
 

 
 
 
 

Mathematics PBAT 
 

Proofs:  “Derivation of Summation” 
 

Assessment:  Outstanding 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

PBAT in Mathematics:  Complete the sections below 
 
Introduction: general overview of the course  (Length: approximately a half page) 
 
Below are some prompts to help you think and write about what you know and understand about 
“proofs.”  Don’t simply answer each question as if it were part of a questionnaire—instead, 
incorporate your response within your introduction in narrative form. 
 
Possible ideas: 

●​ What are proofs? Do we need proofs?  When and how do we use proofs? 
●​ Are proofs important in mathematics? What types of proofs are there? Etc. 

 
Introduction of your specific PBAT topic:  What are you going to prove in your paper? 
(Length: it may take less than half a page. It depends on the topic.) 
 
Provide some brief background information about your topic. State your claim (what will you 
prove?) 
 
Proof (the actual work) 
(Length: It depends on the topic; diagrams and graphs will add pages to the paper.) 
 
Remember, “more” is not necessarily better; however, make sure to include all relevant 
information, visuals, tables, diagrams. 
Examples: 

●​ if you are doing a Number Theory proof, then write: “let’s assume n is an even 

number, then we can express n = 2k because …” 

●​ if you are doing the Pythagorean theorem proof, then state what each variable stands 

for, etc. 

●​ if you are doing a syllogism, indicate what each letter stands for.  Don’t assume 

anything, even if it appears obvious.  State it! 

Support each statement you make along the way with evidence. 

The writing must be fluent, clear, and easy to read and understand. Refrain from repeating 

yourself, as it makes the paper confusing. The reader may lose interest in reading as well. 

 

Conclusions 

 
After summarizing your findings, state your final conclusion. Generally, you repeat the 

introduction of your PBA Task with the difference that now you are confirming it. 



 
 

 
 
 

 
 
 
 
 

Derivation of Summation 
 
 
Introduction 
 

Joshua N. Cooper once said, “A proof is a mathematical argument that serves to prove 

something as being ‘true’ or ‘correct.’” Proofs are essential to life and mathematics because they 

serve to validate one’s statement on a given problem without worry that they are not correct. An 

example of this in math is the process of checking one’s work that they must conduct when 

dealing with algebraic calculations. They do this to prove that the answer they found is correct 

and will work in the given equation. Mathematical proofs however, are not simply equations or 

numbers but are instead deductive arguments that build on prior knowledge. Proofs are essential 

to math because it checks our reasoning. If one states that a given function is true for every 

number, decimal or not, fraction or not, but fails to check it and explain their reasoning behind it, 

then they have failed to accurately prove their argument and so their statement can be proved 

wrong. Proofs must be very precise and unequivocal because one cannot leave room for 

interpretation. If certain vocabulary is not used, the proof falls victim to interpretation and so it 

can be interpreted in various different ways. 

In this PBAT I will be exploring a topic of Number Theory, more specifically, the 

Derivation of Summation. My given problem was first introduced by Gauss. The story goes that 

as a child, Gauss was asked to find the sum of the numbers from 1 to 100.  The question was 



 
 

 



 
 
 
 

assigned as “busy work” by the teacher, but Gauss found the answer rather quickly by 

discovering a pattern. Within just a few seconds, Gauss came to his answer of 5050.  

The 

 

formula he found to easily add 
any set of consecutive integers 
was 

n(n+1) 
2 

, with n representing 
 

 

the last number in my set of numbers. 
 
 
 
Investigation 
 

To find the answer to this question, I began by finding patterns within my set of 

numbers. I realized that the digits from 1 through 9 were common in the ones column for every 

set of the next consecutive 10 integers, i.e. from 11 through 20, 21 through 30, 31 through 40, 

and so on until 91 through 100. Any number within these sets could be seen as the sum of a 

multiple of 10 plus a number from 1 through 9. For example, 11 = 10 + 1 , 12 = 10 + 2 , 13 = 

10 + 3 , 

39 = 30 + 9 and so on. Noticing this pattern, I decided to find the sum of the recurring digits in 
 
the ones column: 1+2+3+4+5+6+7+8+9 = 45 Since I removed these digits from every set of 

10 integers, I will only be adding multiples of 10 in addition to the sum of 45. 

The sum of each set will look as such, 
 
Instead of:​ It looked like: 
 
1+2+3+4+5+6+7+8+9+10 = 55​ (0+0+0+0+0+0+0+0+0) +10 +45 =55 

11+12+13+14+15+16+17+18+19+20=155​ (10+10+10+10+10+10+10+10+10) +20+45 =155 

21+22+23+24+25+26+27+28+29+30=255​ (20+20+20+20+20+20+20+20+20) +30 +45 
=255 



 

31+32+33+34+35+36+37+38+39+40=355​ (30+30+30+30+30+30+30+30+30)+40+45=355 

41+42+43+44+45+46+47+48+49+50=455​ (40+40+40+40+40+40+40+40+40)+50+45=455 
 
As can be seen on the right side of the diagram, I only have multiples of 10, except for the 

first set/row of 10 integers.  I noticed that in addition to 45, each number in the set was the 

same 

 

 



 
 
 
 

multiple of 10, except for the final integer which is 10 greater than the other integers. I tried to 

create a formula to find the sum of each set using this knowledge, ultimately getting 

(9n + (n + 10)) + 45. The n will represent the multiple of 10 present. Since I have nine of them, I 
 
multiply this number 9 times. (n + 10) represents the last multiple of ten that is 10 greater than 

 
the recurring multiple of 10. 45 represents the recurring sum present in each set of 10 numbers. I 

can simplify the formula I found by combining 9n and n to make 10n , and 45 and 10 to make 

55. These can be factored from 10n + 55 → 5(2n + 11). 
 

This final equation works for each individual set of 10 integers, but when combining two 

or more sets, cannot be used. Using this equation, I found that there is no way to directly relate n 

from one set of integers to the next set of 10 integers. This means that there is no way for me to 

transition from a set of multiples of 10 to multiples of 20 to multiples of 30 without performing 

an overall sum for each individual set. So, there is no way for me continuously increase my n by 

10 without manipulating the equation midway through my calculations, unless the formula is a 

 

sum of each different set/row. If I were to set up 
a sum, it would look as such 

10 

∑ 5(2n + 11) 
n = 0 

 

 

where n indicates a multiple of 10. So 0 =0, 1=10, 2=20, 3=30, 4=40, and so on until I get to 
 
10=100. 

 
This equation works for the first 100 numbers but if I do not have sets of 10 integers 

where the sum of 19 can be isolated, it does not work as well. For instance, if I began from 16 

instead of 1, I would have to change the formula being used in the sum so that it reflects a sum 

that is not 45 because 45 is not consistent in each set being added. Also, if I began with a 

 



 
 



 
 
 
 

negative number, I would have to alter the number that n can represent in the formula as it 

may not directly represent 10. 

After discovering that the formula I found would not work for any number being used, 

I decided to change my approach to the problem, I would begin the problem similarly to my 

previous attempt, isolating a specific sum, but instead of of 19, being 45, I would isolate the 

sum of 110, being 55. This would eliminate the final multiple of 10 being greater than the 

recurring multiple of 10, and leave me with the same multiple of 10 being repeated 10 times. 

It would look as such 

Instead of:​ It looked like: 
 
1+2+3+4+5+6+7+8+9+10 = 55​ (0+0+0+0+0+0+0+0+0) +0) +55=55 

11+12+13+14+15+16+17+18+19+20=155​ (10+10+10+10+10+10+10+10+10+10) +55 =155 

21+22+23+24+25+26+27+28+29+30=255​ (20+20+20+20+20+20+20+20+20+20) +55 =255 
 
 

As can be seen, I have the same multiple of 10 being repeated 10 times, except for the 

first set of 10 numbers. This would give me a multiple of 100 as the sum depending on the 

multiple of 10 present in the set. So, a set of 10s would result in a sum of 100, a set of 20s 

would result in a sum of 200, and so on until the final set of 90s that gives me a sum of 900. 

