
Java Hybrid Module System
Specification

2022-12-11

1 Introduction 2

2 Hybrid Modules 2
2.1 Module declaration, descriptor, and version 3
2.2 Readability and the module graph 3
2.3 Observability, visibility, and accessibility 4
2.4 Compilation 6
2.5 Packaging 6
2.6 Linking 6
2.7 Launching application 6
2.8 Hybrid module container 7
2.9 Resource loading 7
2.10 Unit testing 8

3 Implementation 9
3.1 javac wrapper 9
3.2 java wrapper 9
3.3 Class loading 9
3.4 Relation to JPMS modules 10
3.5 Module Resolution and Graph 10
3.6 Services 11
3.7 Unit testing 11

4 Relaxations 11
4.2 Version relaxation 11
4.2 Automatic hybrid modules 12

4.2.1 Auto read set, auto path 12
4.2.2 Activation 12
4.2.3 Module descriptor 12

5 References 13



1 Introduction
The reader should be familiar with Java Platform Module System [JPMS]. Java version 9 or
later is assumed.

The Java Hybrid Module System (JHMS) is a way of compiling and running Java code
similar to JPMS, except that it adds version support: the goal of JHMS is to provide a
consistent view of the dependencies:

The types, fields, and methods that are visible and accessible,
and the versions of these are the same at compile time and run time.

“Run time” means both unit testing time and application run time. JHMS is able to achieve
the goal using techniques similar to [OSGi].

This document defines JHMS from developer’s point of view in 2 Hybrid Modules, and
guides implementations in 3 Implementation. 4 Relaxations defines various relaxations an
implementation is allowed to make to be more flexible in the real world. Motivations and
discussions are deferred to a supplemental document [SUPL]

2 Hybrid Modules
This section contains the specification of the Java Hybrid Module System (JHMS) from the
point of view of the application/library developer.

There are 2 types of modules in JHMS:
1. Platform modules that are part of the Java SE Platform
2. Hybrid modules that are user-defined modules packaged in modular JARs

Relaxation (§4.2) allows a third kind: automatic hybrid modules, that are backed by plain
(non-modular) JARs, and may be helpful during migration to hybrid modules. “hybrid
modules” in this specification always refers to explicit non-automatic hybrid modules, unless
otherwise stated.

This specification describes hybrid modules: how to declare them, how they access platform
modules, etc. It does not go into details on how the given semantics can be achieved on the
Java platform: that’s deferred to the 3 Implementation section.

Hybrid modules are identical to JPMS modules in all aspects, including requirements on
source code, compilation, packaging, linking, testing, launching, and run time, unless
otherwise stated in this specification.

Hybrid modules mainly affect the following areas:
1. Module declarations, detailed in 2.1 Module declaration.
2. Compilation, detailed in 2.4 Compilation.



3. Packaging, detailed in 2.5 Packaging.
4. Bootstrapping the execution of the hybrid modules, detailed in 2.7 Launching

application and 2.8 Hybrid module container.
5. Run time, as derived from 2.3 Observability, visibility, and accessibility.

2.1 Module declaration, descriptor, and version
Any JPMS module declaration (module-info.java), or descriptor (module-info.class), is also a
valid hybrid module declaration (descriptor), however:

1. The open modifier on the module, and the opens directives, are ignored.
2. The provides and uses directives are ignored.
3. The requires directives with the static modifier are ignored at run time.

The semantics of exports in JHMS is roughly that of exports+opens in JPMS, and the effect
of not exporting a package is that it will not be visible outside the module. The precise
semantics are defined in (§2.2).

The hybrid module version is determined by compilation (§2.4) and packaging (§2.5), and
must be set according to ModuleDescriptor.Version. A hybrid module is allowed to have no
version, in case the version is said to be null, empty, or absent.

The version of platform modules are ignored in JHMS.

The module descriptor of a module M contains
1. The version of each module it requires at the time M was compiled. The version of

such a module N is
a. The version of N used during compilation of M, if N is a hybrid module.
b. The Java compiler version used during compilation of M, if N is a platform

module, e.g. 11.0.3.
2. The main class, if specified during packaging (§2.5).

