Writing Iceberg V2 tables in Impala
Zoltan Borok-Nagy (boroknagyz@cloudera.com)

Overview

This doc describes the design choices of writing Iceberg V2 tables via Apache Impala. Please
note that INSERT INTO / INSERT OVERWRITE already works for V2 tables, this document
focuses on the row-level modifications, i.e. the DELETE and the UPDATE statement.

We also restrict ourselves to position delete files.

Non-goals

e Writing equality delete files
e Modifying rows via “copy-on-write” mode
e Multi-statement transactions

Background

The major new feature of the Iceberg format version 2 is the row-level modifications via
merge-on-read. In Iceberg V1 when the user wanted to delete/update a record they had to
rewrite the whole data file that contained the record (aka “copy-on-write” mode). With Iceberg
V2 we can collect information about the deleted records in delete files. There are two kinds of
delete files, both of them store some identifiers of the deleted records:
e Position delete files: store the file URIs and ordinal positions of the deleted records
e Equality delete files: store a subset of column values of the deleted records (typically
unique IDs). Different delete files might use different subset of columns

UPDATE operations can be split into an atomic pair of DELETE + INSERT operations.

DELETE statements

Let’s start with DELETESs because they are obviously simpler than UPDATEs. We need to write
DELETE files, so let’'s see what they look like. Their file format can be controlled via the table
property “write.delete.format.default” based on the Iceberg Configuration page. By default the
format is the same as the data file format, i.e. Iceberg tables with Parquet data files have
Parquet delete files unless specified otherwise. But since Impala can only write Parquet, it limits
our options. Their schema is based on the Iceberg spec:

Field ID Name Type Description

2147483546 | file_path [STRING Full URI of a data file with FS scheme. This must

mailto:boroknagyz@cloudera.com
https://iceberg.apache.org/docs/latest/configuration/
https://iceberg.apache.org/spec/#position-delete-files

match the file_path of the target data file in a
manifest entry

2147483545 | pos LONG Ordinal position of a deleted row in the target
data file identified by file_path, starting at 0

2147483544 | row STRUCT<...> | Deleted row values. Omit the column when not
storing deleted rows.

The row column can be omitted, and we will omit this as Impala cannot write STRUCTSs. Also,
the delete files might be consuming too much space if the row field was stored. The downside of
not storing the deleted records is that we won’t have column statistics about them. This means
that predicates pushed down to Iceberg will not filter the delete files, therefore we might end up
evaluating more delete files than necessary.

The rows in the delete file must be sorted by file path then position.

To write such files we can simply rewrite a DELETE statement to an INSERT INTO statement:

DELETE FROM ice t WHERE <cond>;

To

INSERT INTO ice t.DELETE (file path, pos)

SELECT input file name, file position, <part cols>
FROM ice t

WHERE <cond>;

ice t.DELETE can be a virtual table created on the fly by the query. It has a schema
corresponding to the schema of Iceberg position delete files. <part_cols> (partition columns) are
added to the statement so we can write delete files according to the Iceberg table’s partitioning.
We should shuffle the delete rows across executors based on their partitions so each partition is
written out by one executor, hence we end up with as few delete files as possible.

We might also need to make the virtual table ice t.DELETE partitioned by the same partition
spec that ice_t uses. In this case we need to tweak the delete writer to ignore the partition
columns when it writes out the rows, and only use partitioning for clustering the files.

UPDATE statements
UPDATE statements can be split into two: a DELETE statement and an INSERT statement:

UPDATE ice_t SET col_i = col_i + 1 WHERE <cond>;

To

DELETE FROM ice t WHERE <cond>;

INSERT INTO ice_t
SELECT ..., col i + 1,
FROM ice t

WHERE <cond>;

The two statements must run on the same snapshot and commit together, so they don’t interfere
with each other.

But a DELETE statement is also an INSERT INTO statement (see above). Let’s apply the
rewrite:

INSERT INTO ice t.DELETE (file path, pos)

SELECT input file name, file position, <part cols>
FROM ice t

WHERE <cond>;

INSERT INTO ice_t
SELECT ..., col i + 1,
FROM ice t

WHERE <cond>;

Seems like we could just merge them into a single INSERT INTO statement:

INSERT INTO ice t.UPDATE (file path, pos, ...)

SELECT input file name, file position, ..., col i + 1,
FROM ice t

WHERE <cond>;

The update writer would split each row to two:
e file_path, pos
e ..,coli+1, ..
And write the first split into a delete file, and the second split into a regular data file.

