Semestre: 1

Unité d'enseignement : UEM 1.1

Matière : Système d'information géographique

VHS: 45h00 (Cours: 01h30, TD: 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement :

Le cours aura pour objectifs de montrer aux étudiants en master l'utilisation des nouveaux outils de positionnement géographique et les possibilités de croisement par couche d'information.

Connaissances préalables recommandées :

- Topographie
- Maths
- Physique.

<u>Contenu de la matière :</u>

Chapitre 1 ; Conception de base d'un SIG	(2 semaines)
Chapitre 2 : Systèmes de projection	(1 semaines)
Chapitre 3 : Présentation du logiciel Mapinfo.	(2 semaines)
Chapitre 4 : Digitalisation	(1 semaines)
Chapitre 5 : Mise en forme	(1semaines)
Chapitre 6 : Cartographie thématique	(2 semaines)
Chapitre 7 : Sectorisation	(1 semaines)
Chapitre 8 : Modèle numérique de terrain MNT	(2 semaines)
Chapitre 9 : Application SIG	(2 semaines)

Mode d'évaluation:

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. Précis de Télédétection : Principes et méthodes F. Bonn et G. Rochon.. Editions Presses de l'Université du Québec AUPELF.
- 2. Analyse d'images : filtrage et segmentation. J.P. Cocquerez et S. Philipp. Edition Masson.
- 3. Remote Sensing Digital Image Analysis. J.A. RIchards, X. JIA. Springer,
- 4. Traitement des données de télédétection M.C. Girard et C.M. Girard..
- 5. Editions Dunod, Paris.
- 6. Télédétection : des satellites aux SIG. Edition Nathan Université ROBIN.

Semestre: 1

Unité d'enseignement : UEM 1.1

Matière: TP Hydraulique VHS: 22h30(TP: 01h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement :

L'objectif de cet enseignement est de faire pratiquer à l'étudiant dans un laboratoire ce qu'il a appris en matière d'écoulement à surface libre.

Connaissances préalables recommandées :

- Hydraulique générale
- Ecoulement à surface libre.

Contenu de la matière :

TP01 : Détermination de la rugosité simple et compose d'une conduite d'assainissement : utilisation d'un logiciel (l'EPASWIMM etc...). (2 semaines)

TP02 : Modélisation des déversoirs d'orage a l'aide de l'EPASWIMM.(3 semaines)

TP03 : Modélisation du ressaut hydraulique a l'aide de L'HSL. (3 semaines)

TP04 : Vérification de la loi de Chézy au laboratoire dans des canaux. (3 semaines)

TP05 : Détermination pratique des courbes de remous au laboratoire. (3 semaines)

TP06 : Détermination pratique des courbes de remous a l'aide de logiciel tel que L'HSL (3 semaines)

Mode d'évaluation :

Contrôle continu: 100%.

Références bibliographiques :

- 1. Walter Hans Graf, M. S. Altinakar, Hydraulique fluviale: écoulement et phénomènes de transport dans lits des cours d'eau, 2000
- 2. Médéric Clément Lechalas, Hydraulique fluviale, 1884
- 3. L. Fargue, Hydraulique fluviale: La forme du lit des rivières a fond mobile, 1908
- 4. Walter Hans Graf, Hydraulique fluviale, 1996.

Semestre: 1

Unité d'enseignement : UED 1.1

Matière : Matière 1 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Semestre: 1

Unité d'enseignement : UED 1.1 Matière : Matière 2 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Semestre: 1

Unité d'enseignement : UET 1.1

Matière 1 : Anglais technique et terminologie

VHS: 22h30 (Cours: 1h30)

Crédits : 1 Coefficient : 1

Objectifs de l'enseignement :

Le cours a pour objectif d'initier l'étudiant au vocabulaire technique. Renforcer ses connaissances de la langue. L'aider à comprendre et à synthétiser un document technique. Lui permettre de comprendre une conversation en anglais tenue dans un cadre scientifique.

Connaissances préalables recommandées :

Vocabulaire et grammaire de base en anglais

Contenu de la matière :

Chapitre 1 : Compréhension écrite

(3 semaines)

Lecture et analyse de textes relatifs à la spécialité.

Chapitre 2 : Compréhension orale

(3 semaines)

A partir de documents vidéo authentiques de vulgarisations scientifiques, prise de notes, résumé et présentation du document.

Chapitre 3 : Expression orale

(4 semaines)

Exposé d'un sujet scientifique ou technique, élaboration et échange de messages oraux (idées et données), Communication téléphonique, Expression gestuelle.

Chapitre 4 : Expression écrite

(4 semaines)

Extraction des idées d'un document scientifique, Ecriture d'un message scientifique, Echange d'information par écrit, rédaction de CV, lettres de demandes de stages ou d'emplois.

Recommandation:

Il est vivement recommandé au responsable de la matière de présenter et expliquer à la fin de chaque séance (au plus) une dizaine de mots techniques de la spécialité dans les trois langues (si possible) anglais, français et arabe.

Mode d'évaluation:

Examen: 100%.

Références bibliographiques :

- 1. P.T. Danison, Guide pratique pour rédiger en anglais : usages et règles, conseils pratiques, Editions d'Organisation 2007
- 2. A.Chamberlain, R. Steele, Guide pratique de la communication : anglais, Didier 1992
- 3. R. Ernst, Dictionnaire des techniques et sciences appliquées : français-anglais, Dunod 2002.
- 4. J. Comfort, S. Hick, and A. Savage, Basic Technical English, Oxford University Press, 1980
- 5. E. H. Glendinning and N. Glendinning, Oxford English for Electrical and Mechanical Engineering, Oxford University Press 1995
- 6. T. N. Huckin, and A. L. Olsen, Technical writing and professional communication for nonnative speakers of English, Mc Graw-Hill 1991

Daga	7
Page	ΙΖ.

III - Programme détaillé par matière du semestre S2

Semestre: 2

Unité d'enseignement : UEF 1.2.1

Matière : Traitement et dessalement des eaux

VHS: 67h30 (Cours: 3h00, TD: 1h30)

Crédits : 6 Coefficient : 3

Objectifs de l'enseignement :

L'étudiant apprendra dans cette matière les techniques traitement des eaux et d'épuration des effluents liquides, les modes de fonctionnement des réacteurs biologiques et les bases de dimensionnements des ouvrages de traitement et d'épuration pour pouvoir simuler ;

Connaissances préalables recommandées

- Les bases de la chimie
- les notions fondamentales de l'hydraulique générale.

Contenu de la matière :

Chapitre 1 : Généralités et normes

(1 semaines)

- 1.1 Qualité des eaux de différentes origines
 - 1.1.1 Composition de l'eau : (éléments dissous, éléments colloïdales et MES : origines, effets et élimination)
 - 1.1.2 Qualité de l'eau
- 1.2 Normes
 - 1.2.1 Modes d'établissement des normes de consommation humaine
 - 1.2.2 Différentes normes pour la consommation humaine, (norme Algérienne, OMS etc.
 - 1.2.3 Normes d'eau pour l'irrigation
 - 1.2.4 Normes d'eau pour l'industrie

Chapitre 2 : Propriétés des eaux de consommation et normes de potabilité. (3 semaines)

- 2.1 Caractéristiques des eaux naturelles
- 2.2 Normes de qualité des eaux de consommation.
- 2.3 Usages de l'eau et leur exigence
- 2.4 Schéma type d'une station de traitement de l'eau

Chapitre 3: Les traitements de clarification

(3 semaines)

- 3.1 La coagulation floculation- décantation
- 3.2 La décantation
- 3 3 La filtration

Chapitre 4 : Les traitements de finition

(3 semaines)

- 4.1 L'adsorption et l'échange d'ions
 - 4.1.1 L'adsorption
 - 4.1.2 L'échange d'ions
- 4.2 La désinfection de l'eau
- 4.3 L'adoucissement de l'eau par précipitation chimique
- 4.4 L'élimination du fer et du manganèse.

Chapitre 5 : Dessalement des eaux de mer et des eaux saumâtres.

