

MPS Support in the Kubernetes GPU
Device Plugin

Evan Lezar <elezar@nvidia.com>

Last Updated:

 May 2, 2024

MPS for GPUs in Kubernetes​ ​ Page | 1

mailto:elezar@nvidia.com

Table of Contents
Overview​ 2
Configuring GPUs with MPS​ 2
Deploying the GPU Device Plugin with MPS support​ 4

When using the GPU Operator​ 4
Deploying using Helm​ 5

Deploying a Workload​ 6
Known Issues​ 8

Limitations​ 8

Overview
One of the goals of a cluster administrator is to optimize the use of GPU resources. This may include

sharing more powerful devices between multiple users to serve use cases which do not require the full

memory of computational resources offered by such devices. This can be achieved at a hardware level by

partitioning a MIG-capable GPU into MIG devices, or by oversubscription using time-slicing.

The NVIDIA GPU device plugin already supports sharing GPUs via time-slicing and MIG. This document

describes an extension to the NVIDIA GPU device plugin which provides the ability to share GPUs using

MPS. This allows multiple users to access the same hardware while providing guarantees in terms of

available compute and memory resources that are not possible with time-slicing.

The use cases focused on here are limited to those of a cluster administrator partitioning the devices

available on a system. Since device plugins do not provide controlled sharing, and an end user has no

control over which devices are allocated, use cases where an end-user alone defines the memory or

thread limits at an application level are not considered.

In order to allow an administrator to control the sharing of devices using MPS, the sharing config

introduced to allow time-slicing is extended with options for MPS as discussed in the following section.​

Configuring GPUs with MPS

The following document introduced a new configuration file for use by the k8s-device-plugin and

gpu-feature-discovery.

Using a config file to configure the k8s-device-plugin and gpu-feature-discovery

To support MPS with GPUs, we extend this configuration file with the following fields:

version: v1​
sharing:
 mps:
 renameByDefault: <bool>

MPS for GPUs in Kubernetes​ ​ Page | 2

https://docs.nvidia.com/deploy/mps/index.html
https://docs.google.com/document/d/1xZrrMBJV00VxW9XK8AMXU0QT01JGqn-xhGwexenhPSE/edit#heading=h.jw5js7865egx

 # failRequestsGreaterThanOne: true
 resources:
 - name: <resource-name>
 replicas: <num-replicas>
 ...

That is, for each named resource under sharing.mps.resources, a number of replicas can now be

specified for that resource type. These replicas represent the number of MPS-partitions that will be

created for each GPU represented by that resource type.

If a GPU is shared with MPS (i.e. a number of replicas greater than 1 is specified), the active thread

percentage and default pinned device memory for the device are calculated as follows:

●​ activeThreadPercentage = floor(100 / replicas)
●​ pinnedMemoryLimit = floor(totalMemory / replicas)

As is the case with time-slicing, if renameByDefault=true, then each resource will be advertised

under the name <resource-name>.shared instead of simply <resource-name>.

Note that currently failRequestsGreaterThanOne=true, is implied and cannot be set to false.

This means that the plugin will fail to allocate any shared resources to a container if they request more

than one. The container’s pod will fail with an UnexpectedAdmissionError and need to be

manually deleted, updated, and redeployed. This is also the recommended setting to use for

sharing.timeSlicing.failRequestsGreaterThanOne.

When applying the following MPS sharing configuration to the GPU Device Plugin and GPU Feature

Discovery:​

version: v1​
sharing:
 mps:
 resources:
 - name: nvidia.com/gpu
 replicas: 10

Each available GPU will be exposed as 10 equal space-partitions each with access to 10% of the total

device memory and 10% of the compute resources.

The following labels will be generated by GPU Feature Discovery:​

nvidia.com/mps.capable = true
nvidia.com/gpu.sharing-strategy = mps
nvidia.com/gpu.product = <product-name>-SHARED
nvidia.com/gpu.replicas = 10

MPS for GPUs in Kubernetes​ ​ Page | 3

As is the case with sharing using time-slicing, the -SHARED suffix to the product name can be used in

node-selectors to ensure that jobs land on shared GPUs if required.

Furthermore, if the renameByDefault option is set to true in the config as below:​

version: v1​
sharing:
 mps:
 renameByDefault: true
 resources:
 - name: nvidia.com/gpu
 replicas: 10

The resource name will be changed to nvidia.com/gpu.shared and the product name label will

not be modified. This means that the following labels will be generated:​

nvidia.com/mps.capable = true
nvidia.com/gpu.shared.sharing-strategy = mps
nvidia.com/gpu.shared.product = <product-name>
nvidia.com/gpu.shared.replicas = 10

Since the resource exposed by the GPU Device Plugin is also renamed to

nvidia.com/gpu.shared, users can directly request shared resources by updating their pod specs.

Deploying the GPU Device Plugin with MPS support

When using the GPU Operator

At present, there is no integrated support for enabling MPS with the GPU operator. In order to test MPS

support with the operator, you will need to deploy it with the device plugin and GFD disabled, as seen

below.​

$ helm install \​
 -n gpu-operator \​
 --generate-name \
 --create-namespace \
 --set devicePlugin.enabled=false \
 --set gfd.enabled=false \
 nvidia/gpu-operator

This will tell the operator not to deploy the device plugin and GFD, nor manage their lifecycle as part of

the operator itself. With this in place, you can now follow the instructions below to deploy the helm

chart for the device plugin and enable MPS for it separately.

