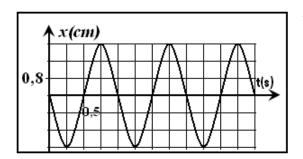

2 éme Bac (PC)

التمرين 1

نعتبر خيالا $\, \, \, \, \, \, \, \, \, \, \, \,$ كتاته $\, \, \, \, \, \, \, \, \, \, \, \,$ يمكنه أن يتحرك بدون احتكاك فوق نضد هوائي أفقى . نربط الخيال بنابض لفاته غير متصلة وكتلته مهملة وصلابته ونثبت الطرف الآخر إلى حامل ثابت . نزيح الخيال K=10N . m^{-1} عن موضع توازنه $oldsymbol{O}$ بمسافة $oldsymbol{x}_m$ ثم نحرره بدون سرعة بدئية . ندر س


الحركة على المحور الأفقي (O,i) المطابق لمحور النابض ، ينطبق أصله مع مركز قصور الخيال G عند التوازن . O

1) بتطبيق القانون الثاني لنيوتن ، أوجد المعادلة التفاضلية لحركة G . 2 تعطي الدراسة التجريبية المنحنى المقابل والممثل لتغيرات أفصول مركز القصور بدلالة الزمن باستعمال المبيان

. الدور الخاص للحركة ثم استنتج كتلة الخيال T_0 حدد T_0

2.2) حدد قيمة الوسع x_m للحركة . (3.2) أكتب المعادلة الزمنية للحركة .

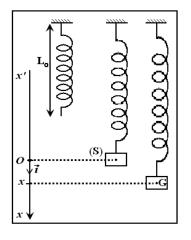
. أوجد تعبير السرعة V(t) للخيال وأحسب قيمتها القصوية (3

التمرين 2 _

نثبت طرف نابض مرن ، طوله الأصلي L_0 وصلابته K=20N m^{-1} وكتاته مهملة ، بحامل ثابت ونعلق في طرفه الحر جسما O الأصل G الأصل G الأصل G الأصل مركز القصور G الأصل في وضع رأسي عند التوازن ، يطابق مركز القصور G الأصل المحور (\vec{U}, \vec{i}) الموجه نحو الأسفل

> ΔL_0 عند التوازن بدلالة m و M و g شدة الثقالة . أحسب أوجد تعبير الإطالة ΔL_0 عند التوازن بدلالة $g=10m.s^{-2}$ نعطی:

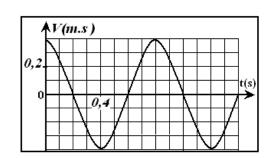
نزيح الجسم (S) عن موضع توازنه بمسافة $x_m = 2cm$ نزيح الجسم عن موضع توازنه بمسافة (t=0) بدون سرعة بدئية عند لحظة نعتبر ها أصلا للتواريخ


. أوجد المعادلة التفاضلية لحركة (S) ثم حدد طبيعة الحركة .

2.2) أوجد تعبير الدور الخاص T_0 وأحسب قيمته . 3.2) أكتب المعادلة الزمنية للحركة واستنتج معادلة السرعة .

نوقف حركة الجسم (S) ثم نزيحه من جديد عن موضع توازنه نحو الأسفل بمسافة d_0 ثم (3) رسله نحو الأعلى بسرعة بدئية V_0 عند لحظة والأعلى بسرعة بدئية الم

: أوجد تعبير الوسع الجديد x_m' للحركة بدلالة d_0 و الدور الخاص T_0 أحسب علما أن


 $d_0 = 2cm$, $V_0 = 0.1 m \cdot s^{-1}$

التمرين 3

نعتبر جسما صلبا (S) كتاته m=200 يمكنه الانزلاق بدون احتكاك فوق نضد هوائي مائل بزاوية السنوى m=200الأفقى . نثبت طرف نابض (R) لفاته غير متصلة وكتاته مهملة وصلابته K بالجسم (S) بعد أن ثبت طرفه الآخر إلى حامل ثابت . 1) عند التوازن ، يطابق مركز القصور G للجسم G الأصل O للمحور O المحور O الموازي لمحور النابض وللمستوى المائل . عبر عن إطالة النابض $\Delta \ell_0$ عند التوازن بدلالة : α , K , g , m .

- 2) نزیج الجسم (S) عن موضع توازنه ونحرره بدون سرعة بدئیة . نمعلم موضع مرکز القصور بالأفصول $oldsymbol{x}$.
- (S) بتطبيق القانون الثاني لنيوتن ، أوجد المعادلة التفاضلية لحركة الجسم (S)
 - استنتج تعبير الدور الخاص T_0 للحركة .
 - (S) المبيان المقابل مخطط السرعة V=f(t) عمثل المبيان المقابل مخطط السرعة
 - . $m{K}$ مدد قیمهٔ $m{T}_0$ ثم استنتج صلابهٔ النابض (1.3
 - V(t) أكتب معادلة السرعة (2.3)
 - x(t) أوجد المعادلة الزمنية للحركة (3.3)

