Include all that apply in your communication:

For subject content related questions:

Course number

Module number

Video title

Quiz or Exam name/number; Question number (or description of specific gquestion)
Screenshots/links to support your question

Details of your attempt to understand/troubleshoot on your own

For non-subject content related questions:

Course(s) you are enrolled in

Screenshots/links to support your question

Details of your attempt to understand/troubleshoot on your own

Fastest growing programming language.

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

% of overall question views each month

1. Easy to Read
2. Python is free.
3. People enjoy coding in Python

Python is slower.
Python uses of white space.

Module 1:

Data are objects

1. Type

2. Unique ID

3. Value

4. Reference Count

Basic Data Types

Name

Mutable?

Examples

Boolean

no

True, False

Integer

no

47, 25000,
25 000

Floating point

float

3.14, 2.7e5

Complex

complex

39, 5 + 93

String

str

‘alas’, “alack”,
"'a verse
attack’"’

[‘Winken’,
‘Blinken’,
‘Nod’]

Tuple

Bytes

b’ ab\xff

ByteArray

bytearray

bytearray(...)

Set

sSet

set([3, 5, 7])

Frozen set

frozenset

frozenset ([‘Elsa
f, YOotto’]

Mutable and Immutable

Strongly type. (Can't change int)

1. Difference between literals and variables.

2. What variable names can and cannot begin with and what they can and cannot contain.
3. What reserved words are used in Python.

4. How to assign values.

1. Python is dynamically typed. (this means variables in Python are just names.)

a =7, A is a name tag on object 7
The name of the variable is a reference to an object.
In C you have declare both variable and object

booleans (true / false)

bool ("") -> False
bool (0) -> False
(
(

bool (False) -> False
bool (false) -> error
vowels = 'aeiou'
letter = 'o'

letter in vowels -> True

Integer division

9 /5 ->1.8

9 // 5 ->1

15 / 4 -> 3.75

15 // 4 -> 3

Modulus

9 % 5 -> (what's left over 4)

Bases

binary number
Ob0001 is same as 0Obl

bin(56) -> 0b111000

type (x)
int
x => 1

upcasting
1+ 1.7
2.7 (upcat to float when add integer and float)

y = vy

type (y)

str

int(y) -> 7 (It's okay to convert number string into integer)
z = "'7.7"

folat(z) -> 7.7

True + 2 -> 3
False + 2 -> 2

Tuples:

name = 'Mike'
type (name)
<class 'str'>

name = 'Mike',
type (name)

<class 'tuple'>
name -> ('Mike',)

names = 'Mike', 'Jenny', 'Alan', 'Alec'
type (names)
<class 'tuple'>

names -> ('Mike', 'Jenny', 'Alan', 'Alec')
a, b, ¢, d = names
a -> 'Mike'

b -> '"Jenny'
c -> 'Alan'
d -> '"Alec'
type (a)

<class 'str'>

Tuples:

namelist = ['Mike', 'Jenny', 'Alec', 'Alan']

tuple (namelist) -> ('Mike', 'Jenny', 'Alec', 'Alan')
('"Mike',) + ('Jenny',) -> ('Mike' '"Jenny')

("Mike',) * 3 => ('Mike', 'Mike', 'Mike')

'Mike', * 3 -> Error

tl = ('Hello')

t2 = ('world")

id(tl)

tl += t2

tl -> ('Hello', 'world")

id(tl) -> it's different because it's now pointing to a new tuple.
List:

name = 'Mike Yom'

name.split ()

['Mike', 'Yom']

birthday = '9/10/67"

birthday.split() -> ['9/10/67'] (Because no spaces)
birthday.split('/') -> ['9', '10', '67']

names = ['Mike', 'Jenny', 'Alan']

names.insert (2, 'Alec') -> ['Mike', 'Jenny', 'Alec',
del names[0] -> ['Jenny', 'Alec', 'Alan']
names.remove ('Alec') -> ['Jenny', 'Alan']

'Jenny' in names -> True
'Mike' in names -> False

names.count ('Jenny') -> 1

mylist = 1, 1, 1, 1, 1, 3, 4, 6]
mylist.count(l) -> 5 (5 ones)

names = ['Mike', 'Jenny', 'Alec', 'Alan']

for 1 in names:
print (i)

ages = [54, 46, 17, 15]

for i, j in zip(names, ages):
print (i, 7J)

Mike 54

Jenny 46

Alec 17

Alan 15

num list = []
for 1 in range(l, 6):
num list.append(1i)

num list
(1, 2, 3, 4, 5, 6]

'Alan']

List Comprehension

from math import pi

[str(round(pi, 1)) for i in range(l, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

Copy and Deep Copy:
a —> [11 2/ 3]

b = a.copy()

c = list(a)

d = al:]

all have now [1, 2, 3]

al0] = 56 -> [56, 2, 3]

e -=> [1, 2, [8, 911 (8 and 9 are list mutable)
f = e.copy()

e[2][0] = 56

e —> [1, 2, [56. 9]]
£ ->[1, 2, [56. 9]]
e[0] = 11

e -> [11, 2, [56. 9]]
£f -> [1, 2, [56. 9]]
(Because lists are mutable and tuple are not mutable)

