
Learning Path: Mastering Contribution
To Meshery

Certification: Contributing To Meshery

Innovation through Collaboration

Learning Path: Mastering Contribution to Meshery

Document Purpose​ 3
Document Scope ​ 3

Learning Path: Mastering Contribution to Meshery

Document Purpose
1.​ To provide a roadmap for a complete Learning Path to Mastering Contribution to Meshery.
2.​ To enable collaborative drafting and review of the content itself (written in markdown).

Tips and Tricks from Maintainers
Having Maintainers offer questions and review as beta testers.

Create FAQs

●​ What happens if I fail? Can I retake and how many times, if so?
●​ Does my credential (certificate) expire?
●​ How do I show-off my credentials (I’m proud of it)?
●​ Other faqs

Create one exam per architectural component.

●​ SErver, ui, cli,
●​ Adapters
●​

Create a badge graphics Lee Calcote

Brainstorm a name Ritesh Karankal
Create a new repo from template: github.com/meshery-extensions/meshery-academy Lee Calcote

Blog post
sSOl
Put into an email and send

Document Scope
Out of Scope:

1.​ Regurgitating all of Meshery Docs.
In Scope:

1.​ Highlighting best practices, covering common user flows.

mailto:lee.calcote@layer5.io
mailto:ritesh.karankal200@gmail.com
mailto:lee.calcote@layer5.io
http://github.com/%E2%80%A6%E2%80%A6

Learning Path: Mastering Contribution to Meshery

Resources:
-​ See for a taxonomy of Learning Paths. CNCF Hub

https://docs.google.com/presentation/d/1OqY5EvYYxj91MFEwoMaJVLyStDX9rTc7CyiF4w6qbNA/edit#slide=id.g2cf595f6400_0_516

Learning Path: Mastering Contribution to Meshery

Draft Learning Path Table of Contents

Document Purpose​ 3
Document Scope​ 3

Learning Path: Contributing to Meshery​ 9
Course: Overview​ 9

Chapter: Contributing overview​ 9
Chapter: Projects and Repository overview​ 9
Chapter: How, Why, and Where to Contribute​ 11

Section: How to Contribute​ 11
Section: Where to Contribute​ 12

Chapter: Contributing Flow​ 12
Chapter: GitHub Process​ 14
Chapter: Community Guidelines and Code of Conduct​ 14

Course: Working with Docs​ 14
Chapter: Meshery docs​ 14

Section: Meshery Docs structure​ 14
Chapter: Setting up the dev environment​ 15

Section: For Windows​ 15
Section: For Linux​ 15
Section: For MacOs​ 15
Section: Serving the site (what the commands do)​ 15
Section: Using Docker​ 15
Section: Using Gitpod​ 16
Section: Serve GitHub Codespaces​ 16

Chapter: Documentation Contribution Flow​ 16
Section: Contribute and Preview the changes​ 16

Chapter: Documentation Framework​ 17
Section: What Powers the doc - rendering and structuring​ 17
Chapter: Understanding the Flow of Meshery Docs Rendering​ 18

Section: Flow​ 18
Chapter: Using the Features of Meshery docs​ 18

Section: Clipboard​ 18
Section: Alerts​ 19
Section: Image Handling​ 19
Section: Quotes​ 19

Chapter: Table of Contents in Sidebar​ 20

Learning Path: Mastering Contribution to Meshery

Section: Manual generation of TOC in Meshery Docs​ 20
Chapter: How Docs are Versioned​ 20

Section: Meshery maintains multiple versions of documentation. This ensures users
can reference docs matching the Meshery release they’re running. Contributors may
need to:​ 20
● Add content under the current version folder.​ 20
● Update links and redirects for older versions if the content moves.​ 20
● Ensure breaking changes in Meshery are documented clearly in the right version.​
20

Chapter: Writing Tips and Resources​ 20
Section: <section>​ 20

Tutorial: Contributor Training Series: Working with Meshery Docs (Zihan Kuang)​ 21
Course: Contributing to Meshery UI​ 21