A “module” will be used to refer to a specific version of a hybrid module, or a platform
module. Modules are identified by a name and version pair of the form M@V, even
though…

a. the version should be ignored for platform modules, and
b. the version may be absent for hybrid modules.

2.2 Readability and the module graph
The modules read by a module M@V is the set of these:1

1. M@V
2. For each module N that M requires (non-static): the read closure of N@U, where U is

the version N had at the time M@V was compiled.

1 As a reminder, from (§2.1), ignore the version if the module is a platform module.



The read closure of a module N@U is the set of these modules:
1. N@U.
2. The read closure of any module K@W that N requires transitive (non-static), where

W is the version K had at the time N@U was compiled.

It is an error if the read closure…
1. contains multiple versions of a module, or
2. contains more than one module that exports the same package.

The module graph is the result of resolving a set of root modules R as follows:
1. To resolve a module M at version V (M@V)

a. Add a vertex to the module graph identified by the module name and version
(M@V).

b. For each requires of a module N@W :2

i. Resolve N@W unless it has already been resolved.
ii. Add a requires edge from M@V to N@W, annotated with whether the

requires is transitive or not.
iii. For each module K@U in the read closure of N@W:

1. Do nothing if there is a read edge from M@V to K@U already,
otherwise

2. fail if there is a read edge from M@V to a different version of
K, otherwise

3. add a read edge from M@V to K@U.

The graph made from just the read edges is sometimes also called the readability graph.

The root modules at compile time is the module being compiled. The root modules at run
time is the main module determined in (§2.7) and (§2.8).

The root graph of a module M is the module graph resulting from resolving with M as the
sole root module.

Readability in JPMS, and readability of platform modules in JHMS (which JHMS cannot
change), is defined in [READ] and consistent with the above when 1. references to versions
are ignored from above (as they should be according to (§2.1)), and 2. automatic modules
are ignored (which is deferred to relaxation (§4.2)).

A JHMS implementation should provide a way to print the module graph as dot (graphviz).

2.3 Observability, visibility, and accessibility
Observability, visibility, and access control is covered in the Java Language Specification
[JLS11] (§6.6, §7.3, §7.4.3), and familiarity is assumed. The javac compiler adds additional
constraints at compile time. This section defines observability, visibility, and accessibility only

2 The version of a required module is described in (§2.1).



as it relates to modules in JHMS. The rules are the same at compile and run time, unless
otherwise stated.

2.3.1 Observability
A module N at version V is observable if

1. N is a platform module, or3

2. there is exactly one modular JAR with module name N and version V on the hybrid
module path. The hybrid module path specifies a list of JAR files and parent
directories of JAR files.

a. An implementation should provide --module-path/-p options to specify a colon
(:) separated list of paths to locate hybrid modules when launching a JHMS
application, similar to JPMS (§2.7).

All modules in the readability graph must be observable at compile time. If such a hybrid
module N@V is unobservable, it causes compilation to fail with e.g. “error: module not found:
N”.

All modules in the module graph must be observable at run time. If such a hybrid module
N@V is not observable, a FindException “Hybrid module N@V not found on the module
path” is thrown, analogous to FindException “Module N not found” thrown for an readable
but unobservable platform module in JPMS.

If an unreadable hybrid module N is observable, a reference (in module M) to a package P in
N causes compilation to fail with e.g. “error: package P is not visible” and “package P is
declared in module N, but module M does not read it”. Unless otherwise stated, we will
assume readable hybrid modules are observable.

2.3.2 Visibility
A package P of (platform or hybrid) module N is visible to code in hybrid module M iff

1. N = M, or
2. P is exported (to M if qualified) by N and N is readable by M.

The visibility of a type follows the visibility of its package.

Referring to an invisible type causes compilation to fail with “error: cannot find symbol”. It is a
compile and run time error if two types T and T’ of modules N and N’ (N ≠ N’) are visible to M
with the same package P = P’ (split package). Class.forName() returns the Class object for a
visible type, and throws a ClassNotFoundException for an invisible type.