Deep copy

e = [11, 2, [56. 9]]
import copy

g = copy.deepcopy (e)

g -> [11, 2, [56. 9]]

e[2]1[0] = 99

e —> [11, 2, [99. 9]]

f -> [11, 2, [56. 9]] (that did not apply reference)
Dictionaries:

Key Value Pairing
Order doesn't matter

tup ex -> (['a', 'bD'], ['c', 'd'])
list ex -> ['ab', 'cd']

dict (tup ex) - {'a': 'b', 'c': 'd'}
dict (list ex) -> {'a': 'b', 'c': 'd'}
x = dict (tup_ex)

x => {'a': 'b', 'c': 'd'}

x['a'] = '3

x => {'a': '"3', 'c': 'd'}

ale.get ('Yankees')
ale.get ('Yankees', 'Not a key') -> 'Not a key'
ale.get ('New York') -> Yankees

Difference between return and print

type (return calculate (3, 5)) -> int
type (print calculate (3, 5)) -> NoneType
1 + \

1

(1 +

(copy keep references)

Module 2

Formatting strings

Combination
Duplication
Indexing
Slicing
Length
Strip
Replace

Multi length string
K = oo

hello

world

it's

me

print (x)

'hello\nworld' -> 'hello\nworld'
y = “hello\nworld'

print (y)

hello

world

"\"I did nothing!\" he said"™ -> '"I did nothing!"™ he said'

x = "Here is a backslash: \\"
print (x) -> Here is a backslash: \

raw string and printed string

Strip Case Alignment

world ="' earth !

print (world) -> ' earth !

world.strip() -> 'earth'

setup = 'a duck goes into a bar..'
setup.strip('.') -> 'a duck goes into a bar'
setup.capitalize() -> 'A duck goes into a bar'
setup.title() -> 'A Duck Goes Into A Bar'

setup.upper ()
setup.lower ()
setup.swapcase ()

setup.center (30) (center in 30 spaces)

setup.ljust (30) (left justified in 30 spaces)
setup.rjust (30) (right justified in 30 spaces)

Old Style Formatting

0ld Style Python 2+
New Style Python 2.6+
f-string Python 3.6+

(First word)

0ld style
team =
"My favorite
'My favorite

print('%$s' % 42)

print ('sd' % 42)

print ('$x"' % 42)

42

42

2a

print('$s' % 7.03)

print ('$f' % 7.03)

print ('%e' % 7.03)

7.03

7.030000

7.030000e+00

print ('$d%%' % 100)

100%

city = 'New York'

'My favorite team is the %s %s' % (1998,
'My favorite team is the 1998 Yankees'
'My favorite team is the %s %s' % (city,
'My favorite team is the New York Yankees'
print('$s' % team)

print ('%$12s' % team) (12 spaces shift to right)
print ('%$sl2' % team) (put 12 after s)

'Yankees'

team is the %s" % team

team 1s the Yankees'

print ('%$12.3s' % team) (12 spaces 3 char right align)

print ('%-12.3s' %
Yankees
Yankees
Yankeesl1?2
Yan
Yan

New Style

team = "Yankees"

'{}'.format (team)
'My favorite team
'My favorite team

'My favorite team
'My favorite team

team) (left align take 3 character)
-> 'Yankees'
is the {1} {0}.format (team, city)

is

is
is

the New York Yankees'

the {city} {team}'.format (city = 'New York', team = 'Yankees')
the New York Yankees'

print ('My favorite team is the {} {}'.format (city, team))

print ('My favorite team is the {:10s} {}'.format (city, team))

print ('My favorite team is the {:>10s} {:710s}'.format (city, team.upper())) (center)
print ('My favorite team is the (:>10s} {:710.4s}'.format (city, team)) (max char of 4)
My favorite team is the New York Yankees

My favorite team is the New York Yankees (10 spaces)

My favorite team is the New York YANKEES

My favorite team is the New York Yank

F-Strings

f'My favorite team is the {city} {team}'
'My favorite team is the New York Yankees'

f'My favorite team is the {city} {team.upper()}'
'My favorite team is the New York YANKEES'

print ('My favorite team is the {} {}'.format (city, team))
print (£'My favorite team is the {city} {team}')

print ('My favorite team is the {:10s} {}'.format(city, team))
print (£f'My favorite team is the {city:10s} {team}')

print ('My favorite team is the {:>10s} {:710s}'.format(city, team.upper())) (center)
print (f'My favorite team is the {city:10s} {team.upper():710s}') team.upper())) (center)
print ('My favorite team is the (:>10s} {:710.4s}'.format(city, team)) (max char of 4)
print (f'My favorite team is the (city:10s} {team:710.4s}') (max char of 4)