After isolating the sum of 110 from every set of 10 numbers, I will have a sum of 55 

being repeated 10 times. I would then add this recurring sum to get an overall sum of 550. To 

find the total sum of all 10 sets (with the sum of 110 isolated) I will simply be finding the sum 

of the digits from 1 through 9. Since I have 10 sets whose sums are a multiple of 100, with the 

exception of the first set of 10 numbers, I will be adding 100 through 900. So, if I add 19 and 

multiply this by 100, I will have the sum of all 10 sets. So, adding 19, I get 45 and 

multiplying 



 
 

 



 
 
 
 

this by 100 will give me an overall sum of 4500. I will then add 550 to 4500 and get a final 

answer of 5050. 

The formula I found for this approach was 10(10n) + 55  where n represents the set 
 
number. Distributing the 10, my revised formula is 100n + 55. I categorized my sets into set 

numbers according to every 10 integers. A table of the set numbers can be seen below. 

 

Set # Numbers in the set 

n=0 1,2,3,4,5,6,7,8,9,10 

n=1 11,12,13,14,15,16,17,18,19,20 

n=2 21,22,23,24,25,26,27,28,29,30 

n=3 31,32,33,34,35,36,37,38,39,40 

n=4 41,42,43,44,45,46,47,48,49,50 
 
 

So, set 0 would be 110, set 1 would be 1120, set 2 would 2130. The reason for why the 

first set is numbered 0 and not 1 is because there is not a multiple of 10 present and so it would 

not fit the formula. Similar to my previous approach, this formula will only work if I was finding 

the sum of each individual set of 10 numbers. It does not have one single value for n and so it 

calculates the sum for an individual set of 10 numbers instead of overall sum. Also, if my initial 

number is not 1, this formula will not work. 

My next approach started with me separating even and odd numbers and creating a 

formula from this. I decided to separate them because if I split the 100 numbers by even and odd, 

create an equation to find each of their sums, and combine the two equations, then I would 

logically have the equation for the sum of all 100 numbers. I began by creating a table for even 

 

 



 
 
 
 

in which I would add every consecutive even number (2,4,6,8,10, … 100) beginning from 

two and continuing until I could notice a pattern. Similarly, I created a table in which I 

would add every consecutive odd number (1,3,5,7,9, … 99) beginning from 1 and continuing 

until I could notice a pattern. The table on the left represents even numbers and the table on 

the right represents odd numbers. 

 
 
# of 
integers 
added 

Even 
# 

Even 
addition 

Sum  # of 
integers 
added 

Odd 
# 

Odd 
addition 

Sum 

1 2 2 2 1 1 1 1 

2 4 2 + 4 6 2 3 1 + 3 4 

3 6 6 + 6 12 3 5 4 + 5 9 

4 8 12 + 8 20 4 7 9 + 7 16 

n   n(n + 1) n   

n2 

 
 

With regards to the table for even numbers, one can see that the sum for any 

combination of even numbers is n(n + 1) where n represents half the total number of terms.  I 

found this 

because I saw that the numbers of integers being used was always a fraction of the sum. For 

example, for 2 integers, 2 is onethird of 6, so to find 6, I would multiply 2 by 3 and 3 is equal 

to 

2 + 1 . For 3 integers being used, 3 is onefourth of 12 so I multiply 3 by 4 and 4 is 3 + 1 . For 4 
 
integers being used, 4 is onefifth of 20, so to find 20, I would multiply 4 by 5 and 5 is 4 + 1 . 

 
The pattern here is that the sum is equal to the number of terms, n, multiplied by the number 



 
of terms plus 1, (n + 1),  so my formula for finding the sum of all the even numbers is n(n + 

1). 