2.3.3 Accessibility
A type T is accessible to a hybrid module if it is visible and public. A member F in type T is
accessible to a hybrid module if

1. T is accessible, and

3 The version V is ignored.



2. either F is public, or F is protected and the access is from a subclass of T.

A member F in type T is also accessible to a hybrid module via reflection at run time if
1. T is visible, and
2. setAccessible(true) is called on F.

Referring to an inaccessible type T in package P causes compilation to fail with “error: T is
not public in P; cannot be accessed from outside package”. Referring to an inaccessible
private field F of public type T causes compilation to fail with “error: F has private access in
T”. Field::get returns the value of the field as an Object for an accessible field, or throws an
IllegalAccessException for an inaccessible field.

2.3.4 Summary
This section can be summarized as:

Accessibility is granted with pre-JPMS rules for readable
packages , and is otherwise denied by invisibility.4

2.4 Compilation
Compilation must include a module declaration in module-info.java.

The version should be set with --module-version during compilation (or packaging (§2.5))
according to ModuleDescriptor.Version (§2.1).

All readable hybrid modules (§2.2) must be made observable (§2.3) during compilation, i.e.
put on --module-path as a modular JAR (that contains a module-info.class).

When compiling hybrid module M, the modules it requires in the module declaration (§2.1)
have their version stored in the module descriptor (module-info.class) as the compiled
version, if they have a non-null version. The indirect transitively required modules (§2.1) are
not stored in the module descriptor.

If a module M reads both N and K, and N has a requires transitive K, then
1. the version VM of K during the compilation of M, must be equal to
2. the version VN of K during the compilation of N.

Note that this is the same error as having two different versions of a module readable by M,
and forbidden in (§2.2). It’s just that javac does not enforce this. A JHMS implementation
should provide a javac wrapper (§3.1) that would fail compilation if this is violated.

2.5 Packaging
A hybrid module is packaged into a hybrid modular JAR similar to how a JPMS module is
packaged into a modular JAR [MJAR].

4 A readable package P is a package exported from a readable module to the hybrid module.



The main class of the hybrid module can be set with the jar command’s --main-class/-e.

The version may be set with --module-version when packaging the modular JAR, and if so
should set it to a version according to ModuleDescriptor.Version, see (§2.1, §2.4).

2.6 Linking
A JHMS implementation can use jlink to reduce the set of platform modules as long as it still
includes the platform modules required by the application. jlink must not be used to include
any library or application modules.

2.7 Launching application
A JHMS implementation must provide a way to launch a hybrid module application with java
in a way that is similar to launching module mode when passing --module/-m to java, for
instance with a java wrapper (§3.2). It must support the following:

1. There must be a way to specify the paths to look for hybrid modules, preferably
--module-path/-p. All modules in the module graph (§2.2) must be made observable
(§2.3), i.e. added to the hybrid module path.

2. There must be a way to specify the main module and main class, preferably
--module/-m. If the main class is not specified explicitly, the module must have a main
class (§2.5).

The main class of a hybrid module application must be in an exported package.5

The current thread’s context class loader must be the main hybrid module class loader upon
invocation of the main method, by default.

2.8 Hybrid module container
A JHMS implementation should provide a library for bootstrapping a hybrid module container
that can be used to execute hybrid module code according to this specification. The rest of
this section describes such a library.

It must be possible to create a new hybrid module container:
1. The hybrid module container must be created with a module path, as in (§2.7).
2. The hybrid module container must contain an API for resolving a root hybrid module

according to (§2.2). The version of the hybrid module may be omitted if there is only6

one version of the hybrid module on the module path. An interface to the root hybrid
module is returned, and must contain:

6 Not to be confused with an absent/null version: The version of the root hybrid module must be
omitted, or absent/null, or a (non-null) String.