Chapter: Meshery UI​ 21
Section: Overview​ 21
Section: Architecture​ 21
Section: Design​ 21
Section: Setup Development Environment​ 21
Section: Meshery server API’s​ 21

Quiz​ 21
Chapter: Schema-Driven UI Development​ 21

Section: Overview​ 21
Section: Repo Structure​ 21
Section: Schema Drive UI Development Workflow​ 21
Section: Integration Points in UI​ 22

Quiz​ 22
Section: <section>​ 22

Chapter: Dashboard Widgets​ 22
Section: <section>​ 22

Quiz​ 22
Chapter: Notification Center​ 22

Section: What is a Notification Center​ 22
Section: Metadata Formatter​ 23
Section: How Notification Metadata is Rendered​ 24
Section: Repository Structure​ 25
Section: Types of Event Specific Notification Formatter​ 26

Quiz​ 31
Tutorial: Contributor Training Series: Meshery UI (Amit Amrutiya)​ 31

Course: Contributing to Meshery CLI​ 31

Learning Path: Mastering Contribution to Meshery

Chapter: Building CLI​ 31
Section: <section>​ 31

Chapter: Documenting​ 31
Chapter: Designing commands Guidelines​ 31
Chapter: Unit Testing​ 31
Chapter: End-to-End Testing​ 31
Tutorial: Contributor Training Series: Meshery CLI (Aadhitya Amarendiran and Matthieu
Evrin)​ 31

Course: End-to-End Testing in Meshery UI using Playwright​ 31
Chapter: <Chapter>​ 31

Section: <section>​ 31
Tutorial: Contributor Training Series: E2E Testing in Meshery UI (Ian Whitney)​ 31

Course: End-to-End Testing in Meshery CLI using BATS​ 31
Chapter: Introduction​ 31

Section: About Mesheryctl​ 31
Chapter: Setup Local Development Environment​ 32

Section: Prerequisites​ 32
Section: Setup BATS core​ 32
Section: Setup Dependencies​ 32
Section: Starting Meshery Server​ 32
Section: Authentication​ 32

Chapter: Folder Structure and Naming Conventions​ 32
Section: Understanding Meshery Repo Directories​ 32
Section: E2E Test Folder Structure​ 33
Section: Test Naming Conventions​ 33

Chapter: Run End-to-End Tests Locally​ 34
Section: Running All tests​ 34
Section: Running Specific Command Test Suite​ 34
Section: Running Specific Test Files​ 34
Section: Alternative Test Execution​ 34
- Run tests with already built binary​ 34

Chapter: Finding Issues to Work on​ 34
Section: Navigating Open Issues​ 34
Section: Using the Meshery Test Plan​ 34

Chapter: Writing Tests with BATs​ 35
Section: BATs Basics and interacting with mesheryctl​ 35
Section: Assertions​ 35
Section: Setup and Teardown​ 35

Chapter: Developing Your Tests​ 35

Learning Path: Mastering Contribution to Meshery

Chapter: Best Practices for Quality and Coverage​ 35
Section: Ensuring Quality​ 35
Section: Ensuring Coverage​ 35

Chapter: Reporting Bugs during Test Development​ 36
Section: Identifying bugs while writing tests​ 36
Section: Using the “mesheryctl Bug Report” template​ 36
Section: Providing Detailed Reports​ 36
Section: Linking Back to Tests​ 36

Tutorial: Contributor Training Series: E2E Testing in Meshery CLI (Riya Garg)​ 37
Course: Build and Release​ 37

Chapter: <Chapter>​ 37
Section: <section>​ 37

Tutorial: Contributor Training Series: Meshery CI (Sangram Rath)​ 37
Course: Meshery Server​ 37

Chapter: <Chapter>​ 37
Section: <section>​ 37

Tutorial: Contributor Training Series: Meshery Server (Shlok Mishra)​ 37
Course: Meshery Models​ 37

