CREATING SCATTERPLOTS

- <u>so far</u> univariate analysis (looking at one variable at a time)
- now look at associations between variables

scatterplot - show relationship bw 2 quantitative variables

INSTALL AND LOAD PACKAGES

```
pacman::p_load(datasets, pacman, rio, tidyverse)
```

QPLOT

Basic scatterplot:

```
qplot(Petal.Width, Petal,Length, data = iris)
# (1st variable, 2nd variable, source)
```

- result: scatterplot with petal width on bottom, petal length on side, AND dot for each data-point (150 dots)
- something funny going on bc gap near bottom , but otherwise a nice linear association

Colour by species:

```
qplot(Petal.Width,
    Petal.Length,
    color = Species,
    data = iris)
```

- result: see the 3 groups with one on bottom, and other 2 groups on top
- <u>conclusion</u>: important differences between species, even though general pattern is consistent

GGPLOT2

Basic scatterplot:

```
ggplot(iris,
   aes(Petal.Width, Petal.Length)) +
   geom_point() # dot plot
```


Scatterplot, jittered:

```
ggplot(iris,
   aes(Petal.Width, Petal.Length)) +
   geom_jitter() # jitter the points so not on top of each other
```

result: helps see overall pattern better

Scatterplot, jittered, variable size, coloured by species:

```
ggplot(iris,
    aes(Petal.Width, Petal.Length,
    size = Sepal.Length, # change size of points depending on length of sepal
    color = Species)) +
    geom_jitter(alpha = .5) # somewhat transparent jitter points
```

- result: size of dots indicates sepal length (a third measurement)
 - sepal length is bigger on top of plot than on bottom (which makes sense)

Scatterplot, coloured by species, fit line: (regression line)

- done separately for each of the categories

```
ggplot(iris,
   aes(Petal.Width, Petal.Length,
      color = Species)) +
   geom_point(size = 3) +
   geom_smooth(method = lm) # Im = linear model
```

- <u>result</u>: draws separate regression line for each species and standard error for each of the groups independently
 - basic uphill a little stronger uphill for the green versicolor

Scatterplot, coloured by species, fit line, density:

```
ggplot(iris,
   aes(Petal.Width, Petal.Length,
      color = Species)) +
   geom_point(size = 3) +
   geom_smooth(method = lm) +
   geom_density2d(alpha = .5) + #add density 2d
      theme(legend.position = "bottom")
```

- add density 2d make look like maps with circles drawn around them. indicate something akin to confidence intervals, but is really a map to indicate how bunched up the data are.
- <u>result:</u> Looks like a topographic map around the dots. Look at the density of data points.
 - density close together for seritosa bc points close together