5 Unlike JPMS which allows main in unexported packages. This seemed counterintuitive.



a. A method to return a Class object of a public class in an unqualified exported
package.

b. It must contain a convenience method for invoking a public static void
main(String…) method in such a class (a). When invoking such a method,7

the container must not change the thread’s context class loader, see §2.7.

2.9 Resource loading
The Class::getResource(name) and Class::getResourceAsStream(name) instance methods
invoked on a class instance defined in a hybrid module M, e.g. with
instance.getClass().getResource(), provides a way to load resources in an analogous way to
how classes are loaded. Both methods have similar semantics:

1. name is resolved to an absolute name qname as follows:
a. If name starts with a “/”, then qname is the suffix. Otherwise, qname is

pkg/name, where pkg is the package name of the class with “.” replaced by
“/”.

2. The part before the last “/” of qname, with all “/” replaced by “.” …
a. may be a valid package name exported by another hybrid module N readable

to M, may be a package of M (let N = M), or may be an invalid package name
(let N = M). The resource is loaded from N, returning null if not found.

b. may be a valid package name exported by a platform module N readable by
M…
i. If qname ends in “.class” or the package is open, the resource is8

returned if it exists.
ii. Otherwise, null is returned.

If getResource(name) / getResourceAsStream(name) is called on an instance of a platform
class, then

3. name is resolved to an absolute name qname as in (1) above.
4. The resource is loaded from the platform module if it exists in the module and at least

one of the following is true, otherwise null is returned.
a. qname ends in “.class”, or
b. the part before the last “/” of qname, with all “/” replaced by “.”, is not a valid

package name, or
c. the package is not a package of the platform module, or
d. the package is open.

2.10 Unit testing
Black-box unit testing of a hybrid module M produces a hybrid module T:

1. The hybrid modular JAR T.jar contains everything in M.jar, in addition to test classes
and resources, and an updated module declaration with additional dependencies
(requires).

8 In OpenJDK 17, no platform modules contain non-.class files in open packages, so the “or the
package is open” part can be ignored.

7 Since the main method may be in an unexported package, it would not otherwise be accessible
without special support from the implementation.



2. The tests are written to be run by a test framework. The test framework JARs must
be converted to and compatible with hybrid modular JARs.

3. A test framework specific booter creates a hybrid module container, invokes a main
stub that sets up the test framework and invokes the test framework.

For a working example, see Implementation, Unit testing (§3.7).

There is an alternative black-box unit testing strategy, which may work with more test
frameworks, but requires special support in the hybrid module container:

A. The hybrid modular JAR T.jar contains everything in M.jar, in addition to test classes
and resources, and an updated module declaration with additional dependencies
(requires).

B. The tests are written to be run by a test framework. The additional test
dependencies, and their transitive dependencies, does not have to be converted to
hybrid modular JARs, but that transitive set of JARs cannot conflict with any of M’s
transitive required dependencies. Compilation can be done with the JAR files as
automatic modules.

C. The hybrid module T class loader must try to load classes from the test framework
JARs, if a class is not found by the standard lookup mechanism (class is neither in T
nor in exported packages in transitively required modules).

D. A test framework specific booter creates a hybrid module container, invokes a main
stub, sets up the test framework, and passes control on to the test framework.

This will likely work with more frameworks because the classes and resources seen by the
test framework includes all the test framework JARs, the unit tests, and the classes in the
module being tested. In this respect, the class space is indistinguishable from running the
tests with the normal class path (pre-JPMS).

3 Implementation

3.1 javac wrapper
A JHMS implementation should provide a javac wrapper to implement (§2.3) to help with
verifying the versions used during compilation are consistent among compilations of the
different modules.

3.2 java wrapper
A JHMS implementation should provide a java wrapper that can be used to launch a hybrid
module application (§2.6), similar to how java can be used to launch a JPMS application.

The java wrapper may
1. launch in class path mode,
2. parse options and arguments,



3. make a hybrid module container (§2.7) with main hybrid module according to
--module as the root hybrid module, and module path according to --module-path,
and then

4. pass execution to the main method of the main class, the class specified as part of
--module, or otherwise the main class must have been set on the main hybrid module
(§2.5).

