
Pants 1.0 Release Plan

Summary
Announcement

Open questions
Blockers

Goals
Non Goals
Documentation
API change policy post 1.0

API Definition
Allowed API changes:
Disallowed API changes:
Identifying API modules and methods

File by File Analysis for API:
Discussion about using docstrings to indicate public/private:

Proposal:
Appendix 1: Existing references to API methods

Square’s internal repo:

Summary

This lists the features we need to get to the Pants 1.0 release and policies we will put in place to
maintain the stability of release versions of Pants.

It additionally covers the 1.0.0 announcement, and any coordinated efforts lead by contributing
organizations to assist in the announcement.

Announcement
1.0.0 is a significant symbolic milestone, and we should attempt to make a bit of a splash by
announcing it.

Open questions
1.​ Date?
2.​ Publicity?

a.​ Blog posts?
3.​ Message?

a.​ example: “Pants is ready for ‘end-users’!“
4.​ Celebration?

a.​ Party/Meetup in SF?

Blockers

Goals
These should all have corresponding issues in the issue tracker labeled 1.0.0

●​ Pants can be built with an empty pants.ini [2534]
●​ Identify API modules and methods that Plugins can rely on [2710]
●​ Website supports documentation for multiple release versions plus a development

version [2639]
●​ Make sure that nailgun and ivy are not needed for a python-only repo [867, 940]
●​ Better test coverage codifying some of the decisions laid out by this document.

○​ Insuring modules in non ‘private’ or ‘exp’ directories are marked with an API tag
○​ Options may not be not removed or renamed (for API and non API modules)
○​ API modules may not be removed or renamed
○​ Methods in API public modules cannot be removed or renamed

●​ Deprecated changes to the API will be supported for 2 minor release versions.

Non Goals
●​ Pants installs and runs in a python 3 environment, and this is always backstopped by CI

Documentation
Currently we publish docs to pantsbuild.gitub.io by running a script that rewrites the data for the
entire web site on every publish. Will need evolve this to a place where we want to support both
release and development documentation. See [2639]

●​ Create a separate main website from the generated code.
○​ We could just make this a new github repo pantsbuild/website-main to hold

the source for the top level pants website. The rationale for this is that It needs
to be built and published independently of changes to the 1.x and future
releases. We can juggle this around and make the rest of the site pretty and use
whatever formats we want

○​ *OR* use a CMS like Drupal. This will allow us to “easily” edit the top level
content and use some kind of canned theme that looks good.

https://github.com/pantsbuild/pants/labels/1.0.0
https://github.com/pantsbuild/pants/issues/2534
https://github.com/pantsbuild/pants/issues/2710
https://github.com/pantsbuild/pants/issues/2639
https://github.com/pantsbuild/pants/issues/867
https://github.com/pantsbuild/pants/issues/867
https://github.com/pantsbuild/pants/issues/940
https://github.com/pantsbuild/pants/issues/2639

■​ Corporate Clean
■​ Likable
■​ Responsive Blog

●​ Create a new top level landing page. This page will contain all meta information about
the project:

○​ Who uses pants
■​ Powered by Pants

○​ What is pants
■​ Conceptual overview
■​ Links to presentations, white papers, and other resources

○​ Why use pants
○​ News
○​ Project governance

■​ How to Contribute
■​ How to Ask
■​ Contact information

○​ Release Documentation: links to the most current version of each release
○​ About the documentation
○​ Credits

●​ Move existing website generation to publish under a /releases/ directory.

○​ publish_docs.sh inside of each release will be nailed to publishing under
/releases/<version>/

○​ The release will pull in a common heading from the upper directory so that users
can navigate between releases.

○​ The version number will be updated for minor releases only.
■​ 1.0 gets a release page and all minor updates overwrite the 1.0 release

page.
■​ When 1.1 is released, we change the version number in publish_docs.sh

so that a new page is generated.
●​ Refactor the generated release documentation.

○​ Remove the meta information that has migrated to the top level landing page.
●​ Move our top level website to pantsbuild.io or pantsbuild.org.

○​ Makes us look like a ‘real’ project
○​ bazel.io buckbuild.com already do it
○​ Use some hosting provider other than github to host our CMS
○​ Figure out a way to pay for it. If we can charge it to a credit card, Square can

pay.