(4 semaines)

- 5.1 Osmose inverse
- 5.2 Electrodialyse
- 5.3 Distillation et Evaporation
- 5.4 Distillation solaire

Mode d'évaluation:

Examen écrit + Contrôle continu

Références bibliographiques :

- 1. Masschelein W.J., Processus unitaires du traitement des eaux, Ed CEBEDOC 1996, 493p
- 2. Anonyme, Mémento technique de l'eau (Tome 1 et 2), Ed. Degremont-Suez, 10 édition, 2005, 1904 p.
- 3. Raymond Desjardins, Le Traitement des Eaux, Ed. Ecole Polytechnique de Montréal, 1997, 303 p.
- 4. Alain Maurel, Dessalement de l'eau de mer et des eaux saumâtres, Et autres procédés non conventionnels d'approvisionnement en eau douce ED Tec et Doc Lavoisier, 2001, 226p
- 5. Mohand Said OUALI, Procédés unitaires biologiques et traitement des eaux, ED OPU, 156p
- 6. Marcel Doré, Chimie des Oxydants et traitement des eaux, Ed TEC et Doc, 1998, 505p

Semestre: 2

Unité d'enseignement : UEF1.2.1 Matière : Ouvrages hydrauliques VHS : 45h00 (Cours : 1h30, TD : 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement :

Les aménagements de barrages sont souvent complexes et nécessitent pour leur étude, réalisation et exploitation des équipes pluridisciplinaires. L'objectif de cette unité est de posséder les outils de base pour leur conception, réalisation et exploitation. Tout en tenant compte de ce qui a été enseigné dans la matière ouvrages hydrauliques du semestre 6 de la licence hydraulique.

Connaissances préalables recommandées

- Hydrologie
- Géologie et hydrogéologie
- Mécanique de sols
- Résistance des matériaux

Contenu de la matière :

Chapitre 1 : Études préliminaires pour la réalisation d'un barrage (3 Semaines)

- 1.1 Choix du site
- 1.2 Étude topographique
- 1.3 Étude géologique et géotechnique
- 1.4 Étude hydrologique

Chapitre 2: Les barrages en terre

(4 Semaines)

- 2.1 Typologie des barrages en terre
- 2.2 Étude des infiltrations
- 2.3 Étude de stabilité
- 2.4 Dispositifs de protection contre les effets de l'eau (Filtre et drain)

Chapitre 3 : Barrages en Béton

(4 Semaines)

- 3.1 Typologie des barrages en béton
- 3.2 Actions et forces sur les barrages en Béton
- 3.3 Stabilité des barrages poids
- 3.4 Stabilité des barrages à contrefort
- 3.5 Stabilité des barrages voûtes

Chapitre 4: Organes hydrauliques fonctionnels et annexes

(3 Semaines)

- 4.1 Évacuateurs de crues
- 4.2 Prise et Vidange de fond
- 4.3 Systèmes de dérivation pendant la construction
- 4.4 Réservoirs et châteaux d'eau

Mode d'évaluation:

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. P. Gourdault Montagne, 1994, Le droit de riveraineté, propriétés, usages, protection des cours d'eau..., Edition Tec et doc
- 2. *G. Degoutte, Petits barrages recommandations pour la conception, la réalisation et le suivi. Cemagrefedition, France 2002*
- 3. N. Kremenetski, D. Schterenliht, V. Alychev, L. Yakovleva, Hydraulique, Mir 1984
- 4. Marc Soutter, André Mermoud, Andre Musy, 2007, Ingénierie des eaux et du sol, Processus et aménagements, Edition Presses Polytechniques et Universitaires Romandes (PPUR)
- 5. Richard Mc. Cuen, 2004, Hydrologic Analysis and Design, Edition Pearson Education, Prentice Hall
- 6. R. Thérond, 1973, Recherche sur l'étanchéité des lacs de barrage en pays karstique, Edition EDF
- 7. Rolley, R., H. Kreitmann, J. Dunglas, A. Pierrejean and L. Rolland, 1977, Technique des barrages en aménagement rural. Ministère de l'agriculture, Paris, France. -

Semestre: 2

Unité d'enseignement : UEF 1.2.2

Matière : Machines hydrauliques et stations de pompage

VHS: 45 h00 (Cours: 1h30, TD: 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement :

- Acquérir les connaissances sur les équipements en amont et en aval d'une station de pompage
- Connaître les différents types de stations de pompage
- Choisir le type de la station de pompage
- Savoir résoudre le problème de cavitation qui affecte les pompes
- Maîtrise de l'emplacement des pompes dans des zones de non cavitation
- Type de stations de pompage
- Apprendre à projeter les stations de pompages
- Apprendre à exploiter les ouvrages et les équipements hydro énergétiques et hydrauliques de la station de pompage
- Acquérir les connaissances théoriques et pratiques sur la construction et le principe de fonctionnement des turbines Pelton, Francis et Kaplan.

Connaissances préalables recommandées :

- Notions de l'hydraulique générale
- Pompes et station de pompage
- Notions en électrotechnique et l'automatisme.

Contenu de la matière :

Chapitre 1 : Rappels sur les pompes

(1 Semaines)

Chapitre 2 : Couplage des pompes en série et en parallèle

(3 Semaines)

- 2.1 Pompes identiques et non identique en série et en parallèle
- 2.2 Point de fonctionnement
- 2.3 Réglage du point de fonctionnement
- 2.4 Etude des différentes variantes du point de fonctionnement

Chapitre 3: Les lois de similitudes dans les pompes a fluide incompressible (2 Semaines)

- 4.1 Introduction
- 4.2 Rappel de la similitude
- 4.3 Etude théorique de la similitude
- 4.4 Détermination de la vitesse spécifique
- 4.5 Influence de la vitesse de rotation sur les caractéristiques de la pompe
- 4.6 Influence du diamètre de la roue sur les caractéristiques de la pompe
- 4.7 Classification des pompes à aubes suivant leur vitesse spécifique

Chapitre 4: Etude de la cavitation dans les pompes

(2 Semaines)

- 5.1 Phénomène de la cavitation
- 5.2 Causes et conséquence de la cavitation
- 5.3 Etude théorique de la cavitation
- 5.4 Hauteur d'aspiration admissible
- 5.5 NPSH pour une installation en charge et en dépression

Chapitre 5 : Classification et entretien des stations de pompage

- 3.1 Introduction
- 3.2 Dimensionnement des stations de pompage
- 3.3 Incidents possible
- 3.4 Différentes façons de dépannage

Chapitre 6: Les turbines hydrauliques

(2 Semaines)

(4 Semaines)

- 6.1 Introduction
- 6.2 Rôle des turbines en hydraulique
- 6.3 Classification des turbines
- 6.4 Turbine Pelton
- 6.5 Turbine Francis
- 6.6 Turbine Kaplan
- 6.7 Station hydroélectrique

Mode d'évaluation :

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. Savatier, Les pompes et les stations de pompage., 1994
- 2. Vollet Pierre-Louis, Histoire de l'énergie hydraulique : Moulins, pompes, roues et turbines de l'Antiquité au XXe siècle.
- 3. Pernès Pierre, Hydraulique unidimensionnelle Partie 2: Coups de bélier et phénomène d'oscillation en masse. Pompes centrifuges .Auteur(s)
- 4. NF ISO 17559 : transmissions hydrauliques, pompes hydrauliques à commande électrique .06-2004 28p.
- 5. Manon Jean, Les pompes. Manuel de sélection, application à la vitesse variable. (Coll. Technique, 2002 260p.
- 6. NF EN 23661 : pompes centrifuges à aspiration en bout, dimensions relatives aux socles et à l'installation . NF EN 23661 12-1993 .
- 7. NF EN ISO 5198: pompes centrifuges, élico-centrifuges et hélices. Code d'essais de fonctionnement hydraulique classe de précision. NF ISO 5198 12-1987 .