MPS for GPUs in Kubernetes​ ​ Page | 4

Deploying using Helm

Assuming that the NVIDIA Device Plugin helm repo has been configured, we create a config file that

enables MPS sharing for all available devices:​

cat << EOF > /tmp/dp-mps-10.yaml
version: v1
sharing:
 mps:
 resources:
 - name: nvidia.com/gpu
 replicas: 10
EOF

We then deploy the device plugin using this config. Note that since we specify --set
gfd.enabled=true, GFD is also deployed.​

helm upgrade -i nvdp nvdp/nvidia-device-plugin \
 --version=0.15.0 \
 --namespace nvidia-device-plugin \
 --create-namespace \
 --set gfd.enabled=true \
 --set config.default=mps10 \
 --set-file config.map.mps10=/tmp/dp-mps-10.yaml

When checking the node labels, we note that the labels discussed above are present on the node:​

$ kubectl get node k8s-device-plugin-cluster-worker --output=json
| jq '.metadata.labels' | grep -E "mps|SHARED|replicas" | sort
 "nvidia.com/gpu.product": "Tesla-V100-SXM2-16GB-N-SHARED",
 "nvidia.com/gpu.replicas": "10",
 "nvidia.com/gpu.sharing-strategy": "mps",
 "nvidia.com/mps.capable": "true"

Furthermore, the presence of the nvidia.com/mps.capable=true label triggers the creation of

a daemonset to manage the MPS control daemon.​

$ kubectl get pods -n nvidia-device-plugin -o
custom-columns=NAME:.metadata.name
NAME
nvdp-node-feature-discovery-master-99bd6c9f-fnbpr
nvdp-node-feature-discovery-worker-rb7ps

MPS for GPUs in Kubernetes​ ​ Page | 5

https://github.com/NVIDIA/k8s-device-plugin/tree/v0.15.0?tab=readme-ov-file#deployment-via-helm

nvdp-nvidia-device-plugin-gpu-feature-discovery-5d86g
nvdp-nvidia-device-plugin-mps-control-daemon-2wnjj
nvdp-nvidia-device-plugin-v5f2w

Deploying a Workload

First, let’s create a namespace for the demos that we’re deploying:

$ kubectl create ns demo

Now, we deploy a container that sleeps to run some sanity checks

$ cat <<EOF | kubectl apply -f -

apiVersion: v1
kind: Pod
metadata:
 namespace: demo
 name: mps-env-test
spec:
 runtimeClassName: nvidia
 restartPolicy: OnFailure
 containers:
 - name: mps-env-test
 image:
nvcr.io/nvidia/k8s/cuda-sample:nbody-cuda11.7.1-ubuntu18.04
 command: ["sleep", "9999"]
 resources:
 limits:
 nvidia.com/gpu: 1
EOF

And confirm that the container is able to communicate with the MPS control daemon:

$ kubectl exec -ti -n demo mps-env-test -- bash -c "echo
get_default_active_thread_percentage | nvidia-cuda-mps-control"
10.0

And confirm that the container is able to communicate with the MPS control daemon:

$ kubectl exec -ti -n demo mps-env-test -- bash -c "echo
get_default_device_pinned_mem_limit 0 | nvidia-cuda-mps-control"
1G

(Note that the output for the memory limit is device specific and may output rounded and truncated)

When starting a compute workload as follows:

MPS for GPUs in Kubernetes​ ​ Page | 6

$ cat <<EOF | kubectl apply -f -

apiVersion: v1
kind: Pod
metadata:
 namespace: demo
 name: mps-nbody
spec:
 restartPolicy: OnFailure
 containers:
 - name: mps-nbody
 image:
nvcr.io/nvidia/k8s/cuda-sample:nbody-cuda11.7.1-ubuntu18.04
 args: ["--benchmark", "--numbodies=4226048"]
 resources:
 limits:
 nvidia.com/gpu: 1
EOF

We see the following output when running nvidia-smi on the host:

$ nvidia-smi -i 1
Tue Apr 23 14:00:45 2024
+---+
| NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
1 Tesla V100-SXM2... On	00000000:07:00.0 Off	0
N/A 40C P0 95W / 160W	667MiB / 16384MiB	100% E. Process
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 1 N/A N/A 2525469 M+C /cuda-samples/sample 637MiB |
| 1 N/A N/A 2525514 C nvidia-cuda-mps-server 27MiB |
+---+

Noting the following:

●​ The GPU has a Compute Mode of Exclusive Process.

●​ The GPU has an nvidia-cuda-mps-server process associated with it.

●​ The GPU is running the /cuda-samples/sample application with type M+C indicating that

it is communicating through the MPS server process.

MPS for GPUs in Kubernetes​ ​ Page | 7

Known Issues

Limitations

●​ The use of the MPS and timeSlicing sharing options are mutually exclusive.

●​ The maximum number of replicas that can be requested are 16 for pre-Volta devices and 48 for

newer devices.

●​ MPS sharing is not supported for MIG devices.

●​ Requesting multiple devices when MPS sharing is enabled is not supported.

MPS for GPUs in Kubernetes​ ​ Page | 8

Revision History

 May 2, 2024

●​ Initial publication

 Jun 6, 2024

●​ Update number of samples in nbody benchmark to 4226048 to remove warning.​
See also: https://github.com/NVIDIA/k8s-dra-driver/pull/129

MPS for GPUs in Kubernetes​ ​ Page | 9

https://github.com/NVIDIA/k8s-dra-driver/pull/129

	MPS Support in the Kubernetes GPU Device Plugin
	
	Overview
	Configuring GPUs with MPS
	Deploying the GPU Device Plugin with MPS support
	When using the GPU Operator
	Deploying using Helm

	Deploying a Workload
	
	Known Issues
	Limitations

	
	Revision History
	May 2, 2024
	Jun 6, 2024