Control Structure

disaster = True
if disaster:

print ('"AAAAHHHHH'")
else:

print (; WHEEEE"')

color = "mauve"
if color == "red":

print ("It's a tomato")
elif color == "green":

print ("It's a green pepper")
elif color == "bee purple":
print ("I don't know what it is, \

but only bees can see it")
else:
print ("I've never heard of the color", color)

Walrus Operator

tweet limit = 280
tweet string = "Blah" * 50
diff = tweet limit - len(tweet string)

if diff >= 0:
print ("A fitting tweet")
else:
print ("Went over by", abs(diff))

AR

tweet limit = 280
tweet string = "Blah" * 50
diff = tweet limit - len(tweet string)

if diff := tweet limit - len(tweet string) >= 0: # operator
print ("A fitting tweet")

else:
print ("Went over by", abs(diff))

A A AR

temp = float(input('Please input the temperature of interest:

Loops

family = ['Mike', 'Jenny', 'Alec', 'Alan']
for 1 in family:
print (i)

while a <= 3:

Breaks
stops loop
['Mike', 'Jenny', 'Alec',
['DTSC520', 'DTSC550',

family = 'Alan']

classes = 'DTSC600"',
for 1 in family:
print (i)
if i == "Jenny':
break

for 1 in family:
print (i)
for j in classes:
print (j)
if j == 'DTSC600':
break

'DTSC660"]

breaking two loops

for 1 in family:
print (i)
for j in classes:
print (J)
if j == 'DTSC600"':
break
else:
continue
break

continue 1is pass over current iteration
family = ['Mike', '"Jenny', 'Alec', 'Alan']
for i in family:

if 1 == 'Alec':

continue
print (i)

while True:

value = input('Integer, please [g to quit]:
if value == 'q':
break
number == int (value)
if number $ 2 == 0:

continue

print (number, "squared is", number * number)

Range

for 1 in range (0, 3):
print (i)

for i in range (0, 10, 2):

print (i)

for i in range (2, -1, -1):
print (i)

def acronym() :
target = input ('What phrase do you want? ')
ac = "nv
for i in target.split():

ac = ac + 1[0]
print (ac.upper())

Module 3

print (f'Hello {sys.argv[1l]}!"
FHE#HAH S H SRS

import sys

print (sys.argv[0])
print (sys.argv[l])

x = int(sys.argv[2])

def example () :
print (f'Hello {sys.argv[1l]}!")
print (x**2)

example ()

python3 01 example.py Mike 5

igdsassasadsadsassadaa s tan R nnadE

sys

import sys

fam = {'Jenny': 'Mother',
'Mike': 'Father',
'Alec': 'Son',
'Alan': 'Son'}
name = sys.argv([1l]

def relation():
print (name, "is the", fam[name])

relation ()

python3 02 name.py Mike

Functions Overview

python3
exec (open('hello.py') .read())

Function Review

def echo(anything) :
return anything + ' ' + anything

echo('hello'")

import sys

def commentary(color):
if color == 'red':
return "It's a tamato"

elif color == 'green':
return "It's a green pepper"

elif color == 'bee purple':
return "I don't know what it is, but only bee can see it"

else:
return f"I've never heard of the color {color}."
my color=str(sys.argv[1l])
print (commentary(my color))

python3 color.py red

default
def menu2 (wine, entree, dessert = 'cake'):
return{'wine': wine, 'entree': entree. 'dessert': dessert}

menu?2 ('riesling', 'hot dog')

{'wine': 'riesling', 'entree': 'hot dog', 'dessert':'cake'}
menu2 (('riesling', 'hot dog', 'cookies')
{'wine': 'riesling', 'entree': 'hot dog', 'dessert':'cookies'}

Exploding and Gathering

def print args(*args):
print (args)

print args(l, 3, 4, 2, 6, 4.25, 'hello')
(1, 3, 4, 2, 6, 4.25, 'hello")

required argument

def print args(reql, reg2, * args):
print ('Required:', reql)
print ('Required also:', reqg2)
print ('All the rest', args)

Required: 4
Required alos: 3
All the rest: (5, 2, 3, 134.243, 'hello')

Arguments passed to a function in the same order that the function's parameters are listed are
called (positional) arguments

positional arguments
keyword arguments

dictionary
def print kwargs (**kwargs):
print (kwargs)

print kwargs(wine = 'riesling', entree = 'chicken', dessert = 'cookies')
#fprint in dictionary

{'wine': 'riesling', 'entree': 'chicken',

'dessert':'cookies'}

Keyword and Mutable Argument

def print date(data, *, start, end):
for i in (data[start:end]):
print (i)

data
[lal, 'bl, 'C', ldl, |el, lf']

print data(data, start = 2, end = 4)
c
d

outside = ['one', 'fine', 'day']

def mangle(arqg) :
arg[l] = 'terrible'

mangle (outside)
outside
['one', 'terrible', 'day']

Docstrings

def addup (x, V):
''"'add arguments and return sum.'''
return x + y

ipython

import addup
addup.addup (2, 5)

help (addup)

from numpy import array

H H= = H= = H

help(array)