Semestre: 2

Unité d'enseignement : UEF 1.2.2 Matière : Hydraulique souterraine VHS : 45h00 (Cours : 1h30, TD : 1H30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement :

La première partie de cette matière pose les bases théoriques et expérimentales de l'hydraulique souterraine et discute les différentes hypothèses aboutissant aux équations fondamentales. La seconde traite des cas particuliers d'écoulements souterrains qui se rencontrent couramment dans les travaux hydrauliques et de génie civil tel que les écoulements à travers les cavités souterraines, d'autres relatives aux débits de fuite ou d'alimentation des tranchées et des canaux, aux épuisements de fouille et de batardeaux, aux écoulements sous les fondations de barrage ou à travers les digues, etc.

Connaissances préalables recommandées :

- Mathématique
- Hydraulique générale
- Hydrogéologie

Contenu de la matière :

Chapitre 1 : Introduction à l'hydraulique souterraine et systèmes aquifères. (3 Semaines)

- 1.1 Eaux souterraines,
- 1.2 Propriétés physiques de l'eau,
- 1.3 Milieux poreux et écoulement souterrain,
- 1.4 Propriétés moyennes des milieux poreux,
- 1.5 Eaux souterraines et les aquifères.
- 1.6 Le cycle hydrologique.

Chapitre 2 : Formulation des équations de base des écoulements souterrains

(4 Semaines)

- 2.1 Méthodologie de l'approche hydraulique,
- 2.2 Lois de la vitesse de transport,
- 2.3 Équations de base pour un écoulement d'eau souterraine saturé,
- 2.4 Solutions analytiques typiques des équations fondamentales,
- 2.5 Écoulement d'eau souterraine dans les masses rocheuses,

Chapitre 3 : Méthodes numériques pour l'analyse des écoulements souterrains

(4 Semaines)

- 3.1 Méthodes de résolution des problèmes d'écoulement des eaux souterraines,
- 3.2 Méthode des différences finies,
- 3.3 Méthode des éléments finis

- 4.1 Définition de la recherche des eaux souterraines.
- 4.2 Techniques de recherche des eaux souterraines,
- 4.3 Mesure in situ du coefficient hydraulique,
- 4.4 Investigation de la qualité des eaux souterraines,
- 4.5 Étude de la pollution des sols et des eaux souterraine

Mode d'évaluation:

Contrôle continu: 40%; examen: 60%.

Références bibliographiques :

- 1. Anderson M.P. (2008).Groundwater. Wallingford: International Association of Hydrological Sciences.
- 2. Bear J. (2012). Hydraulics of Groundwater. McGraw-Hill.
- 3. Cassan M. (1994). Aide-mémoire d'hydraulique souterraine. Paris : Presses de l'Ecole Nationale des Ponts et Chaussées.
- 4. Cushman, J.H. and D. Tartakovsky. (2017). The handbook of groundwater engineering.
- 5. Delleur, J.W., The handbook of groundwater engineering. 2007, Boca Raton: CRC Press.
- 6. Crim R.L. et al. (1972). Numerical method for groundwater hydraulics.
- 7. Cushman J.H. and TartakovskyD.M. (2017). The handbook of groundwater engineering.
- 8. Franciss F.O. (2010). Fractured rock hydraulics. Taylor & Francis Group, London. UK.
- 9. Lohman S.W. and GeologicalS. (1979).Ground-water hydraulics. Washington: U.S. Govt. Print. Off.
- 10. Rosenshein, J.S., et al. (1984). Groundwater hydraulics.
- 11. Schneebeli G. (1987). Hydraulique souterraine. Paris : Eyrolles.
- 12. Sato K., Iwasa Y. and G. (2006). Groundwater hydraulics. Tokyo: Springer.

Unité d'enseignement : UEM 1.2

Matière: Modélisation et simulation en hydraulique

VHS: 37h30 (TP: 2h30)

Crédits : 3 Coefficient : 2

Objectifs de l'enseignement :

Permettre à l'étudiant la résolution numérique des équations mathématiques régissant les problèmes hydrauliques et des problèmes fondamentaux d'ordre pratique par la réalisation de programmes simplifiés sur Matlab (ou autres environnements) et de simuler des cas réels (complexes) sur des logiciels appropriés.

Connaissances préalables recommandées

Bonne connaisse des bases de la mécanique des fluides, des écoulements sous pression, des écoulements à surface libre et des méthodes numériques et langages de programmation informatique.

Contenu de la matière :

Chapitre 1 : Rappel (Méthodes de résolution des équations non-linéaires et du système d'équations) (1 Semaine)

- 1.1 Méthode de Dichotomie (Bisection), Méthode de la sécante, Méthode de Regula Falsi (Fausse Position), Méthode de Newton Raphson, Méthode du point fixe
- 1.2 Méthodes utilisées pour résoudre les systèmes d'équations (Méthodes directes et indirectes)

Chapitre 2 : Modélisation par la méthode des différences finies (M.D.F.) des écoulements (2 Semaines)

- 2.1 Discrétisation des opérateurs différentiels
- 2.2 Introduction des conditions aux limites et initiales
- 2.3 Différences finies du premier ordre
- 2.4 Différences finies de second ordre
- 2.5 Schémas de discrétisations temporelles (explicites, implicites et mixte)
- 2.6 Convergence, stabilité et précision des schémas numériques.
- 2.7 Exemple d'application de modélisation d'un écoulement permanent uniforme par M.D.F.

Chapitre 3 : Modélisation par la méthode des éléments finis des écoulements (M.E.F)

(2 Semaines)

- 3.1 Maillage et éléments
- 3.2 Méthodes de minimisation de l'erreur (résidus pondérés, Galerkin...)
- 3.3 Approximations nodales
- 3.4 Eléments de référence
- 3.5 Méthodes intégrales faibles
- 3.6 Calcul sur les éléments
- 3.7 Intégration numérique
- 3.8 Exemple d'application de modélisation d'un écoulement permanent uniforme par la M E F

Chapitre 4 : Initiation à la méthode des volumes finis

(1 semaine)

(Introduction, Méthodes de discrétisation, Equation de la chaleur conduction, convection, diffusion, Exemple d'application

Chapitre 5 : Modélisation et simulation des écoulements.

(9 Semaines)

- 5.1 Modélisation d'un écoulement à surface libre non permanent dans un canal prismatique 1D
 - 5.2 Modélisation d'un écoulement en charge transitoire dans une conduite 1D
 - 5.3 Calcul des courbes de remous (utilisation de logiciels)
 - 5.4 Vidange d'un réservoir (barrage) vers l'atmosphère
 - 5.5 Ecoulement entre deux réservoirs (barrages)
 - 5.6 Simulation des écoulements dans les réseaux d'AEP, d'assainissement, irrigation et drainage
 - 5.7 Autres simulations...etc.

Mode d'évaluation:

Contrôle continu: 100%.

Références bibliographiques :

- 1. Hervouet Jean-Michel (2003), Hydrodynamique des écoulements a surface libre, Edition Presses de l'école nationale des Ponts et Chaussées (ENPC)
- 2. Graf W.H. hydraulique fluviale Traité de Génie Civil de l'Ecole Polytechnique de Lausanne : Vol.16
- 3. Carlier. M (1972), Hydraulique générale et appliquée, édition EYROLLES
- 4. Comolet. R (2002), Mécanique expérimentale des fluide, édition DUNOD.
- 5. Viollet. P.L, Chabard. J.P, Esposito. P et Laurence. D (2002), mécanique des fluide appliquee, Edition Presse de l'école nationale des ponts et chaussées.
- 6. Lencastre. A, manuel d'hydraulique générale, Eyrolles (EDF).
- 7. Massey B.S (1975) Fluid mechanics, 3rd Edition, Edition VNRC, London.
- 8. Curtis F.Gerald, Patrick o. Wheatley (1997). Applied Numerical Analysis 4eéd.
- 9. Nougier J.P (1991) Méthodes de calcul numérique Masson, 3e éd. Paris.
- 10. Euvrard (1994). Résolution numérique des équations aux dérivées partielles. Masson, 3e éd. Paris.
- 11. Sibony .M et Mardon J.CL Approximation et équations Différentielles. Edition Hermann (1982)
- 12. Bathe K.-J. (1996). Finite element procedures. Prentice-Hall.
- 13. Dhatt G., TOUZOT G. (1984). Une présentation de la méthode des éléments finis. Maloine SA Paris.
- 14. Prat M. (1995). La modélisation des ouvrages, Hermès, Paris.
- 15. Graf W.H. Hydraulique Fluviale Traité de Génie Civil de l'Ecole Polytechnique de Lausanne : Vol.16
- 16. M. Boumahrat et A. Gourdin Méthodes numériques appliqués, Edition OPU, 440p
- 17. Hervouet Jean-Michel (2003), hydrodynamique des ecoulements a surface LIBRE, Edition Presses de l'école nationale des Ponts et Chaussées (ENPC)

Semestre: 2

Unité d'enseignement : UEM 1.2

Matière : TP Traitement et dessalement des eaux

VHS: 22h30 (TP: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement

Les objectifs assignés par cette matière portent sur l'initiation des étudiants à mettre en pratique les connaissances théoriques acquise dans les cours de traitement et épuration de l'eau. L'étudiant sera en mesure d'utiliser les appareils de mesures de paillasse ainsi que les pilotes destinés à réaliser des études sur le traitement et l'épuration des eaux.

Connaissances préalables recommandées

- Chimie des eaux
- Biologie des eaux
- Traitement des eaux
- Épuration des eaux.

Contenu de la matière

PARTIE 1: TP TRAITEMENT DES EAUX:

TP01 : Echantillonnage et caractérisation des eaux

(2 Semaines)

Détermination de : Température, pH, TA, TAC, TH_{Ca}, TH_{Mg}, TH., Turbidité, MES, MM, MO, Oxygène dissous, DBO₅, DCO. Et Dosage de Fer, de NO₃, de PO₄, et des Chlorures,

TP 02: Essai de coagulation – floculation.

(2 semaines)

- 2.1 Détermination de la dose optimale
- 2.2 Détermination de l'agitation rapide optimale (degré et temps)
- 2.3 Détermination de l'agitation lente optimale (degré et temps)
- 2.4 Détermination du temps de décantation optimal
- 2.5 Détermination du meilleur coagulant, floculant, adjuvant
- 2.6 Elimination par floculation de pollution : métallique, organique, minérale

TP 03: Essais de décantation.

(2 Semaines)

- 3.1 Essai de décantation des particules discrètes (décantation grenue)
- 3.2 Essai de décantation floconneuse
- 3.3 Essai de décantation piston (Traçage de la courbe de Kynch)

TP 04: Essais de filtration et d'adsorption.

(2 Semaines)

- 4.1 Filtration sur sable (monocouche, bicouche) : Performance de filtre, Traçage de La variation de la perte de charge, en fonction du l'épaisseur du filtre, crevaison du filtre
- 4.2 Filtration et adsorption sur charbon, biolite, bentonite, kaolinite...etc

TP 05 : Essais de désinfection.

(1 Semaine)

- 5.1 Désinfection par le chlore : essai Break point (demande en chlore)
- 5.2 Essai de décoloration des eaux
- 5.3 Essai de désinfection par le dioxyde de chlore, Ozone, UV

PARTIE 2: TP DESSALEMENT DES EAUX

TP 06 : Caractérisation des membranes de dessalement des eaux.

(2 Semaines)

- 6.1 Membranes d'osmose inverse, d'électrodialyse, nano filtration ...etc.).
- 6.2 Perméabilité, colmatage des membranes

TP 07: Essais d'adoucissement des eaux.

(1 Semaine)

- 7.1 Par précipitation
- 7.2 Par adsorption (échange ionique)

TP 08: Essais de dessalement.

(2 Semaine)

- 8.1 Par distillation d'eau de mer (ébullition suivie d'une condensation)
- 8.2 Par osmose inverse
- 8.3 Par vaporisation

Mode d'évaluation :

Contrôle continu: 100 %.

- 1. Masschelein W.J., Processus unitaires du traitement des eaux, Ed CEBEDOC 1996, 493p
- 2. Anonyme, Mémento technique de l'eau (Tome 1 et 2), Ed. Degremont-Suez, 10 édition, 2005, 1904 p.
- 3. Raymond Desjardins, Le Traitement des Eaux, Ed. Ecole Polytechnique de Montréal, 1997, 303 p.
- 4. Alain Maurel, Dessalement de l'eau de mer et des eaux saumâtres, Et autres procédés non conventionnels d'approvisionnement en eau douce ED Tec et Doc Lavoisier, 2001, 226p
- 5. Mohand Said OUALI, Procédes unitaires biologiques et traitement des eaux, ED OPU, 156p
- 6. Marcel Doré, Chimie des Oxydants et traitement des eaux, Ed TEC et Doc, 1998, 505p
- 7. Claud, Cardot, Les traitements des eaux , procédés physico-chimiques et biologiques cours et problèmes résolus, Ed Ellipses, 2002,252p

Unité d'enseignement : UEM 1.2

Matière: TP Machines hydrauliques et stations de pompage

VHS: 22h30 (TP: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement

Les objectifs assignés par cette matière portent sur l'initiation des étudiants à mettre en pratique les connaissances théoriques acquise dans les cours des machines hydrauliques et stations de pompage.

Connaissances préalables recommandées

- Hydraulique générale
- Machines hydrauliques et pompes et stations de pompage.

Contenu de la matière

TP 1 : Caractéristiques d'une pompe centrifuge (hauteur, puissance et rendement)
(3 Semaines)

TP 2 : Montage de pompes en série (hauteur, puissance et rendement). (3 Semaines)

TP 3 : Montage de pompes en parallèle (hauteur, puissance et rendement). (3 Semaines)

TP 4 : Turbine Francis / Pelton (2 Semaines)

TP 5 : Cavitation (2 Semaines)

Mode d'évaluation:

Contrôle continu: 100 %.

- 1. Pierre Schulhof, Les stations de pompage d'eau. 5ème édition, Ed TEC et Doc, 2000, 418p
- 2. James B. Rishel, Water Pumps and Pumping Systems Relié, Ed McGraw-Hill Professional, 2002, 912p
- 3. Brian Nesbitt, Handbook of Pumps and Pumping: Pumping, Ed Elsevier Science Ltd, 2006, 424p

Unité d'enseignement : UEM 1.2

Matière : Organisation et mécanisation des travaux

VHS: 22h30 (Cours: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement

Les objectifs assignés par cette matière portent sur l'initiation des étudiants aux différentes actions nécessaires à l'organisation et la mécanisation des travaux des chantiers hydrauliques.

Connaissances préalables recommandées

- Hydraulique appliquée,
- Assainissement
- Ouvrages hydrauliques.

Contenu de la matière :

Chapitre 1 : Vocabulaires courants

(2 Semaines)

- 1.1 Chantier
- 1.2 Maître d'œuvre et maître d'ouvrage, définitions et Différences
- 1.3 Contrats et volet juridique

Chapitre 2: Installation de chantier

(4 Semaines)

- 2.1 Travaux préparatoires
- 2.2 Dégagement des emprises
- 2.3 Assainissement, protections hydrauliques et réseaux
- 2.4 Signalisations Soutènements
- 2.5 Piquetages et implantations
- 2.6 Calendrier prévisionnel des travaux
- 2.7 Phasage d'exécution
- 2.8 Installations de Chantier

Chapitre 3 : Terrassements

(3 Semaines)

- 31 Terrassements généraux
- 3.2 Terrassements en masse
- 3.3 Terrassements en fouilles
- 3.4 Terrassements en rigoles
- 3.5 Terrassement en tranchée
- 3.6 Protections et blindages
- 3.7 Rabattement des nappes et drainage

Chapitre 4 : Pose de canalisations

(3 Semaines)

- 4.1 Critères de choix des canalisations en fonction de la nature des terrains
- 4.2 Terrassements pour canalisations
- 4.3 Remblais pour canalisations
- 4.4 Manutentions des canalisations
- 4.5 Techniques de pose et d'assemblage
- 4.6 Essais d'étanchéité et réception des travaux
- 4.7 Contrôle de qualité

Chapitre 5 : Bétons hydrauliques

(3 Semaines)

- 5.1 Indications générales
- 5.2 Consistance des bétons
- 5.3 Dosages et compositions
- 5.4 Résistance des bétons
- 5.5 Choix des matériaux de composition
- 5.6 Fabrication des bétons
- 5.7 Transport, manutention et ouvrabilité
- 5.8 Adjuvants
- 5.9 Essais et contrôles

Mode d'évaluation:

Examen: 100%.

Unité d'enseignement : UED 1.2 Matière : Matière 1 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Semestre: 2

Unité d'enseignement : UED 1.2 Matière : Matière 2 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Unité d'enseignement : UET 1.2

Matière : Respect des normes et des règles d'éthique et d'intégrité.

VHS : 22h30 (Cours : 1h30)

Crédit : 1 Coefficient : 1

Objectifs de l'enseignement:

Développer la sensibilisation des étudiants au respect des principes éthiques et des règles qui régissent la vie à l'université et dans le monde du travail. Les sensibiliser au respect et à la valorisation de la propriété intellectuelle. Leur expliquer les risques des maux moraux telle que la corruption et à la manière de les combattre, les alerter sur les enjeux éthiques que soulèvent les nouvelles technologies et le développement durable.

Connaissances préalables recommandées :

Ethique et déontologie (les fondements)

Contenu de la matière :

A. Respect des règles d'éthique et d'intégrité,

1. Rappel sur la Charte de l'éthique et de la déontologie du MESRS: Intégrité et honnêteté. Liberté académique. Respect mutuel. Exigence de vérité scientifique, Objectivité et esprit critique. Equité. Droits et obligations de l'étudiant, de l'enseignant, du personnel administratif et technique,

2. Recherche intègre et responsable

- Respect des principes de l'éthique dans l'enseignement et la recherche
- Responsabilités dans le travail d'équipe : Egalité professionnelle de traitement. Conduite contre les discriminations. La recherche de l'intérêt général. Conduites inappropriées dans le cadre du travail collectif
- Adopter une conduite responsable et combattre les dérives : Adopter une conduite responsable dans la recherche. Fraude scientifique. Conduite contre la fraude. Le plagiat (définition du plagiat, différentes formes de plagiat, procédures pour éviter le plagiat involontaire, détection du plagiat, sanctions contre les plagiaires, ...). Falsification et fabrication de données.

3. Ethique et déontologie dans le monde du travail :

Confidentialité juridique en entreprise. Fidélité à l'entreprise. Responsabilité au sein de l'entreprise, Conflits d'intérêt. Intégrité (corruption dans le travail, ses formes, ses conséquences, modes de lutte et sanctions contre la corruption)

B- Propriété intellectuelle

I- Fondamentaux de la propriété intellectuelle

- 1- Propriété industrielle. Propriété littéraire et artistique.
- 2- Règles de citation des références (ouvrages, articles scientifiques, communications dans un congrès, thèses, mémoires, ...)

II- Droit d'auteur

1. Droit d'auteur dans l'environnement numérique

Introduction. Droit d'auteur des bases de données, droit d'auteur des logiciels.Cas spécifique des logiciels libres.

2. Droit d'auteur dans l'internet et le commerce électronique

Droit des noms de domaine. Propriété intellectuelle sur internet. Droit du site de commerce électronique. Propriété intellectuelle et réseaux sociaux.

3. Brevet

Définition. Droits dans un brevet. Utilité d'un brevet. La brevetabilité. Demande de brevet en Algérie et dans le monde.

III- Protection et valorisation de la propriété intellectuelle

Comment protéger la propriété intellectuelle. Violation des droits et outil juridique. Valorisation de la propriété intellectuelle. Protection de la propriété intellectuelle en Algérie.

C. Ethique, développement durable et nouvelles technologies

Lien entre éthique et développement durable, économie d'énergie, bioéthique et nouvelle technologies (intelligence artificielle, progrès scientifique, Humanoïdes, Robots, drones,

Mode d'évaluation :

Examen: 100 %

Références bibliographiques :

1. Charte d'éthique et de déontologie universitaires.

https://www.mesrs.dz/documents/12221/26200/Charte+fran__ais+d__f.pdf/50d6de61-aabd-48 29-84b3-8302b790bdce

- 2. Arrêtés N°933 du 28 Juillet 2016 fixant les règles relatives à la prévention et la lutte contre le plagiat
- 3. L'abc du droit d'auteur, organisation des nations unies pour l'éducation, la science et la culture (UNESCO)
- 4. E. Prairat, De la déontologie enseignante. Paris, PUF, 2009.
- 5. Racine L., Legault G. A., Bégin, L., Éthique et ingénierie, Montréal, McGraw Hill, 1991.
- 6. Siroux, D., Déontologie: Dictionnaire d'éthique et de philosophie morale, Paris, Quadrige, 2004, p. 474-477.
- 7. Medina Y., La déontologie, ce qui va changer dans l'entreprise, éditions d'Organisation, 2003.
- 8. Didier Ch., Penser l'éthique des ingénieurs, Presses Universitaires de France, 2008.
- 9. Gavarini L. et Ottavi D., Éditorial. de l'éthique professionnelle en formation et en recherche, Recherche et formation, 52 | 2006, 5-11.
- 10. Caré C., Morale, éthique, déontologie. Administration et éducation, 2e trimestre 2002, n°94.
- 11. Jacquet-Francillon, François. Notion : déontologie professionnelle. Letélémaque, mai 2000, n° 17
- 12. Carr, D. Professionalism and Ethics in Teaching. New York, NY Routledge. 2000.
- 13. Galloux, J.C., Droit de la propriété industrielle. Dalloz 2003.
- 14. Wagret F. et J-M., Brevet d'invention, marques et propriété industrielle. PUF 2001
- 15. Dekermadec, Y., Innover grâce au brevet: une révolution avec internet. Insep 1999

- 16. AEUTBM. L'ingénieur au cœur de l'innovation. Université de technologie Belfort-Montbéliard
- 17. Fanny Rinck etléda Mansour, littératie à l'ère du numérique : le copier-coller chez les étudiants, Université grenoble 3 et Université paris-Ouest Nanterre la défense Nanterre, France
- 18. Didier DUGUEST IEMN, Citer ses sources, IAE Nantes 2008
- 19. Les logiciels de détection de similitudes : une solution au plagiat électronique? Rapport du Groupe de travail sur le plagiat électronique présenté au Sous-comité sur la pédagogie et les TIC de la CREPUQ
- 20. Emanuela Chiriac, Monique Filiatrault et André Régimbald, Guide de l'étudiant: l'intégrité intellectuelle plagiat, tricherie et fraude... les éviter et, surtout, comment bien citer ses sources, 2014.
- 21. Publication de l'université de Montréal, Stratégies de prévention du plagiat, Intégrité, fraude et plagiat, 2010.
- 22. Pierrick Malissard, La propriété intellectuelle : origine et évolution, 2010.
- 23. Le site de l'Organisation Mondiale de la Propriété Intellectuelle www.wipo.int
- 24. http://www.app.asso.fr/

	Pag	e 45

<u>III - Progra</u>	mme détaillé	par matière d	u semestre S3

Unité d'enseignement : UEF2.1.1

Matière : Distribution et collecte des eaux urbaines

VHS: 67h30 (Cours: 3h00, TD: 1h30)

Crédits : 6 Coefficient : 3

Objectifs de l'enseignement

L'objectif de cette matière est de permettre à terme à l'étudiant de connaître les principaux éléments des réseaux urbains et de maitriser de dimensionnement, la modélisation et de protection de ces réseaux.

Connaissances préalables :

- Mécaniques des Fluides
- Hydraulique générale
- Hydrologie
- Mathématiques
- Hydraulique urbaine

Contenu de la matière :

PARTIE I: ALIMENTATION EN EAU POTABLE

Chapitre 1 : Conception et dimensionnement des réseaux de distribution.	(1 semaine)
Chapitre 2 : Modélisation et calage des modèles dans les systèmes d'AEP.	(1 semaine)
Chapitre 3 : Protection des ouvrages.	(1 semaine)
Chapitre 4 : Méthodologie de diagnostic dans les réseaux d'AEP.	(1 semaine)
Chapitre 5 : Gestion et télégestion des réseaux d'AEP.	(1 semaine)

Partie II: ASSAINISSEMENT URBAIN

Chapitre 6 : Phénomènes hydrologiques et modélisation.