API change policy post 1.0

http://demo.drupalizing.com/?theme=corporateclean
https://www.drupal.org/project/likable
https://www.drupal.org/project/responsive_blog

This section is obsolete. See http://pantsbuild.github.io/deprecation_policy.html

These rules are in effect for release branches until the next 2 minor releases (e.g. if the feature
is available 1.0.x is should continue to be available in 1.1.x and 1.2.x and can be removed in
1.3.x). This assumes a rough timeline of 3 months lifetime per minor release.

API Definition
This policy applies to:

●​ Modules under src/main/python/pants that do not start with an _
●​ Modules under src/test/python/pants_test that are marked API:Public in pydoc

Excluding:​

●​ Modules under src/python/pants a directory named ‘exp’ or prefixed with ‘_’
●​ Module under tests/python/pants_test not marked API:Public
●​ Any module prefixed with ‘_’
●​ Any method prefixed with ‘_’
●​ Any method prefixed with ‘private_’
●​ Modules under any other directory including contrib, examples, testprojects

Allowed API changes:
●​ Adding a new module
●​ Adding new command line options
●​ Adding new features to existing modules
●​ Deprecate and warn about an API that has been refactored
●​ Deprecate and warn about an option that has been refactored
●​ Adding new named parameters to a public API method
●​ Adding/removing/renaming any module or method in a directory named ‘exp’ or

starting with the prefix ‘_’
●​ Adding/removing/renaming any module prefixed with ‘_’
●​ Adding/removing/renaming any method prefixed with ‘_’ or ‘private_’
●​ Fixing bugs

○​ Caveat, sometimes builds rely on buggy behavior
○​ Be more precise as to what a bug actually means and consider applying fixes on

a case-by-case basis.

Disallowed API changes:
●​ Deprecated options must continue to work as before
●​ Existing API modules cannot be moved.
●​ Options cannot be removed

http://pantsbuild.github.io/deprecation_policy.html

●​ Parameters cannot be removed from API methods (any public method in an API module)
●​ Changing the behavior of a method that breaks existing assumptions

○​ e.g. changing a method that used to do transitive resolution to intransitive
resolution would be disallowed, but adding a new named parameter to change
the behavior would be allowed.

●​ Changes that introduce significant performance regressions by default
○​ A significant regression would be a slowdown of > 10%
○​ If a new feature is needed that would slow down performance more than 10%, it

should be put behind an option

Identifying API modules and methods
(searching for good ideas here…)

Running this in each of our repos will tell us what that repo imports:

git grep -E '^from pants\..* import .*$' | cut -d: -f2 | sort | uniq

[Add your results to the Appendix below. Multiline import statements will require manual
addition]

File by File Analysis for API:

This section is obsolete. See http://pantsbuild.github.io/deprecation_policy.html

Use this spreadsheet to make sure we analyze each file:

Modules under src/python/pants:

●​ Privatize modules that are not for use in plugins by renaming them and prefixing them
with ‘_’

●​ Privatize packages by renaming the directory and prefixing it with ‘_’
●​ Privatize methods not intended to be exposed outside of the module by renaming them

and prefixing them with ‘_’
●​ Privatize methods used between pants modules by prefixing them with ‘private_’

Under tests/python/pants_test:

●​ The pydoc for public modules should contain:

http://pantsbuild.github.io/deprecation_policy.html
https://docs.google.com/spreadsheets/d/1_PLrDVCRI6HpOq6TslRS8x3DZd14sQYqmOUFeq6FHeA/edit?usp=sharing

API:Public Usable by plugins. Should remain stable for major releases

●​ The package directory for test modules should be the same as the primary modules they

are testing

Discussion about using docstrings to indicate public/private:

The primary concern is that renaming all method’s/modules with _ will add a large amount of
noise since most api’s are intended to be private. The proposal document APIs as being public
or private, and that we should spend all of this effort writing tests to enforce these requirements.

https://pantsbuild.slack.com/archives/general/p1454365812001067

Proposal:

Use the following syntax inside of a docstring to indicate an api is public. The absence of this
marker in the docstring would indicate private, which is intended to be the majority of cases. It
may also be useful to register public api’s somewhere so that we can generate documentation
based on docstrings. This is currently done with BUILD dictionary but relies on a call to:
self.context.build_file_parser.registered_aliases()

:API: public

An example of using docstrings to mark API’s can be found at:
https://rbcommons.com/s/twitter/r/3417/

