The bioMETRO-LM project

Short project description

The bioMETRO-LM project aims to train (& release) a wide variety of METRO-like models on
a variety of biochemical sequences.

Data

Since the project is focused on the language modeling aspect, it can be readily applied to a
variety of biochemical sequence sources. Data retrieval and preprocessing should be
handled as part of the bio-datasets project, while model evaluation should be handled as
part of the bio-eval project).

We could leverage the language model’s internal representation for general protein fitness &
structure prediction (see ESM, ProtTrans, ProteinBERT and CARP, AminoBERT). For this
use case, we would most likely be training on either UniRef50 or UniRef90.

When it comes to proteins we could also train more “specialized” models, for example for
antibody sequences (see AntiBERTa, trained on a clustered set of sequences sourced from
the Observed Antibody Space) or T-cell receptor sequences (see TCR-BERT, trained on
sequences sourced from TCRdb).

For protein sequences, antibody sequences and TCR sequences we most likely want to
include both the original sequences and their reverse.

We could also apply this kind of modeling to small molecule sequences (see MolFormer, for
example). In this case, the main datasets would be PubChem and ZINC, and we would most
likely want to leverage the SELFIES molecular string representation over the more
commonly used SMILES.

Methods

The main method we want to leverage is the replaced token detection (RTD) objective first
introduced in ELECTRA. The objective has seen significant success in NLP, having been
picked up by many followup models (including COCO-LM, DeBERTaV3 and most recently
METROQ) due to its increased sample efficiency compared to BERT’s masked language
modeling (MLM) objective. In particular, by forcing the model to decide whether each and
every token in the sequence has been replaced or not, with RTD we are providing the model
with a learning signal for all tokens in the dataset, unlike MLM’s case (where it's usually
provided for 15% of tokens). This fact is particularly important for datasets that are not
exceedingly large, like most biochemical ones.

When it comes to positional embeddings we likely want to ablate both Rotary and AliBi.



https://www.biorxiv.org/content/10.1101/622803v4
https://arxiv.org/abs/2007.06225
https://www.biorxiv.org/content/10.1101/2021.05.24.445464v1
https://www.biorxiv.org/content/10.1101/2022.05.19.492714v1
https://www.biorxiv.org/content/10.1101/2021.08.02.454840v1
https://doi.org/10.1016/j.patter.2022.100513
http://opig.stats.ox.ac.uk/webapps/oas/
https://www.biorxiv.org/content/10.1101/2021.11.18.469186v1
http://bioinfo.life.hust.edu.cn/TCRdb/#/
https://arxiv.org/abs/2106.09553
https://pubchemdocs.ncbi.nlm.nih.gov/downloads#_3
https://zinc20.docking.org/
https://arxiv.org/abs/1905.13741
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2102.08473
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2204.06644
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409

FlashAttention provides a highly performant |O-aware self-attention implementation. It's
however not yet easy to install, and it limits each head’s dimension to 64 (though this one in
particular should not be an issue, given that the largest METRO models also use this head
size). It’s likely worth considering.

We most likely want to use Maximal Update Parametrization (muP) for hyperparameter
tuning. Properly tuning the models will be important, as some previous models have been
such as ProtTrans-XL & XXL have been shown to perform badly with respect to their size.

We most likely want to use either PyTorch’s Fully Sharded Data Parallel (FSDP) API or
ALPA (in case of a JAX codebase) to make sure models can be scaled up if needed. In case
we do scale up the model size, we should keep in mind that most downstream users won’t
have access to large-scale computing resources, and that as such we should make sure that
inference from all models is possible through Colab instances.

Project goals

The main project goal should be that of building a scalable codebase for METRO-like
models, in order to allow the training of a variety of models on various kinds of biochemical
sequences. We should attempt to release the best single (protein, antibody, TCR or
molecule) sequence models at the time of release.


https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2203.03466
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://github.com/alpa-projects/alpa

	The bioMETRO-LM project 
	Short project description 
	Data 
	Methods 
	Project goals 