 

 



 
 
 
 

Looking at the table for odd numbers now, the formula that I found to calculate the sum 

for any number of odd numbers is n2. I found this because I noticed that the sum was always  a 

result of the number of terms being used multiplied by itself, or to the second power. So, for 2 

terms being used, the sum was 4, which is 2 times 2. For 3 terms being used, the sum is 9 which 

is 3 times 3. For 4 terms being used, the sum is 16 which is 4 times 4. So, using this knowledge, I 

concluded that for n number of terms, the sum must be n multiplied by itself or n2. 

Now that I have the formulas for both any number of even and odd numbers, I can 

combine them to find the sum for all 100 terms. Both n(n + 1) and n2 combine to become 

n2 + n(n + 1), which can be simplified to n2 + n2 + n. This can be further simplified to get 
 

2n2 + n which can be factored one final time to get my final revised formula of n(2n + 1) . 
 
In this formula n represents half the number of total terms. Since I split the total number of terms 

in half to find the formulas for the sum of even and odd numbers, I have to keep the number of 

terms used in those formulas consistent, which is half the total number of terms. So n in my 

original problem will be 50. If I plug this number in, I get 50(2(50) + 1) = 50(101) = 5050 . My 

answer using the formula I found is the same as that which Gauss found so I know that this 

formula works for the first 100 numbers. 

Comparing this formula to Gauss’, they both work the same when instead of plugging in 
 
 

n = 50 , I plug in n = n  . This still has the same 
value of n = 50 

where it is equal to half the 
 

 
 

number of terms but it is represented differently. 
When plugging in 

n  into my even and odd 
 

 
 



 
n  2​ n  n n​ n2

 n2​ n 
 

equations, it 
becomes 

( 2 ) + 2 ( 2 + 1) . 

Distributing 

the exponent 

and 

2  , I get 
4   

+ 
4 

+ 2  . 

 

 
 

Adding like 
terms, I get 

2n2 4 + n  . Now, I 
multiply 

n  by 2 to get like 
terms and add. 

n  becomes 
 

 



 
 
 
 

2n  and my sum is 
now equal to 

2n2+ 2n 4 . I divide by 2 and 
get 

n2+ n 
2 

. Factoring n2 + n 
gives me 
 

 
 

n(n + 1) and my final formula 
is 

n(n+1) 2 , which is the same formula that 
Gauss found. 
 

 

Now I can test this formula to see if it works when the number of terms to be added 

cannot be evenly split. I tested this formula to see if it worked using a set of numbers that began 

from one but did not split evenly. My set began at 1 and ended at 17. This gave me total number 

of 17 terms that split into 8 even and 9 odd. Seeing as I do not have one value for n, I decided to 

use the average number of even and odd numbers. I divided 17 by 2 and got 8.5 as my value for 

n.​Plugging this value into my equation n(2n + 1) , I get 8.5(2(8.5) + 1) = 8.5(18) = 153 . Doing 
 
the manual addition, the total sum is also 153. Now that I know the equation works for a set of 

numbers that begins at 1 but does not evenly split, I will test it with a set of numbers that does 

not begin at 1. The set of numbers I used to test this began at 3 and ended at 17, giving me a 

total of 15 terms. This would result in 7 even terms and 8 odd terms, and since I do not have the 

same amount of even and odd terms, this means that my n will not be the same. Again, I decided 

to take the average number of even and odd numbers. So I divided 15 by 2 and got 7.5 as my 

value for n. Plugging this into my equation, I get 7.5(2(7.5) + 1) = 7.5(16) = 120 . Performing 

the 

manual addition resulted in a sum of 150, proving that this equation does not work when given a 

set of numbers that does not begin at 1. Seeing that the revised formula did not work, I decided 

to test out if I would get 150 if I separated both formulas to find the sum for even numbers and 

odd numbers. I plugged in 8 into the equation for odd numbers getting 82 = 64 for the sum of my 



 
odd numbers. For even numbers, I plugged in 7 and got 7(7 + 1) = 7(8) = 56 . Adding 56 and 64 

 
results in 120, proving that the equations still do not work. One reason that the equation does not 

 
 



 
 
 
 

work is that taking the average implies that the first even number is 2 and the first odd number is 
 
1.​ This will give me the incorrect sum for even numbers and odd numbers which will 

ultimately give me an incorrect total sum. 

My final approach began with me deciding to group the numbers by first and last integer, 

continuously increasing the first number by one and decreasing the final number by one. This 

would result in the sum of each pair being the same, which I could use to find the final sum of all 

100 numbers. I decided to use this approach after I noticed that from the first 10 number, I could 

form 5 pairs whose sums would all equal 11. So, if I multiply the common sum by the number of 

pairs in a set, I would find the total sum for the set. This would give me an equation where if I 

had the total number of pairs in a set and the sum of each pair, I could find the total sum. I began 

by using the first 10 numbers to test if it worked. It looked as such where 

Instead of: 1+2+3+4+5+6+7+8+9+10 =55 
 
It looked like: 
 

1+10=11 2+9=11 3+8=11 4+7=11 5+6=11 
 
 

As can be seen, each pair of two numbers has a sum of 11 which is common between all 5 pairs, 

giving me a total sum of 55. Doing this showed me that my total number of integers was being 

split in half due to the pairing. After seeing that this worked for the first ten numbers, I decided 

to test it out for the first twenty numbers. The pairs for the first 20 numbers looked as such, 

1+20=21 2+19=21 3+18=21 4+17=21 5+16=21 

6+15=21 7+14=21 8+13=21 9+12=21 10+11=21 

 
 



 
 
 
 

Each pair has a common sum of 21 and I have ten pairs, so 21 multiplied by 10 gives me a total 

sum of 210. After testing this method out for the first ten and the first twenty numbers, I decided 

to test it with all one hundred numbers. I began by adding 1 and 100, giving me a sum of 101. 

Using the method for the first ten and twenty numbers, this would logically give me the sum for 

the first 100 numbers. All 50 pairs can be seen below. 

1+100=101 2+99=101 3+98=101 4+97=101 5+96=101 

6+95=101 7+94=101 8+93=101 9+92=101 10+91=101 

11+90=101 12+89=101 13+88=101 14+87=101 15+86=101 

16+85=101 17+84=101 18+83=101 19+82=101 20+81=101 

21+80=101 22+79=101 23+78=101 24+77=101 25+76=101 

26+75=101 27+74=101 28+73=101 29+72=101 30+71=101 

31+70=101 32+69=101 33+68=101 34+67=101 35+66=101 

36+65=101 37+64=101 38+63=101 39+62=101 40+61=101 

41+60=101 42+59=101 43+58=101 44+57=101 45+56=101 

46+55=101 47+54=101 48+53=101 49+52=101 50+51=101 
 
 
As can be seen from the table, each pair has the recurring sum of 101. Since I have a total of 50 

pairs and each shares the common sum of 101, if I multiply the recurring sum by the total 

number of pairs, I would find the sum for all the numbers, so 101 ∙ 50 = 5050 . 

Noticing that my total number of pairs was equal to half my total number of terms and 

that the recurring sum was equal to the initial number plus the final number, I decided to create a 

formula. 

 

 



 
 
 
 
 

My formula was 
 

x (x + 1) where x represents the final number in 
the set, which is also 

 
 
equal to the total number of terms. I divide x by 2 to find the total number of pairs and inside the 

parenthesis, I add 1 to x to find the recurring sum, which is equal to the the sum of the final and 

initial integer. So, if given a set of numbers begins at 1 and ends at 67, 67 would represent my 

value for x and I would simply plug it into the equation: 67(67 + 1) = 33.5(68) = 2, 278 . 

Therefore, the sum for the first 67 terms when using the formula is 2,278 and when manually 

adding is also 2,278. Since I got the same answer using the formula as I would when manually 

adding I know that this formula works for any set of numbers beginning from one. 

As I did for my previous attempts, I checked if the formula would work for the sum of 

consecutive integers if the set began with numbers other than one. After testing the formula out 

however, I found that the formula did not work anymore. The amount of pairs that I found were 

equal to half the amount of terms, but the recurring sum was not accurate seeing as the set did 

not begin with one. For example, if my set began at 4 and ended at 17, the recurring sum using 

the formula would be 18 (17+1). After finding this out, I discovered that n is This sum however, 

is not accurate and the actual recurring sum is 21 when I add the initial and final number, (4+17), 

(5+16); etc.. 

This made me change my formula slightly, where instead of adding one inside of the 

parenthesis, I would add the initial and the final terms for the set. These would be represented by 

xi , and the final term would be xf . To find the total number of terms, t, in the set I subtract the 
 

initial term,  xi , from the final term, xf , and add one.  I add one because the equation t = (xf − xi) 
 

only counts the number of terms from the initial to the final, failing to take into account the 
 

 



 
 
 
 

initial term, so I add one to include the initial term in the total number of terms. It would look as 
 
 

 
such, t = (xf − xi) + 1 . My 
revised formula would be 

xi 

∑  = 
n =xf 

t​+ xi) . 
 

 
To get to my final formula from my my original formula, I had to substitute a lot of the 

 
values. With the x (x + 1) formula, I had to substitute the x being divided by two ( x ) to represent 

2​ 2 
 

the total number of terms. I knew that this would not be equal to the final number so I had to 

give assign a different variable to it, being t. After finding this, I had to find how to represent the 

final number plus the initial number within the parenthesis (x + 1) . I decided to keep the same 

 

variable of x but instead the final integer would 
be represented by 

xf  and the initial term would 
 

 
 

be  xi . This would give me my 
final formula of 

t​+ xi) where I divide the total number 
of 

 

 

terms by 2 to find the total pairs and add the final and initial term to find the recurring sum. 
 

Now, if I test this formula with a set of numbers starting at 4 and ending at 19, I would 
 
 

begin by finding the total 
number of terms. I would plug 
in 4 as xi 

and 19 as xf and solve for my 
 

 

t value: t = (19 − 4) + 1 = 15 + 1 = 16. Now that I know my value for t, I can move onto the final 
 
 
formula. I plug in 16 as my t 
value, plug in 4 as xi 

and 19 as xf and solve for the sum. 
 

 



 
16(19 + 4) = 8(23) = 184 . My sum for a set of numbers starting at 4 and ending at 19 using my 

 
formula is 184 and using manual addition, it is also 184. Now, I have my final formula to find 

the sum of any set of numbers regardless of it begins from one or not. 

Comparing Gauss’ formula to my own, there are some noticeable differences and 
 
similarities. When finding the sum between the final and initial number, (xf + xi) is the same as (n 

 
 

+1) when n is considered the final term and 1 is 
the initial term. Also, 

n is the same as  t when n 
 

 



 
 
 
 

is considered the total number of terms in the set and not the final number. Also, because both 

equations were found working in pairs, both equations feature the total number of terms being 

divided by 2. 

My equation differs from Gauss’ because his equation does not require you to find the 

total number of terms. Since n represents the total number of terms, there is no need to find them. 

Also, since he only dealt with the first 100 numbers, his initial term was 1. Since not every set 

 

begins with 1, I substituted 1 with xi 

 
 

Proof by Induction 

to represent the initial term. 
 

 

Now that I have found my final equation for any set of numbers, I will prove that the 
 
 

original 
n (n + 1) equation works for every number. My 
method of proving this equation will be 

 
 
proof by induction. I will begin by proving that the equation works for the base case, or  n = 1 . 

 
I will then make the assumption that the equation works for any number k, or n = k . If I can 

 
prove that the formula also works for the next term or n = k + 1 , then by induction the formula 

 
must work for any term afterwords. Proving that the equation works for k + 1 will create a 

 
“domino effect” where for any number k, I will have proven that it works for the any term 

afterwards. Assuming that the formula works for k = 29 , if I can prove that the formula also 

works for n = k + 1 (30) , I know that it will work for any number after that. Assuming that the 
 
formula works for k = 1, 789 , if I prove that the equation works for n = k + 1(1, 790) , I know 

 
that it will also work for any number after that. 