Appendix 1: Existing references to API methods

Square’s internal repo:
from pants.backend.codegen.targets.java_wire_library import JavaWireLibrary

from pants.backend.codegen.tasks.simple_codegen_task import SimpleCodegenTask

from pants.backend.jvm.ivy_utils import IvyUtils, IvyInfo, IvyModuleRef

from pants.backend.jvm.jar_dependency_utils import M2Coordinate

from pants.backend.jvm.repository import Repository

from pants.backend.jvm.subsystems.jvm import JVM

https://pantsbuild.slack.com/archives/general/p1454365812001067
https://rbcommons.com/s/twitter/r/3417/

from pants.backend.jvm.targets.exclude import Exclude

from pants.backend.jvm.targets.exportable_jvm_library import ExportableJvmLibrary

from pants.backend.jvm.targets.jar_dependency import JarDependency

from pants.backend.jvm.targets.jar_library import JarLibrary

from pants.backend.jvm.targets.java_library import JavaLibrary

from pants.backend.jvm.targets.jvm_binary import JvmBinary

from pants.backend.jvm.targets.jvm_prep_command import JvmPrepCommand

from pants.backend.jvm.targets.unpacked_jars import UnpackedJars

from pants.backend.jvm.tasks.checkstyle import Checkstyle

from pants.backend.jvm.tasks.classpath_products import ArtifactClasspathEntry

from pants.backend.jvm.tasks.classpath_products import ClasspathProducts

from pants.backend.jvm.tasks.classpath_products import ClasspathProducts,

ArtifactClasspathEntry

from pants.backend.jvm.tasks.ivy_task_mixin import IvyTaskMixin

from pants.backend.jvm.tasks.jvm_tool_task_mixin import JvmToolTaskMixin

from pants.backend.jvm.tasks.nailgun_task import NailgunTask

from pants.backend.jvm.tasks.run_jvm_prep_command import RunJvmPrepCommandBase

from pants.backend.jvm.tasks.unpack_jars import UnpackJars

from pants.backend.project_info.tasks.export import ExportTask

from pants.backend.project_info.tasks.idea_gen import IdeaGen

from pants.base.build_environment import get_buildroot

from pants.base.exceptions import TargetDefinitionException

from pants.base.exceptions import TaskError

from pants.base.generator import Generator, TemplateData

from pants.base.payload import Payload

from pants.base.payload_field import JarsField

from pants.base.payload_field import PayloadField, PrimitiveField, stable_json_sha1

from pants.base.payload_field import PrimitiveField

from pants.base.revision import Revision

from pants.base.validation import assert_list

from pants.base.workunit import WorkUnit, WorkUnitLabel

from pants.base.workunit import WorkUnitLabel

from pants.binaries import binary_util

from pants.build_graph.address import Address

from pants.build_graph.build_file_aliases import BuildFileAliases

from pants.build_graph.resources import Resources

from pants.build_graph.target import Target

from pants.fs.archive import ZIP

from pants.goal.goal import Goal

from pants.goal.task_registrar import TaskRegistrar as task

from pants.ivy.ivy_subsystem import IvySubsystem

from pants.java.distribution.distribution import DistributionLocator

from pants.java.executor import SubprocessExecutor

from pants.option.config import Config

from pants.option.custom_types import dict_option

from pants.scm.git import Git

from pants.task.repl_task_mixin import ReplTaskMixin

from pants.task.task import Task

from pants.util.contextutil import temporary_dir

from pants.util.dirutil import safe_mkdir

from pants.util.dirutil import safe_mkdir, safe_mkdtemp

from pants.util.dirutil import safe_mkdir, safe_walk

from pants.util.dirutil import safe_mkdtemp

from pants.util.dirutil import touch

from pants.util.memo import memoized

from pants.util.memo import memoized_method, memoized_property

from pants.util.osutil import get_os_name, known_os_names, normalize_os_name,

OS_ALIASES

from pants.util.osutil import get_os_name, normalize_os_name

	Pants 1.0 Release Plan
	Summary
	Announcement
	Open questions

	Blockers
	Goals
	Non Goals
	Documentation
	API change policy post 1.0
	API Definition
	Allowed API changes:
	Disallowed API changes:
	Identifying API modules and methods

	File by File Analysis for API:
	Discussion about using docstrings to indicate public/private:
	Proposal:

	Appendix 1: Existing references to API methods
	Square’s internal repo:

