
The bioMETRO-LM project 

Short project description 
The bioMETRO-LM project aims to train (& release) a wide variety of METRO-like models on 
a variety of biochemical sequences. 

Data 
Since the project is focused on the language modeling aspect, it can be readily applied to a 
variety of biochemical sequence sources. Data retrieval and preprocessing should be 
handled as part of the bio-datasets project, while model evaluation should be handled as 
part of the bio-eval project). 
 
We could leverage the language model’s internal representation for general protein fitness & 
structure prediction (see ESM, ProtTrans, ProteinBERT and CARP, AminoBERT). For this 
use case, we would most likely be training on either UniRef50 or UniRef90. 
 
When it comes to proteins we could also train more “specialized” models, for example for 
antibody sequences (see AntiBERTa, trained on a clustered set of sequences sourced from 
the Observed Antibody Space) or T-cell receptor sequences (see TCR-BERT, trained on 
sequences sourced from TCRdb). 
 
For protein sequences, antibody sequences and TCR sequences we most likely want to 
include both the original sequences and their reverse. 
 
We could also apply this kind of modeling to small molecule sequences (see MolFormer, for 
example). In this case, the main datasets would be PubChem and ZINC, and we would most 
likely want to leverage the SELFIES molecular string representation over the more 
commonly used SMILES. 

Methods 
The main method we want to leverage is the replaced token detection (RTD) objective first 
introduced in ELECTRA. The objective has seen significant success in NLP, having been 
picked up by many followup models (including COCO-LM, DeBERTaV3 and most recently 
METRO) due to its increased sample efficiency compared to BERT’s masked language 
modeling (MLM) objective. In particular, by forcing the model to decide whether each and 
every token in the sequence has been replaced or not, with RTD we are providing the model 
with a learning signal for all tokens in the dataset, unlike MLM’s case (where it’s usually 
provided for 15% of tokens). This fact is particularly important for datasets that are not 
exceedingly large, like most biochemical ones. 
 
When it comes to positional embeddings we likely want to ablate both Rotary and AliBi. 

https://www.biorxiv.org/content/10.1101/622803v4
https://arxiv.org/abs/2007.06225
https://www.biorxiv.org/content/10.1101/2021.05.24.445464v1
https://www.biorxiv.org/content/10.1101/2022.05.19.492714v1
https://www.biorxiv.org/content/10.1101/2021.08.02.454840v1
https://doi.org/10.1016/j.patter.2022.100513
http://opig.stats.ox.ac.uk/webapps/oas/
https://www.biorxiv.org/content/10.1101/2021.11.18.469186v1
http://bioinfo.life.hust.edu.cn/TCRdb/#/
https://arxiv.org/abs/2106.09553
https://pubchemdocs.ncbi.nlm.nih.gov/downloads#_3
https://zinc20.docking.org/
https://arxiv.org/abs/1905.13741
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2102.08473
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2204.06644
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409


 
FlashAttention provides a highly performant IO-aware self-attention implementation. It’s 
however not yet easy to install, and it limits each head’s dimension to 64 (though this one in 
particular should not be an issue, given that the largest METRO models also use this head 
size). It’s likely worth considering. 
 
We most likely want to use Maximal Update Parametrization (muP) for hyperparameter 
tuning. Properly tuning the models will be important, as some previous models have been 
such as ProtTrans-XL & XXL have been shown to perform badly with respect to their size. 
 
We most likely want to use either PyTorch’s Fully Sharded Data Parallel (FSDP) API or 
ALPA (in case of a JAX codebase) to make sure models can be scaled up if needed. In case 
we do scale up the model size, we should keep in mind that most downstream users won’t 
have access to large-scale computing resources, and that as such we should make sure that 
inference from all models is possible through Colab instances. 

Project goals 
The main project goal should be that of building a scalable codebase for METRO-like 
models, in order to allow the training of a variety of models on various kinds of biochemical 
sequences. We should attempt to release the best single (protein, antibody, TCR or 
molecule) sequence models at the time of release. 

https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2203.03466
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://github.com/alpa-projects/alpa

	The bioMETRO-LM project 
	Short project description 
	Data 
	Methods 
	Project goals 