Notions de l'hydrologie Urbain, construction de courbe IDF, Calcul des débits pluviaux.

(1 semaine)

Chapitre 7 : Conception et dimensionnement des réseaux d'assainissement. Dimensionnement de réseaux d'eau pluvial, dimensionnement de réseaux d'eau usée

urbaine. (1 semaine)

Chapitre 8 : Ouvrages d'assainissement urbain. (1 semaine)

Chapitre 9 : Les techniques alternatives en assainissement pluvial, principe et dimensionnement. (1 semaine)

Chapitre 10: L'Assainissement non collectif. (1 semaine)

Chapitre 11 : Méthodologie de diagnostic du réseau d'assainissement urbain. (1 semaine)

Chapitre 12 : Impacts des rejets urbains sur le milieu récepteur. (1 semaine)

Chapitre 13 : Modèles mathématiques utilisables en assainissement urbain. (2 semaine)

Mode d'évaluation :

Contrôle continue + examen

- 1. François G. Brière, Distribution et collecte des eaux, Edition Presses inter Polytechnique
- 2. Dupon A., hydraulique urbaine, Tome 1, 2 et 3;
- 3. Bonnin J., aide-mémoire d'hydraulique urbaine appliquée aux agglomérations de petites et moyennes importances.
- 4. Varilon F., mémento de l'exploitant d'eau et d'assainissement
- 5. Marc SATIN, Béchir SELMI "Guide technique de l'assainissement ", édition Le Moniteur, Paris 1995.
- 6. François VALIRON " Mémento du gestionnaire de l'alimentation en eau potable et de l'assainissement", édition Lavoisier TEC & DOC, tome 1, 2 et 3, Paris 1994.
- 7. Mackenzie L. DAVIS, David A. CORNWELL "Introduction to Environmental Engineering" Third Edition, USA 1998.
- 8. Bernard CHOCAT "Encyclopédie de l'hydrologie urbaine et de l'assainissement" édition Lavoisier TEC & DOC, Paris 1997.

Unité d'enseignement : UEF 2.1.1

Matière : Épuration et réutilisation des eaux résiduaires

VHS: 45 h00 (Cours: 1h30, TD: 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement

L'étudiant apprendra dans cette matière les techniques d'épuration des effluents liquides, les modes de fonctionnement des réacteurs biologiques et les bases de dimensionnements des ouvrages d'épuration des eaux résiduaires, ainsi que les techniques de la réutilisation des eaux usées épurées en agriculture. Les avantages et les contraintes liés à cette pratique sont également maîtrisés.

Connaissances préalables recommandées

- Les bases de la chimie
- les notions fondamentales de l'hydraulique générale.

Contenu de la matière :

PARTIE 1 : ÉPURATION DES EAUX RESIDUAIRES

Chapitre 1 : Rappels des bases de la microbiologie.

(1 Semaines)

(2 Semaines)

2.1 Généralités sur les paramètres de pollution des eaux usées

Chapitre 2 : Paramètres de pollution des eaux usées et normes de rejet.

- 2.2 Evaluation des débits et de la charge polluante des eaux usées
- 2.3 Normes de rejet

Chapitre 3 : Le traitement mécanique des eaux usées

(2 Semaines)

- 3.1 Dégrillage
- 3.2 Dessablage/déshuilage

Chapitre 4 : Les traitements biologiques des eaux usées

(2 Semaines)

- 4.1 Principes fondamentaux de l'épuration biologique
 - 4.1.1 Définition des phénomènes biologiques
 - 4.1.2 Étude du métabolisme aérobie
 - 4.1.3 Étude du métabolisme anaérobie
- 4.2 Épuration biologique à biomasse fixe
- 4.3 Épuration biologique à biomasse libre

Chapitre 5 : Le traitement des boues

(2 Semaines)

- 5.1 L'épaississement des boues
- 5.2 La déshydratation des boues
- 5.3 La digestion des boues
- 5.4 Le séchage thermique, mixte ou solaire
- 5.5 La destruction par incinération

PARTIE 2: REUTILISATION DES EAUX EPUREES

Chapitre 6 : Les eaux usées et techniques de réutilisation

(2 Semaines)

- 6.1 Composition des eaux usées
- 6.2 Traitement et stockage des eaux usées
- 6.3 L'Irrigation

Chapitre 7 : Aspect règlementaire de la réutilisation des eaux usées en irrigation

(2 Semaines)

- 7.1 Contraintes chimiques (salinité, métaux lourds)
- 7.2 Contraintes microbiologiques (germes pathogènes,)

Chapitre 8 : Techniques d'élaboration de projets de réutilisation des eaux épurées.

(3 Semaines)

- 8.1 Evaluation des ressources et des besoins en eau
- 8.2 L'état de l'assainissement
- 8.3 L'étude du marché des eaux usées
- 8.4 Etude des scénarios

Mode d'évaluation :

Examen écrit + Contrôle continu

- 1. R Tiercelin, Vidal A., Traité d'Irrigation, Editions Tec et Doc Lavoisier, 1350 p, 2006.
- 2. F. Edeline, L'épuration biologique des eaux : Théorie et technologie des réacteurs, Ed. Cebedoc, liège, 1993, 298 p.
- 3. A. Gaid, Épuration biologique des eaux usées urbaines, Tome 1, Ed. OPU, Alger, 1984.
- 4. A. Gaid, Épuration biologique des eaux usées urbaines, Tome 2, Ed. OPU, Alger, 1984.
- 5. C. Gomella et H. Guerree, Les eaux usées dans les agglomérations urbaines ou rurales, Tome 2 : Le traitement, Ed. Evrolles, 1982, paris, 260 p.
- <u>6.</u> Anonyme, Mémento technique de l'eau (Tome 1 et 2), Ed. Degremont-Suez, 10 ème Edition, 2005, 1904 p.

Unité d'enseignement : UEF 2.1.1

Matière : Préservation et protection contre les crues et inondations

VHS: 22h30 (Cours: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement :

Afin de permettre une meilleure compréhension des objectifs des études hydrologiques en relation avec la conception et le dimensionnement des ouvrages de protection des villes contre les inondations, et en se basant sur les éléments de base acquis, le but est de posséder des connaissances sur les aspects d'application de ces éléments aux ouvrages à dimensionner et à projeter et de solutionner des contraintes liées aux inondations en relation avec le milieu urbain.

Connaissances préalables recommandées :

Bases de l'hydrologie et de l'hydraulique générale

Contenu de la matière :

Chapitre 1 : Rappels fondamentaux sur l'hydrologie de base. (1 Semaines)

Chapitre 2 : Présentation et analyse des données (2 Semaines)

Chapitre 3 : Etude des séries de précipitations (2 Semaines)

Chapitre 4 : Etude des séries des débits de crue (2 Semaines)

Chapitre 5 : Solutions de protection et études de variantes. (2 Semaines)

Chapitre 7 : Analyse des crues, typologie des crues, recalibrage des cours d'eaux.

(2 Semaines)

Chapitre 8: Les inondations dans les zones urbaines. (2 Semaines)

Chapitre 9 : Gestion et exploitation des ouvrages de protection. (2 Semaines)

Mode d'évaluation :

100% examen

<u>Références bibliographiques :</u>

- 1. Coste. C e coudet.m, 1988, guide de l'assainissement en milieu urbain et rural, édition Eyrolles.
- 2. Valentin.A, 1972, ouvrages d'assainissement, édition Eyrolles
- 3. Bourier.R, 1992, Les réseaux d'assainissement, édition TEC et DOC
- 4. Bennis S., 2007, Hydraulique et hydrologie, Edition Multimodes.

Unité d'enseignement : UEF 2.1.2

Matière : Aménagement des cours d'eau et transport solide

VHS: 45h00 (Cours: 1h30, TD: 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement :

L'Objectif de l'enseignement de cette matière est de permettre aux étudiants d'acquérir des connaissances sur les phénomènes d'érosion et du transport solide, problème important touchant les bassins versants et provoquant l'envasement des barrages.

Connaissances préalables recommandées :

- Base sur la géologie
- Bases sur l'hydrologie des bassins versants

Contenu de la matière :

Chapitre 1 : Modes de transport

(1 Semaines)

Chapitre 2 : Technique de mesure de la charge solide

(2 Semaines)

(3

Chapitre 3 : Formules de transport et quantification des apports solides (cours d'eau jaugé et non jaugé). (3 Semaines)

Chapitre 4 : Rôle physique et écologique du cours d'eau

(2 Semaines)

Chapitre 5 : Différents types/techniques de confortement de berges. Correction torrentielle

Semaines)

Chapitre 6 : Aménagement des sols et lutte contre l'érosion hydrique. (2 Semaines)

Chapitre 7 : Aperçu sur l'impact des aménagements sur l'environnement. (2 Semaines)

Mode d'évaluation :

Continue + examen

- 1. Degoute . G. transport solide en hydraulique fluviale. Document Cemegraf. 2002.
- 2. Recking. A. Cours d'hydraulique et de transport solide.aris 6.2012

Unité d'enseignement : UEF 2.1.2

Matière : Techniques de reconnaissance et forage

VHS: 22 h 30 (Cours: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement

L'étudiant est censé acquérir des connaissances sur le déroulement d'un forage d'eau depuis le choix du site jusqu'à l'équipement du forage.

Connaissances préalables recommandées

Des connaissances de base sur la géologie et la mécanique des roches et des fluides.

Contenu de la matière

Chapitre 1 : Exploration et reconnaissance

(2 semaines)

- 1.1 Cartographie
- 1.2 Méthodes géophysiques
- 1.3 Sondages (forages) de reconnaissance

Chapitre 2 : Les techniques de forage

2 semaines)

- 2.1 Technique de Battage
- 2.2 Technique Rotary
- 2.3 Technique de la circulation inverse (rotary à circulation inverse)
- 2.4 Technique marteau fond de trou (MFT)
- 2.5 Technique ODEX
- 2.6 Technique de Havage

Chapitre 3 : Fluides de forage (boue de forage)

2 semaines)

- 3.1 Rôles des fluides de forage
- 3.2 La boue
- 3.3 Air comprimé
- 3.4 Mousse stabilisée
- 3.5 Circuits de fluides de forage
- 3.6 Recommandations pour l'utilisation des fluides de forage

Chapitre 4 : Equipement de forage

(2 semaines)

- 4.1 Tubes et Crépines
- 4.2 Massif filtrant (gravier additionnel, massif de gravier)
- 4.3 Cimentation.

Chapitre 5 : Réalisation de forage

(2 semaines)

- 5.1 Installation du chantier de forage
- 5.2 Choix de la technique de forage
- 5.3 Tubages
- 5.4 Contrôle de la rectitude et de la verticalité
- 5.5 Les fosses à boue.

Mode d'évaluation :

100% examen

<u>Références bibliographiques</u>:

- 1. Albert Mabillot : Le forage d'eau (guide pratique). Ed. Johson Filtration systèmes.
- 2. Schlumberger : le forage pétrolier. Ensemble de 10CD multimédias
- 3. Cotefhyd 1985 : forage hydraulique

Unité d'enseignement : UEM 2.1 Matière : Logiciels spécialisés

VHS: 15h00 (TP: 1h)

Crédits : 1 Coefficient : 1

Objectifs de l'enseignement :

Cette matière aura comme objectif de permettre à l'étudiant de maîtriser les logiciels de modélisation hydrologiques ainsi que la réalisation d'une campagne de mesure pour le calage et la validation des résultats de la modélisation.

Connaissances préalables recommandées :

L'étudiant doit avoir des connaissances dans les matières fondamentales à savoir les mathématiques, les écoulements, l'hydrologie et l'informatique

Contenu de la matière :

Chapitre 1 : Modélisation : concepts, approches (2 semaines)

Chapitre 2 : Objectifs de la modélisation des phénomènes hydrologiques. (2 semaines)

Chapitre 3 : Définition d'un modelé hydrologique (2 semaines)

Chapitre 4 : Les différents types de modèles (2 semaines)

Chapitre 5 : Les principales étapes de la modélisation (2 semaines)

Chapitre 6 : Présentation des logiciels, de modélisation, utilises. (2 semaines)

Chapitre 7 : La construction du modèle physique du réseau (2 semaines)

Chapitre 8 : La campagne de mesure et calage du modelé (2 semaines)

Chapitre 9 : Couplage entre SIG et différents modèles hydrologiques. (2 semaines)

Mode d'évaluation :

Contrôle continu: 100%.

- 1. Blain, W. R. (2000). Hydraulic Engineering Software VIII (Wessex Ins). Retrieved from https://www.witpress.com/books/978-1-85312-814-1
- 2. Hager, W. H., Schleiss, A., Boes, R. M., & Pfister, M. (Michael U. . (2021). Hydraulic engineering of dams (Taylor & F).
- 3. Tanguy, J.-M. (2010). Traité d'hydraulique environnementale. Logiciels d'ingénierie du cyclede l'eau (Hermes Sci; H. S. Publications, ed.). Retrieved from Walski, T. M., & Meadows, M. E. (1999). Computer Applications in Hydraulic Engineering (Haestad Me). Haestad Press.

Unité d'enseignement : UEM 2.1

Matière : TP traitement et Épuration des eaux

VHS: 22h30 (TP: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement

Les objectifs assignés par cette matière portent sur l'initiation des étudiants à mettre en pratique les connaissances théoriques acquise dans le cours de l'épuration des eaux résiduaires. L'étudiant sera en mesure d'utiliser les appareils de mesures de paillasse ainsi que les pilotes destinés à réaliser des études sur l'épuration des eaux.

Connaissances préalables recommandées

- Chimie des eaux
- Biologie des eaux
- Traitement des eaux
- Épuration des eaux.

Contenu de la matière :

TP1 : Mesure des matières en suspension (MES). (2 semaines)

TP2 : Mesure des matières volatiles en suspension (MVS). (2 semaines)

TP 3 : Détermination de la demande biochimique en oxygène (DBO5). (2 semaines)

TP4 : Détermination de la demande chimique en oxygène (DCO). (2 semaines)

TP5: Détermination du dosage de l'azote total KJELDAHL (NTK) et du dosage du phosphore total (PT). (3 semaines)

TP6 : Détermination de l'indice de MOHLMAN (IM). (2 semaines)

Mode d'évaluation:

Contrôle continu: 100%.

Références bibliographiques :

1. J. Rodier, Analyse de l'Eau, Ed. Dunod

Unité d'enseignement : UEM 2.1

Matière : Management intégré des ressources en eau

VHS: 45 h00 (Cours: 1h30, TD: 1h30)

Crédits : 4 Coefficient : 2

Objectifs de l'enseignement

Apprendre à l'étudiant les stratégies du concept du développement durable, les principes du management intégré des ressources en eau en fonction de la demande et d'autres contraintes d'ordre technique, socio-économique et environnementale. En plus, il pourra décrire et savoir utiliser les principes et les méthodes de choix et d'optimisation pour une gestion durable de la ressource en eau.

Connaissances préalables recommandées

L'étudiant doit au préalable connaître :

- Les bases sur les ressources en eau.
- Les bases sur les ouvrages de mobilisation et de production d'eau.

Contenu de la matière :

Chapitre 1 : Développement durable (3semaines)

Chapitre 2 : Les stratégies du développement durable (2 semaines)

Chapitre 3 : La gestion intégrée des ressources en eau (3 semaines)

Chapitre 4 : La mise en œuvre de la gestion integree des ressources en eau

(4 semaines)

Mode d'évaluation :

Examens + contrôle continu

Unité d'enseignement : UEM 2.1 Matière : Management des projets

VHS: 22h30 (Cours: 1h30)

Crédits : 2 Coefficient : 1

Objectifs de l'enseignement :

L'objectif de ces enseignements est d'Initier l'étudiant aux bases fondamentales et modernes du management des projets

Connaissances préalables recommandées

Le cours ne requiert pas de connaissances spécifiques préalables.