Unfortunately it doesn’t work in all cases. There is no problem if we update non-partition
columns. We can shuffle data around by the partition columns which will be the same for the
delete files and data files. But if a partition column gets updated, e.g.:

UPDATE ice_t SET part_col = part_col * 10 WHERE <cond>;

Then the delete records and the newly inserted records might belong to completely different
partitions.
It's not easy to overcome this problem. We either
e Return back to the original DELETE + INSERT statements
o It's wasteful, need to do things twice

DELETE WRITE
SINK SINK
SORT SORT

SCAN HDFS SCAN HDFS

e Fork the transmission of each row, driven by two partitioning
o We don’t have such operators in Impala
o Not trivial to create such plans

DELETE WRITE
SINK SINK

_ 7

A\ /
SORT SORT

|“3\ -1
AW)/

NS4

EXCHANGE

SCAN HDFS

Shuffle only by the partitions of the newly inserted records

o This is what we plan to implement, at least in the short term. Following parts of
the document dive into this.

o Each data partition is written by a single executor, i.e. as few data files are written
as possible

o Delete partitions might be written by multiple executors, i.e. more delete files are
written than necessary

o Hive does this: https://github.com/apache/hive/pull/3251/files

https://github.com/apache/hive/pull/3251/files

DELETE WRITE

SINK SINK
l\ /
UPDATE
WRITER ,.f'-_ _JB-V--_-}‘-_ ___\’%\
')
l:?.__ u pd'c':tEd H\F___,_ff:l
\.__‘_&__ __EED SJ/""-*' J
C}D o
SORT
SCAN HDFS

HIVE-26183: Implement UPDATE statements for Iceberg tables

So https://github.com/apache/hive/pull/3251/files does the latter, i.e. Hive update queries are
converted to an insert statement where the result records contain the new column values and
the deleted column values.

Rows are shuffled and sorted based on the new column values and HivelcebergUpdateWriter
writes both the new records and the deleted records. Deleted records are getting buffered in
HivelcebergBufferedDeleteWriter which outputs them during close().

Changes needed in Impala

(With the assumption that option “Shuffle only by the partitions of the newly inserted records” is
chosen)

For DELETE statements, we could reuse the IcebergPositionDeleteTable virtual table which
could be used as the target table of the DELETE - > INSERT statements. We might need to add
the partition columns to its schema so that the INSERTs can write the delete files in separate
partitions.

We need to create a delete writer in the backend. This probably needs to be tweaked so that it
only outputs the file_path and pos columns. We might also need to SORT BY the file_path and
position as well to write out rows one-by-one. Alternatively we can buffer the incoming rows then
write out everything sorted at the end of each partition. Probably we should do the latter as we’ll
need a buffering logic for UPDATEs anyway.

https://github.com/apache/hive/pull/3251/files

For UPDATE statements we can follow Hive’s behavior (Shuffle only by the partitions of the
newly inserted records). This means we need to create an UpdateWriter that splits the incoming
tuples into two parts:
e New data part
o <new columns>
e Position delete part
o file_path
o pos
o <old columns>
(Probably we don’t need to physically split the tuples, to avoid copying, we just need to track
which slot belongs to where).

The incoming tuples to the UpdateWriter will be ordered based on the partitioning of the “New
data part”. l.e. the tuples can be passed one-by-one to a file writer, and the files need to be
closed when a new tuple belongs to a new partition, and a new file is created for that partition,
the same way we currently do partitioned inserts.

The “Position delete part” can be out of order. We can deal with it similarly to HIVE-26183, i.e.
buffer the position delete data, and output the delete files at the very end. The memory
requirements for this shouldn’t be too high, as we would just need to store file names and the
corresponding file positions. We could store them in an

unordered map<Partition, map<FileName, vector<Position>>>
like structure. If this gets too large and we have tight memory limits then we could flush out the
data belonging to the largest partitions.

Edge cases

Delete everything from a table:
DELETE FROM <tbl>;

This should be translated to:
TRUNCATE TABLE <tbl>;
So we don’t need to write any new data files, just create a new empty snapshot.

Update every row:

UPDATE table name SET column namel = new valuel, column name2 =
new value2 ..;

This could be basically translated to:

INSERT OVERWRITE table name SELECT new valuel, new value2 .. FROM
table name;

So we wouldn’t write any delete files, just write the new data files. INSERT OVERWRITE does a
dynamic overwrite with the help of Iceberg’s ReplacePartitions API. It means only the affected
partitions are replaced. Therefore, if we want to change columns that are involved in the

https://iceberg.apache.org/docs/latest/spark-writes/#overwrite-behavior

partitioning, then the above INSERT OVERWRITE statement would not work as expected
(some old partitions might remain).

Therefore we need to invoke our truncateTable() method, then append the newly written data
files to our table.

https://github.com/apache/impala/blob/a74ca6b025a5d3ee98caacca09239aea22aa41d6/fe/src/main/java/org/apache/impala/service/IcebergCatalogOpExecutor.java#L353
https://github.com/apache/impala/blob/a74ca6b025a5d3ee98caacca09239aea22aa41d6/fe/src/main/java/org/apache/impala/service/IcebergCatalogOpExecutor.java#L245

	Writing Iceberg V2 tables in Impala
	Overview
	Non-goals
	Background
	DELETE statements
	UPDATE statements
	HIVE-26183: Implement UPDATE statements for Iceberg tables
	Changes needed in Impala
	Edge cases