 
The first step is to prove that the equation works when I plug in 1 for n. 



 
 

 



 
 
 
 
1 

n​ 1 
 

∑  = 
n =1 

2(n + 1) = 2(1 + 1) = 0.5(2) = 1 
 

Therefore the sum for n = 1 is one, and since my only number is 1, the sum must be 1. 

Next, I assume that the formula works for any number k, or for  n = k 
 
 

k 
∑ 

n =1 
 

k(k+1) 

=​ 2 

 

 

Now I prove that the equation works for the next term, or n = k + 1 
 
 

k+1 
∑  = 

n =1 
 

1 + 2 + 3 + 4 ..... k + (k + 1) 
 

 
 

Assuming that the sum for any 
number up to and including k is 

k(k+1) 2 , I can substitute 
 

 

everything up to k + 1 with its sum. 
 
 

k+1 
∑  = 

n =1 
 

k(k+1) 2 
 

+ (k + 1) 
 

 

So, now I want to find a common denominator so that I can properly add my two numbers. 
 
 

k+1 
∑ 

n =1 

k(k+1) 2 2
(
k
+
1
) 

2 
 

 
 
 
Now I add both numbers. 

 

 
 
k+1 

∑ 

n =1 
 



 
 
 

k
(
k
+

1
)
+
2
(
k

+
1
) 
2 

 

 
 
Seeing that (k + 1) is common to both terms, I can factor this out. It will look as such 

 
 

k+1 
∑ 

n =1 

(k+1)(
k
+
2
) 
2 

 
 

This can be rewritten one final time where instead of (k + 2) , I have ((k + 1) + 1) . My final sum 
 
will look as such 

 
 



 
 
 
 
 

k+1 
∑ 

n =1 
 

(k+1)(k+2) 2 
 

(
k
+
1
)
(
(
k
+
1
)
+
1
) 
2 

 
 

This final sum proves that the equation works for n = k + 1 . It proves that the original equation 
 

of n (n + 1) applies when n = k + 1 . If I were to substitute every value for n in my original 
 
equation with k + 1 , I would get the same sum as I did for my final sum above. Proving that the 

 
equation works for the base case, or 1, and assuming that it works for any number k has proven 

that it also works when n = k + 1 . Now that I know that the equation works for any number k, 

through induction, I also know that it works for the following term. So if n = 74 , I know that it 
 
will have to work for n = 75 . Now that I know it works for  n = 75 , it must work for n = 76 and 

 
so on. 

 
 
 
Conclusion 
 

In conclusion, there are many different ways one can approach a problem and many 

different ways one can solve it. With this problem for example, I approached the problem in 

many different ways, some that gave me a fitting formula when finding the sum of the first 100 

consecutive numbers. However, when I tested the formula using a set of numbers other than the 

first 100, it would not work. This would make me try out a different approach and create 

different formulas until I finally found my final formula. Numbers are so interconnected that we 



 
can find many different strategies, patterns, and relationships when given a problem. With this 

problem for example, the same formula did not work for every case. With the n(2n + 1) , I found 

that it worked with any set of numbers beginning from one but not with a set of numbers other 
 
 

than one. However, with the 
t​ + xi) formula, I found that it worked for 
both sets of numbers 

 
 



 
 
 
 

that begin from one as well as sets of numbers that do not begin with one. This process of 

finding the answer to a problem and attempting to validate it shows why proofs are important. 

They serve to validate one’s argument and provide logical reasoning for the answer one finds to 

a given problem. It is important to be accurate when making claims because if one is not 

accurate with both their reasoning and the work they provide, their proof can be proven false. 

My experience exploring the topic of number theory is one of constant trial and error. When I 

thought that I had found a formula, I had to test if it worked for any set of numbers and when I 

found that it didn’t, I had to move on to a different approach. When writing the paper, I had to be 

as clear and specific with my explanation as possible. I found that the way in which I explained 

certain things was not as clear as I thought and when people read it, they were confused. This 

made me have to change my explanation and include additional details that I assumed people 

knew. 
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