Lambda

def addup (x, Vy):
return x + vy

outcome = addup (3, 4)
print (outcome)
func = lambda x, y: x + vy

outcome = func (3, 4)

def enliven (word) :
return word.capitalize() + '!'

def edit story(words, func):
for word in words:
print (func (word))

stairs = ['thud', 'meog', 'thud', 'hiss']

edit story(stairs, enliven)

edit story(stairs, lambda word: word.capitalize() + '!'")
names = ['Gregory S. Longo', 'Mike Morabito', 'Javier Leon',
names.sort (key = lambda x: x.split("™ ") [-1].lower())

'"Ashley Wiley']

Decorators

def document it(func):

def new function(*args, **kwargs):
print('Running function:', func._ name_)
print('Positional arguments:', args)
print('Keyword arguments:', kwargs)
result = func(*args, **kwargs)
print('Result', result)
return result

return new_function

def add_ints(a, b):
return a + b

add_ints(3, 5)

8

decorated add = document it(add_ints)
decorated_add(3, 5)

Running function: add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result 8

8

@document it
def add_ints(a, b):
return a + b

def square_it(func):
def new function(*args, **kwargs):
result = func(*args, **kwargs)
return result * result
return new_function

@document_it

@square_it

def add_ints3(a, b):
return a + b

add_ints3(3, 5)

Running function: new function
Positional arguments: (3, 5)
Keyword arguments: {}

Result 64

64

def test(a, b):
return a - b

Exceptions except

short list =
position = 5

short list[position]
except:
print('Need a position between 0 and',
len(short list)-1, ' but got', position)

Need a position between 0 and 2 but got 5

this is a "catchall" exception it works for all
but they can be more specific

while True:
value = input('Position [g to quit]? ')

if value == 'q':
break

position = int(value)
print(short list[position])
except IndexError as err:
print('Bad index:', position)
except Exception as other:
print('Something else broke:', other)

Position [g to quit]? 1
2

Position [g to quit]? 3
Bad index: 3

Position [g to quit]? t

Something else broke: invalid literal for int() with base 10:

¢!

Position [g to quit]? |

when used inside a function with a parameter, an asterisk groups a variable number of
positional arguments into a single @ of parameter values (list)

Function Test.
® def cube(x) -> missing
e Yoda!!!
e triangle(a=4, b=8, c=11)
® We can explode/gather keyword arguments with * (false)
® None == {} -> False
e help(triangle)
® positional arguments
® def time (hours = 24):

® explode arguments -> *args

® def me(name, hometown) : -> don't forget

® When used inside a function with a parameter, an asterisk groups a variable number of
positional arguments into a single = of parameter values (args)

def hello():
''""Returns a greeting''' is called a (maybe docstring)

@upper
def hello (name) :
print (f'Hello, {name}!")
in this code, @Qupper is a (decorator)

You could pass a keyword argument that has the same name as a positional parameter.
Because of that, you can use what type of arguments to get around that? (keyword only
arguments)

def triangle(a , b, c):
knowing nothing else, how would you run the function using keyword arguments 1f the values
of a, b and ¢ are 4, 8, 11 respectively?

positional

None

What character do you use to explode arguments? (*args)

What is code that is executed when an associated error occurs? (except)

print (£f'My classes are: {args}')

® A decorator is a function that takes one function as input and returns another function.

Object-Oriented Programming

everything in python is an object.

What are objects?
Objects are a type of data structure that contain both data and code.

Data: Attributes
Code: Methods

You can do differently to values.

7 = object

Create a new types of object

Classes: A mode that creates those boxes.

Classes are a blueprint to create these boxes.

Classes and Attributes

class Cat () :
pass

a_cat = Cat()

another cat = Cat()

a_cat

Attributes

a cat.age = 3
a cat.name = 'Mr. Fuzzybuttons'
a_cat.nameis = another cat

print (a cat.age)

print(a_cat.name)

print (a cat.namesis)

3

Mr. Fuzzybuttons

< _ main__.Cat object at 0x7£8770£08%a0>

a_cat.namesis.name = 'Mr. Bigglesworth'

a_cat.namesis.name
'Mr. Bigglesworth'

Methods

Assign attributes with by initializing with init

Yes, these are two underscores, aka 'dunder'
class Cat():
def init (self):

pass

class Cat () :

() :

def init (self, name):
self.name = name

furball = Cat ('Grumpy')

print (furball.name)
Grumpy

Inheritance

Assign attributes with by initializing with init ():

Yes, these are two underscores, aka 'dunder'

class Car () :
pass

child class, create Hyundai subclass from parent class

class Hyundai (Car) :
pass

issubclass (Hyundai, Car)
True

issubclass (Car, Hyundai)
False

class Car () :
def exclaim(self) :

print("I'm a Car!")

class Hyundai (Car) :

pass

give me a car = Car()

give me a huyndai = Hyundai ()
give me a car.exclaim()

I'm a Car!

give me a huyndai.exclaim()
I'm a Car!

Overriding and Adding Methods

class Car () :
def exclaim(self):
print("I'm a Car!")

class Hyundai (Car) :
def exclaim(self):
print("I'm a Hyundai")

give me a car = Car()

give me a huyndai = Hyundai ()
give me a car.exclaim()

I'm a Car!

give me a huyndai.exclaim()
I'm a Huyndai

class Person{() :
def init (self, name):
self.name = name

class MDPerson () :
def init (self, name):
self.name = "Doctor " + name

class JDPerson{() :

def init (self, name):
self.name = name + ", Esquire"
person = Person ('Fudd')

doctor = MDPerson ('Fudd"')
lawyer = JDPerson ('Fudd"')

print (person.name + "\n" + doctor.name + "\n" + lawyer.name)

Fudd
Doctor Fudd
Fudd, Esquire

Adding a method

class Car () :
def exclaim(self):
print("I'm a Car!")

class Hyundai (Car) :
def exclaim(self) :
print ("I'm a Hyundai™)
def need a push(self):
print ("A little help here?")

my car = Car()
my hyundai = Hyundai ()

my car.exclaim()
I'm a Car!

my hyundai.exclaim()
I'm a Hyundai

my hyundai.need a push()
A little help here?

Attribute access

Getters and setters

class Duck () :

def init (self, input name):
self.hidden name = input name

def get name (self):
print ('inside the getter')
return self.hidden name

def set name(self, input name):
print ('inside the setter')
self.hidden name = input name

don = Duck ('Donald')
don.get name ()

don.set name ('Donna')

Object Oriented Programming

1. Inheritance (like a car class) (parent / child)

2. Encapsulation (data containing a function)

3. Abstraction (we removed unnecessary details, allowing the user to focus only on what is
necessary) (when we create an object, there's a whole lot behind the scenes)

4. Polymorphism (what an object does when these is a method call depends on the class of the
object) (have a function that works across different classes)

An object is simply a collection of data (variables) and methods (functions) that act on those
data. Similarly, a class is a blueprint for that object.

R E R R R AR

Inheritance is the mechanism for creating a child class that can inherit behavior and
properties from a parent (derived) class.

class Animal:
def init (self, name):
self.name = name
print (self.name + " was adopted.")
def run(self):

print ("running!")

class Dog(Animal) :

def init (self):
super () .init

def bark(self):
print ("woof!")

new dog behavior inherited from Animal parent class
spot = Dog("spot") #=> spot was adopted.
spot.run () #=> running!

igdddsssssassassisasiaasiaad i taaatandti

Encapsulation is the method of keeping all the state, variables, and methods private unless
declared to be public.

class Fish:

def init (self):
self. size = "big"

def get size(self):
print("I'm a " + self. size + " fish")

def set size(self, new size):
self. size = new size

using the getter method
oscar = Fish{()
oscar.get size() #=> I'm a big fish

change the size

bert = Fish ()

bert. size = "small"

bert.get size() #=> I'm a big fish

using setter method

fin = Fish ()

fin.set size("tiny")

fin.get size() #=> I'm a tiny fish

igdssdssdadsassssaaiastassadaaiaa it aadadi

Abstraction is the concept of hiding all the implementation of your class away from anything
outside of the class.

class Dog:
def init (self, name):

self.name = name
print (self.name + " was adopted.™)

def bark(self):
print ("woof!")

we don't care how it works just bark
spot = Dog("spot") #=> spot was adopted.
spot.bark () #=> woof!

igsddssssssdsasaisasiaasiasd it taadti

Polymorphism is a way of interfacing with objects and receiving different forms or results.

class Animal:
def init (self, name):

self.name = name
print(self.name + " was adopted.")

def run(self):
print ("running!")

class Turtle (Animal) :

def init (self):
super () .init

def run(self):
print ("running slowly!"™)

we get back an interesting response
tim = Turtle("tim") #=> tim was adopted.
tim.run () #=> running slowly!

igdsadsadadsadsasasiasiassadaaias it aadadi

1. Inheritance
Object-oriented languages that support classes almost always support the notion of
“inheritance.” Classes can be organized into hierarchies, where a class might have one or more

parent or child classes. If a class has a parent class, we say it is derived or inherited from
the parent class and it represents an “IS-A” type relationship. That is to say, the child class
“IS-A” type of the parent class.

Therefore, if a class inherits from another class, it automatically obtains a lot of the same
functionality and properties from that class and can be extended to contain separate code and
data. A nice feature of inheritance is that it often leads to good code reuse since a parent
class’ functions don’t need to be re-defined in any of its child classes.

Consider two classes: one being the superclass—or parent—and the other being the subclass—or
child. The child class will inherit the properties of the parent class, possibly modifying or
extending its behavior. Programmers applying the technique of inheritance arrange these classes
into what is called an “IS-A” type of relationship.

Example: For instance, in the animal world, an insect could be represented by an Insect
superclass. All insects share similar properties, such as having six legs and an exoskeleton.
Subclasses might be defined for grasshoppers and ants. Because they inherit or are derived from
the Insect class, they automatically share all insect properties.

2. Encapsulation
The word, Y“encapsulate,”
contains the medication inside of its coating, the principle of encapsulation works in a

similar way in OOP: by forming a protective barrier around the information contained within a

means to enclose something. Just like a pill "encapsulates" or

class from the rest of the code.

In OOP, we encapsulate by binding the data and functions which operate on that data into a
single unit, the class. By doing so, we can hide private details of a class from the outside
world and only expose functionality that is important for interfacing with it. When a class
does not allow calling code access to its private data directly, we say that it is well
encapsulated.

Example: Elaborating on the person class example from earlier, we might have private data in
the class, such as "socialSecurityNumber," that should not be exposed to other objects in the
program. By encapsulating this data member as a private variable in the class, outside code
would not have direct access to it, and it would remain safe within that person’s object.

If a method is written in the person class to perform, say, a bank transaction called
"bankTransaction()," that function could then access the "socialSecurityNumber" variable as
necessary. The person’s private data would be well encapsulated in such a class.

3. Abstraction

Often, it’s easier to reason and design a program when you can separate the interface of a
class from its implementation, and focus on the interface. This is akin to treating a system as
a “black box,” where it’s not important to understand the gory inner workings in order to reap
the benefits of using it.

This process is called “abstraction” in OOP, because we are abstracting away the gory
implementation details of a class and only presenting a clean and easy-to-use interface via the
class’ member functions. Carefully used, abstraction helps isolate the impact of changes made
to the code, so that if something goes wrong, the change will only affect the implementation
details of a class and not the outside code.

Example: Think of a stereo system as an object with a complex logic board on the inside. It has
buttons on the outside to allow for interaction with the object. When you press any of the
buttons, you're not thinking about what happens on the inside because you can't see it. Even
though you can't see the logic board completing these functions as a result of pressing a
button, it's still performing them., albeit hidden to you.

This is the concept of abstraction, which is incredibly useful in all areas of engineering and
also applied to great effect in object-oriented programming.

4., Polymorphism

In OOP, polymorphism allows for the uniform treatment of classes in a hierarchy. Therefore,
calling code only needs to be written to handle objects from the root of the hierarchy, and any
object instantiated by any child class in the hierarchy will be handled in the same way.

Because derived objects share the same interface as their parents, the calling code can call
any function in that class’ interface. At run-time, the appropriate function will be called
depending on the type of object passed leading to possibly different behaviors.

Example: Suppose we have a class called, “Animal” and two child classes, “Cat,” and “Dog.” If
the Animal class has a method to make a noise, called, “makeNoise,” then, we can override the
"makeNoise" function that is inherited by the sub-classes, "Cat" and "Dog," to be “meow” and
“bark,” respectively. Another function can, then, be written that accepts any Animal object as
a parameter and invokes its "makeNoise" member function. The noise will be different: either a
“meow” or a “bark” depending on the type of animal object that was actually passed to the
function.

ok) 1. abstraction
encapsulation
inheritance
polymorphism

ok) 2. which of the four fundamental features of the object-oriented programming could be
thought of as removing unnecessary

details, allowing the user to focus only on what is necessary? (put NA if it applies to
none to them)

(abstraction)

3. Which of the four fundamental features of object-oriented programming essentially means we
can create classes from old classes, and the now ones inherent aspects of the old one?

ok) 4. We define a subclass by using the same class keyword but with the child class name
insidee parentheses.
(False)

5. Which of these are ways you could refer to original and new class pairings?
superclass/subclass
parent/child

base class/drived class

ok) 6. I have created a class, beverage, that has a method called drink. I then create a class
from that class, called coffee.

The coffee also has the drink method, even though I didn't explicitly create it in the
class. This is because of one of the four fundamental features called?

(inheritance)

ok) 7. Generally speaking, attributes are directly available in Python.
(True)

ok) 8. Integer objects, such as 7 and 8, are of the same __ , which is why they have the same
methods.
(class)

9. A class is a _ for an object.
accessor (correct)

blueprint (wrong)

mold (wrong)

0O Q O W

set of instructions (wrong)

ok) 10. Integer objects contain attributes and methods. One such attribute would be the
multiply method.
Correct (False)

ok) 11. Which is the best description of how we would add a methods to a subclass?
(When we create a new class from an old one, we can a method just like we would for a
parent)

ok) 12. Class and object are essentially the same concept
Correct (False)

13. We use the init () method if we want to
a. assign object methods at creation time (try)
b. define methods for subclasses (wrong)
c. assign object attributes at creation time
d. create an instance of that type

ok) 14. We access both object and class attributes using dot notation.
(true)

15. car()
def init

ok) 16. Parent objects can inherit from multiple child classes.
(False)

ok) 17. based on the above code, what will be printed?
(Mooo)

18. Which of the following is NOT true of using super()?
try) Using super () undermines the principle of inheritance

(maybe) If the definition of the parent changes, using super will ensure that the
attributes and methods will reflect that change.

a. Using super () undermines the principle of inheritance

b. It can reduce the amount of code you need to write

c. All of these are turn (wrong)

d. If the definition of parent changes, using super will ensure that the attributes and
methods will reflect that change

ok)1l. could be thought of as a mold that creates objects
class

ok)2. Objects are a type of data structure that contain both data and code
data; code

3. Objects have
type, a value, a reference count
variable, function, list, tuple, dictionary, set

ok)4. go and get values of attributes Getters
change the state of the object Setters

5. Which of the four fundamental features of object-oriented programming essentially means what
an object does when there is a method call depends on the class of the object? (put NA if it
applies to none of them)

wrong: inheritance

maybe encapsulation

ok)6. have a list of objects of many classes that represent shapes. I run a loop on that
list, and use a .draw() method that appropriately draws shapes from these different classes.
This is an example of which of the four object-oriented pillars?

Polymorphism

ok)7. Which of the four fundamental features of object-oriented programming essentially means
objects contain data and functions? (put NA if it applies to none of them)
Encapsulation

ok)8. We can override any methods, including init ()

True

ok) 9. Yum

ok)10. You find a class that does almost what you need. Inheritance would come to play if you

did which of the following?

Create a new class from an existing

11.
class Cow:
def speak(self):
print ("Mooo")
def eat (self):
print ("Yum")

class Holstein (Cow) :
def speak(self):
print ("MMMOOOOO!")

Bessie = Holstein ()
Bessie.speak ()
MMMOOOOO !

ok)12. We use super () to call a ___ method
parent

ok)13. A Heffer is a Holstein is a Cow

ok)14.
class Cow:
def speak(self):
print ("Moo")
def eat(self):
print ("Yum")

class Holstein (Cow) :
def talk(self):
super () .speak ()

issubclass (Cow, Holstein)

False

ok)15. Classes cannot contain multiple attributes without instantiation of multiple objects
False

ok)16.
class Cat:
def init (self, name, breed):
self.name = name
self.breed = breed

Cat ('Fred', 'Burmese')

ok)1l7. I have an object, baseball. Dbaseball.throw() would be an example of an attribute.
False

ok)1l. Based on the above code, what will be printed, and why?
I have a cow named Bessie; the code is fine

ok)2. A Salesman is an Employee is a Person
3. Based on the above code, which of the following is correct?
wrong)Chef is a Professor

maybe none

ok)4. go and get values of attributes Getter

change the state of the object Setter

ok)5. Integer objects contain attributes and methods. One such attribute would be the multiply
method.
False

ok) 6. could be thought of as a mold that creates objects
class

ok)7. At the most basic level, objects are a data structure that contain both and

data; code

ok) 8. Which of the four fundamental features of object-oriented programming essentially means
we can create classes from old classes, and the new ones inherent aspects of the old one? (put
NA if it applies to none of them)

inheritance
ok)9. I have a list of objects of many classes that represent shapes. I run a loop on that
list, and use a .draw() method that appropriately draws shapes from these different classes.

This is an example of which of the four object-oriented pillars?
Polymorphism

ok)10. Which of the four fundamental features of object-oriented programming essentially means
objects contain data and functions? (put NA if it applies to none of them)
Encapsulation

11. A function within a class definition is an

object function

maybe method

methods are functions built in to the class definiton of an object

ok)1l2. .describe () is an attribute of a DataFrame object
False

ok)13. Given this code, what is the type of mycar?
__main__.car

ok)1l4. Functions in a class or object are called
method

15. Which of the following is NOT true in regards to methods?

wrong: When you create a method you should put 'self' in the parentheses of the method name
wrong: Methods can be created using def just like regular functions

maybe: Child classes cannot have methods of the same name as the parent class

16. The exclaim method prints out "I'm a car!" even though we didn't create it in our Prius
definition. Why would it be able to do this?
The method exclaim is a base Python method which it my car has by default

ok)1l7. Based on the above code, which of the following is produced?
MMMMOOOOO !

ok)18. We define a subclass by using the same class keyword but with the child class name
inside parentheses
False

ok)l. I have created a class, beverage, that has a method called drink. I then create a class
from that class, called coffee. The coffee class also has the drink method, even though I
didn't explicitly create it in the class. This is because of one of the four fundamental
features called

(inheritance)

ok)2. The exclaim method prints out "I'm a car!" even though we didn't create it in our Prius
definition. Why would it be able to do this?

(It inherits the method from the car class)

ok)3. Yum

ok)4. We access both object and class attributes using dot notation
(True)

ok)5. Given the above code, which is the correct way to instantiate a cat?
(Cat ('Fred', 'Burmese'))

cc)6. .describe() is an attribute of a DataFrame object
(False)
7. We use the init () method if we want to

wrong (assign object methods at creation time)
wrong (assign object attributes at creation time)
maybe (create an instance of that type)

ok) 8. Generally speaking, attributes are directly available in Python
(True)

9. Method resolution order determines

The Python Method Resolution Order defines the class search path used by Python to search for
the right method to use in classes having multi-inheritance.

wrong (class)

maybe (inheritance)

ok)10. Which of the following is true?