3.3 Class loading
Each hybrid module M is 1:1 with a class loader LM that loads a type T in package P by

1. delegating to another hybrid module class loader LN, if P is exported by a readable
hybrid module N ≠ M (§2.2), or

2. delegating to the platform class loader, if P is exported by a readable platform
module (§2.2), or

3. defining T (defineClass()) by reading the class file from the hybrid modular JAR
(§2.3).

The hybrid module class loader of a hybrid module class C is C.getClassLoader().

As a side-effect, it is possible to gain access to an (otherwise) inaccessible type T of another
hybrid module N (§2.2) by using N’s class loader and calling loadClass().

3.4 Relation to JPMS modules
Each hybrid module M is 1:1 with an unnamed JPMS module, the unnamed JPMS module
associated with the class loader, that according to JLS11 (§7.7.5)

1. exports and opens all packages, and
2. reads all observable modules, which for JHMS means all readable modules (§2.2).

The JPMS module associated with a hybrid module class C is the unnamed JPMS module
associated with the hybrid module class loader:

3. C.getModule() == C.getClassLoader() .getUnnamedModule()

3.5 Module Resolution and Graph
During run time readability resolution, the module graph and its resolution are useful
concepts.

The module graph is a directed graph of (platform and hybrid) modules (uniquely identified
by name and version), and a result of the resolution of a set of root modules R.

Phase 1:
A module M at version V (M@V) is resolved as follows:

a. Add M@V to the module graph, unless it has already been added (skip the rest of
steps).



b. If M is an automatic hybrid module, skip the rest of steps (see phase 2).
c. For each module N that M requires, resolve N@W, whereW is the version module N

had at the time M@V was compiled.
d. Add an edge from M@V to N@W.

Phase 2:
If the module graph contains any automatic hybrid modules, which by (1.b) was not
completely resolved:

a. Resolve all observable platform modules according to phase 1.
b. Add the remaining observable automatic hybrid modules, and resolve all automatic

hybrid modules according to phase 1, ignoring (1.b). From (§2.1.1), an automatic
hybrid module requires all modules.

The set of readable modules for a module M (§2.2) can be seen as a subgraph of the
module graph.

An implementation will typically resolve the module graph as a key component of figuring out
readability.

3.6 Services
Since services are not supported, and uses and provides are ignored (§2.1), an
implementation may warn if it encounters uses directives in the module declaration at
compile time, and should warn at run time. It may fail at run time, but only if it is possible to
disable that failure by simple means, e.g. a system property.

3.7 Unit testing
Black-box unit testing of a hybrid module M can be accomplished as follows:

1. A separate test source directory T contains the source files for the unit tests, in a
directory tree mirroring the source directory for M.

2. A test module declaration module-info.java is a copy of M’s module declaration
module-info.java, but in addition, contains requires for the test dependencies.
InjtelliJ, for example, doesn’t like to see the module-info.java in the root of the test
source directory when it already has one in the source directory, so keep it
somewhere else.

3. The test source directory and test module declaration is compiled using
–patch-module M=M.jar -d TDIR.

4. The test hybrid module M’ is a copy of M.jar, but updated with `jar -u -f M’.jar -C TDIR
.` .

5. A unit test framework specific boot hybrid module is run in a hybrid module container,
and getting the test hybrid module M’ class loader e.g. through the context class
loader. This boot hybrid module sets up and invokes the unit test framework driver.

6. The unit test framework driver JARs must have been converted to (and compatible
with) hybrid modular JARs. The unit test framework driver uses the class loader to
find test classes, instantiate them, and invoke test methods as normal.



The above has been verified to work with JUnit 5.9.1.

4 Relaxations
The other chapters of this specification describes an ideal and narrow interpretation. Such
interpretations may not be practical nor secure: This chapter specifies relaxations of the
various rules.

4.2 Version relaxation
It is allowed, but discouraged to substitute a module with a different version of the module,
both during compilation and run time. This may be important to deliver security fixes.