Contenu de la matière :

Chapitre 1 : Introduction au management des projets.	(1 Semaine)			
Chapitre 2 : Historique du management des projets.	(1 Semaine)			
Chapitre 3 : Management moderne des projets. Approche systémique. (1 Semaine)				
Chapitre 4 : Les fonctions managériales.	(1 Semaine)			
Chapitre 5 : Définir le projet. Le WBS	(1 Semaine)			
Chapitre 6 : Estimation de la durée et des couts du projet.	(1 Semaine)			
Chapitre 7 : Planning et programmation dans les projets.	(2 Semaine)			
Chapitre 8 : Les ressources humaines.	(2 Semaine)			
Chapitre 9: La motivation.	(1 Semaine)			
Chapitre 10 : La décision.	(1 Semaine)			
Chapitre 11 : Le leadership et leaders	(1 Semaine)			

Mode d'évaluation :

100% examen

- 1. Jack R. Meredith and Sanuel J. Mantel, Project Management: A Managerial Approach, 5th Edition, Jr., Wiley, 2006.
- 2. James A. F. Stoner, « Management », 3rd Edition. Prentice Hall
- 3. Chase, Aquilanoet Jacobs, "Production and Operations Management" Irwin-McGraw Hill. 8th edition
- 4. Ray H. Garrison et Eric W. Noreen, "Managerial Accounting" 7th ,Edition ERWIN

- 5. Project Management : A systems Approach to planning, Scheduling, and Controlling, 2003
- 6. E. Wendy Trachte-Huber & S. K Huber. « Alternative Dispute Resolution: Strategies for Law and Business ». Edition Anderson
- 7. C. Hendrickson "Project Management for Construction", livre à télécharger gratuitement du site : http://www.ce.cmu.edu/~cth/pmbook/
- 8. Lasary «Le management d'entreprise», Ouvrage imprimé à compte d'auteur, ISBN : 9947-0-1395-2, 2006
- 9. Clifford F. Gray and Erik W.Larson «Project management: the management process», McGraw hill, second edition, 2003

Unité d'enseignement : UED 2.1 Matière : Matière au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Semestre: 3

Unité d'enseignement : UED 2.1

Matière 2 : Notions de TIC ou autre matière au choix

VHS: 22h30 (Cours: 1h30)

Crédits : 1 Coefficient : 1

Connaissances préalables recommandées :

Notions de base d'informatique

• Généralité sur les technologies de l'information et de la communication

Contenu de la matière :

Chapitre 1 : Internet et le Web : Définitions et historique

Chapitre 2: Principes d'Internet

Chapitre 3 : Principaux services d'Internet

Chapitre 4: Introduction au langage HTML

Mode d'évaluation : Examen : 100%

- 1. Council, N. R. (2012). Water reuse: Potential for expanding the nation's water supply through reuse of municipal wastewater. In The National Academies Press. https://doi.org/10.17226/13303
- 2. De Marsily, G. (2008). Eau, changements climatiques, alimentation et évolution démographique. Revue Des Sciences de l'Eau, 21(2), 111–128. https://doi.org/10.7202/018460AR
- 3. Hunter, P. R., MacDonald, A. M., & Carter, R. C. (2010). Water Supply and Health. PLoS Medicine, 7(11), e1000361. https://doi.org/10.1371/journal.pmed.1000361
- 4. Saleth, R. M. (2002). Water resources and economic development. Retrieved from https://cgspace.cgiar.org/handle/10568/36608
- 5. Voulvoulis, N. (2018, April 1). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science and Health, Vol. 2, pp. 32–45. https://doi.org/10.1016/j.coesh.2018.01.005

Unité d'enseignement : UET 2.1

Matière 1 : Recherche documentaire et conception de mémoire

VHS: 22h30 (Cours: 1h30)

Crédits : 1 Coefficient : 1

Objectifs de l'enseignement :

Donner à l'étudiant les outils nécessaires afin de rechercher l'information utile pour mieux l'exploiter dans son projet de fin d'études. L'aider à franchir les différentes étapes menant à la rédaction d'un document scientifique. Lui signifier l'importance de la communication et lui apprendre à présenter de manière rigoureuse et pédagogique le travail effectué.

Connaissances préalables recommandées :

- Méthodologie de la rédaction
- Méthodologie de la présentation.

Contenu de la matière :

Partie I-: RECHERCHE DOCUMENTAIRE:

Chapitre 1 : Définition du sujet

(02 Semaines)

- 1.1 Intitulé du sujet
- 1.2 Liste des mots clés concernant le sujet
- 1.3 Rassembler l'information de base (acquisition du vocabulaire spécialisé, signification des termes, définition linguistique)
- 1.4 Les informations recherchées
- 1.5 Faire le point sur ses connaissances dans le domaine

Chapitre 2 : Sélectionner les sources d'information

(02 Semaines)

- 2.1 Type de documents (Livres, Thèses, Mémoires, Articles de périodiques, Actes de colloques, Documents audiovisuels...)
- 2.2 Type de ressources (Bibliothèques, Internet...)
- 2.3 Evaluer la qualité et la pertinence des sources d'information

Chapitre 3: Localiser les documents

(01 Semaine)

- 3.1 Les techniques de recherche
- 3.2 Les opérateurs de recherche

Chapitre 4 : Traiter l'information

(02 Semaines)

- 4.1 Organisation du travail
- 4.2 Les questions de départ
- 4.3 Synthèse des documents retenus
- 4.4 Liens entre différentes parties
- 4.5 Plan final de la recherche documentaire

Chapitre 5 : Présentation de la bibliographie

(01 Semaine)

- 5.1 Les systèmes de présentation d'une bibliographie (Le système Harvard)
- 5.2 Vancouver, Le système mixte)
- 5.3 Présentation des documents.
- 5.4 Citation des sources

Partie II: CONCEPTION DE MEMOIRE

Chapitre 6 : Plan et étapes du mémoire

(02 Semaines)

- 6.1 Cerner et délimiter le sujet (Résumé)
- 6.2 Problématique et objectifs du mémoire
- 6.3 Les autres sections utiles (Les remerciements, La table des abréviations...)
- 6.4 L'introduction (La rédaction de l'introduction en dernier lieu)
- 6.5 État de la littérature spécialisée
- 6.6 Formulation des hypothèses
- 6.7 Méthodologie
- 6.8 Résultats
- 6.9 Discussion
- 9.10 Recommandations
- 6.11 Conclusion et perspectives
- 6.12 La table des matières
- 6.13 La bibliographie
- 6.14 Les annexes

Chapitre 7 : Techniques et normes de rédaction

(02 Semaines)

- 7.1 La mise en forme. Numérotation des chapitres, des figures et des tableaux.
- 7.2 La page de garde
- 7.3 La typographie et la ponctuation
- 7.4 La rédaction. La langue scientifique : style, grammaire, syntaxe.
- 7.5 L'orthographe. Amélioration de la compétence linguistique générale sur le plan de la compréhension et de l'expression.
- 7.6 Sauvegarder, sécuriser, archiver ses données.

Chapitre 8 : Atelier : étude critique d'un manuscrit

(01 Semaine)

Chapitre 9: Exposes oraux et soutenances

(01 Semaine)

- 9.1 Comment présenter un Poster
- 9.2 Comment présenter une communication orale.
- 9.3 Soutenance d'un mémoire

Chapitre 10 : Comment éviter le plagiat ?

(01 Semaine)

(Formules, phrases, illustrations, graphiques, données, statistiques,...)

- 10.1 La citation
- 10.2 La paraphrase
- 10.3 Indiquer la référence bibliographique complète

Mode d'évaluation :

Examen: 100%

- 1. Griselin M.et al., Guide de la communication écrite, 2e édition, Dunod, 1999.
- 2. Lebrun J.L., Guide pratique de rédaction scientifique : comment écrire pour le lecteur scientifique international, Les Ulis, EDP Sciences, 2007.
- 3. Mallender A Tanner, ABC de la rédaction technique : modes d'emploi, notices d'utilisation, aides en ligne, Dunod, 2002.
- 4. Greuter. M., Bien rédiger son mémoire ou son rapport de stage, L'Etudiant, 2007.