A Heffer is a Holstein is a Cow

ok)1l1l. Parent objects can inherit from multiple child classes

(False)

ok)1l2. Integer objects, such as 7 and 8, are of the same , which is why they have the
same methods.

(class)

13. A class 1s a(n) for an object

Which of the following is not appropriate to fill in the blank?
wrong (mold)

wrong (blueprint)

try(set of instructions)

14. Objects have
A type, A value, A reference count, unique id

ok)15. Which is the best description of how we would add a method to a subclass?
(When we create a new class from an old one, we can add a method just like we would for a
parent)

ok)1l6. Which of the four fundamental features of object-oriented programming could be thought
of as removing unnecessary details, allowing the user to focus only on what is necessary? (put
NA if it applies to none of them)

(Abstraction)

ok)1l7. Question 17 options:
In alphabetical order, what are the four fundamental features of object-oriented programming?

ok)18. Which of the four fundamental features of object-oriented programming essentially means
what an object does when there is a method call depends on the class of the object? (put NA if
it applies to none of them)

(polymorphism)

Which of the following is not appropriate to fill in the blank?

Which portion(s) of this code are incorrect or incomplete?
car ()

def init

(self, name):

Packages DTSC 575

pip install flask == 0.9 >= (min version)
pip install -upgrade <package name>

Virtual environment
Py Sci and Stats
import statistics

x = [1, 2, 3]
statistics.mean (x)

import numpy as np
y = np.array([1l, 2, 31)
y.mean ()

import seaborn as sns
tips = sns.load dataset('tips')
tips.head()

np.corrcoef (tips.total bill, tips.tip)

import scipy
r, p = scipy.stats.pearsonr(x, V)
r

import numpy as np

import pandas as pd

import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula as smf
from patsy import dmatrices

df = sm.datasets.get rdataset ("Guerry", "HistData").data
df.head ()

Are literacy rates associated with lottery wagers?
We're interested in the following:

® Department

e Iottery = per capita wager on Royal Lottery

e Literacy = Percent of military conscripts who can read & write
°

Wealth = Per capita tax on personal property

df2 = df[['Department', 'Lottery', 'Literacy', 'Wealth', 'Region']]
df2.head ()

df2.describe ()

Design matrices
Generally statsmodels requires two design matrices: endog and exog

* Endog = endogenous
* Dependent/response variables
* Exog = exogenous
* Independent/predictor variables

1. Dependent/response variables Exogenous
Independent/predictor variables Endogenous

2. Statsmodels generally requires matrices
(2)

3. When you run an ANOVA the output does NOT tell you which of the following?
F-statistic
Degrees of freedom
Overall significance of the model
*Multiple comparisons of means

4. ANOVA stands for
(analysis of wvariance)

5. ANOVA 1s an omnibus test
(True)

6. By default, scikit-learn and statsmodels create equivalent logistic regression models
(False)

7. Scatterplots are useful to visualize relationships you might investigate in linear
regression
(True)

8. Which of the following is how we would create a logistic regression model?
(sm.Logit ())

9. Boxplots are useful in comparing mean differences across groups
(True)

10. Scatterplots are useful for comparing mean differences across groups
(False)

11. You can run some statistics using NumPy and Pandas methods.
(True)

12. For relatively low-level stats, it generally doesn't matter if you run them in statsmodels,
the statistics library, or the other ways we saw
(True)

W)1l3. Flask install pip == .09 Would install Flask version .09
(It's pip version)

14. Anaconda comes with some packages, like NumPy and Pandas, preinstalled
(True)

15. pip comes with the standard Python installation
(True)

w)1l6. Which of the following are common ways of installing packages?
conda
pip
install.packages()
takeout (install.py)

1. To run any stats you must first import statistics
(False)

3. Which of these might you want to add to the default statmodels regression model?
(Constant)

4. import seaborn as sns

5. The default linear regression model will be equivalent if you run it in R and statsmodels
(False)

6. Multiple comparisons are a post-hoc test to indicate where a significant difference between
groups might be found
(True)

7. The following will compare differences in traffic across days
multicomp.pairwise tukeyhsd(df.day, df.traffic)
(False)

8. OLS can be used for regression and ANOVA
(True)

9. Independent samples t-tests compare the mean across three or more groups

(False)

10. We have a dataframe, df, and a variable, gender. We have the following code. Which is
true?

from statsmodels.stats.weights import ttest ind

ttest ind(df.gender)

(ttest ind() was not created properly; there will be an error)

11. Which of the following can you do with pip?
uninstall packages
upgrade packages
install packages

12. Packages outside of base Python never come with any Python installation.
(False)

14. Which of the following are common ways of installing packages?
conda

pip

15. Which ways do we frequently import statsmodels?
(import statsmodels.api as sm)
(import statsmodels.formula as smf)

16. You cannot have two endogenous variables
(False)