4.2 Automatic hybrid modules
A JAR without a module-info.class is a plain JAR backing an automatic hybrid module.

This section (§4.2) only applies if the automatic hybrid modules relaxation is claimed by the
JHMS implementation, and automatic hybrid modules has been activated (§4.2.2). If so, the
rest of this section includes the various amendments to the specification (§2).

4.2.1 Auto read set, auto path
All automatic hybrid modules reads the same set of modules called the auto read set:

1. All platform modules,
2. All hybrid modules on the auto path, including the automatic hybrid modules.

The auto path is similar to the module path used to find JARs (§2.3): it is a list of paths to
JARs and directories containing JARs. By default, the auto path equals the module path,9

but it must be possible to set it explicitly, or set it as an exclusion list to be applied to the
module path.

It is an error if there is more than one version of a module on the auto path.10

4.2.2 Activation
Automatic hybrid modules are activated if

1. The module graph contains at least one automatic hybrid module, or
2. the auto path has been set.

10 Again, automatic hybrid modules (§4.2) only applies if there is at least one automatic hybrid module
on the module path.

9 The auto path defaults to the module path, and so if the module path contains multiple version JHMS
would fail? No, because this section on automatic hybrid modules only comes into effect if the module
graph contains any automatic hybrid modules, as mentioned earlier.



4.2.3 Module descriptor
Automatic hybrid modules has an implied module descriptor as follows:

1. All packages are exported
2. requires of all modules in the auto read set.

The name and version of an automatic hybrid module is derived from the JAR as follows
(identical to that of JPMS ):11

1. The name is based on the prefix of the filename, up to but not including the first
“-DIGITS.”, or if not found up to but not including the .jar file extension. The name is
then normalized as follows:

a. All non-alphanumeric characters are replaced by dots (.).
b. All leading and trailing dots are removed, and sequential dots are collapsed to

one.
2. An Automatic-Module-Name entry in the JAR manifest (META-INF/MANIFEST.MF)

overrides the name.
3. The version is based on the suffix of the filename (excluding .jar file extension),

starting with DIGITS in the first occurrence of -DIGITS. in the filename (including .jar
file extension), or null (absent) if not found. If the version is unparseable by
ModuleDescriptor.Version, the version is also null.

The Main-Class manifest entry will be honored and used if the automatic hybrid module is
the main module in (§2.7) and (§2.8), but the main class has not been explicitly provided.

5 References
[JPMS] Java Platform Module System, aka JPMS, aka JSR 376:
http://openjdk.java.net/projects/jigsaw/spec/
[OSGi] OSGi: https://www.osgi.org/
[SUPL] Java Hybrid Module System Supplemental,
https://docs.google.com/document/d/1j9RliG973g4TtD33T1rMZfpPjveuc7nGK-bSaQ2I34w/e
dit
[MJAR] Modular JAR: https://docs.oracle.com/javase/9/tools/jar.htm
[JLS11] Java Language Specification, Java SE 11 Edition:
https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf
[READ] Module resolution and readability graph, java.lang.module package,
https://docs.oracle.com/javase/9/docs/api/java/lang/module/package-summary.html
[MDVE] ModuleDescriptor.Version(), java.lang.module package,
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/module/ModuleDescr
iptor.Version.html

11 See deriveModuleDescriptor(ModulePath.java) in OpenJDK 11 or ModuleFinder.of(Path...) Javadoc.

http://openjdk.java.net/projects/jigsaw/spec/
https://www.osgi.org/
https://docs.google.com/document/d/1j9RliG973g4TtD33T1rMZfpPjveuc7nGK-bSaQ2I34w/edit
https://docs.google.com/document/d/1j9RliG973g4TtD33T1rMZfpPjveuc7nGK-bSaQ2I34w/edit
https://docs.oracle.com/javase/9/tools/jar.htm
https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf
https://docs.oracle.com/javase/9/docs/api/java/lang/module/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/module/ModuleDescriptor.Version.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/module/ModuleDescriptor.Version.html