Chapter: Models​ 37
Section: What are Meshery Models?​ 37
Section: Core Constructs of Model​ 37
Section: What is Model Schema​ 37
Section: Portability, Registry, and Intellectual Property​ 37
Section: Design Principles behind Meshery Models​ 38
Section: Entity Lifecycle in Meshery​ 38
Section: Capabilities in Model​ 38
Section: Importing model​ 38
Section: Creating a model​ 38
Section: Post-Generation Enrichment​ 38
Section: How models are versioned​ 38

Tutorial: Contributor Training Series: Meshery Models (Aabid Sofi)​ 38
Labs:​ 38
Chapter: Components​ 38

Section: What Are Components?​ 38
Section: Semantics vs Non-Semantics Components​ 38
Section: Component Properties​ 38
Section: How to Contribute New Components​ 38

Chapter: Relationships​ 39
Section: Introduction to Relationships​ 39

Learning Path: Mastering Contribution to Meshery

Section: Types of Relationships​ 39
Section: The Mechanics of Relationships​ 39
Section: How to create new Relationships​ 39

Course: Meshery Schema​ 39
Chapter: <Chapter>​ 39

Section: <section>​ 39
Course: Meshery Policies​ 39

Chapter: <Chapter>​ 39
Section: <section>​ 39

Course: Meshery Adapters​ 39
Chapter:​ 39

Learning Path: Mastering Contribution to Meshery

Learning Path: Contributing to Meshery

Course: Overview

Chapter: Contributing overview
About Meshery

Chapter: Projects and Repository overview

Chapter: How, Why, and Where to Contribute

Section: How to Contribute
Assessing your skills & interests, choosing an area to contribute, Where to Ask for help, Discuss, and
Collaborate: GitHub Issues, Slack, Discussion Forum, and Meetings.
​
Section: Why to Contribute
Learning opportunity, impact, recognition

Section: Where to Contribute
Documentation, Codebase, Community & Outreach, Design & UX, Testing and QA, Project
Management

Chapter: Contributing Flow

Chapter: GitHub Process

Chapter: Community Guidelines and Code of Conduct

Course: Working with Docs
In this course, you will learn how Meshery docs are structured, how to set up your dev environment,
and how to contribute docs that actually get merged.

Chapter: Meshery docs

Section: Meshery Docs structure
Overview of docs.meshery.io layout, How users can navigate, and find relevant content

Learning Path: Mastering Contribution to Meshery

Meshery Docs live at docs.meshery.io and act as the go-to place for users, contributors, and
maintainers to learn, explore, and contribute to Meshery. Understanding how these docs are
organized will help you navigate them smoothly and know where to add your contributions.

Layout Overview

●​ Home: The landing page introduces Meshery and links to the guides.
●​ Guides and Tutorials: Step-by-Step instructions for using Meshery features.
●​ Concepts and Architecture: Background material that explains Meshery’s building blocks,

like components, patterns, models, and more.
●​ Installation: Platform-specific installation instructions (Docker, Kubernetes, Minikube, etc.)
●​ Reference: Command-line reference (mesheryctl), API reference, and error codes.
●​ Contributing: Documentation for contributors, explaining workflows, style guides, and best

practices for writing and submitting changes.
Navigation

●​ The sidebar is the main way to move through the docs. It is grouped by topics like
Installation, Guides, Concepts, etc.

●​ Each page uses YAML frontmatter at the top to control how it shows up in the sidebar.
●​ Internal links (cross-links) make it easy to jump between related pages without losing

context.
Why Structure Matters
Keeping the docs structured ensures:

●​ Clarity for users: Readers can quickly find what they are looking for.
●​ Ease for contributors: You know exactly where your new page or section belongs.
●​ Consistency: Docs look and feel uniform across all topics.

Chapter: Setting up the dev environment
A local docs setup lets you preview changes before you open a PR. Pick your OS and follow the steps.
If something feels off, there is a small Troubleshooting box in each section.

Section: For Windows
Goal: run the Meshery docs site locally with Jekyll inside WSL2 (Linux on Windows).

Section: For Linux
Goal: Same as Windows, just native Linux.

1.​ Clone and install deps:
git clone https://github.com/<your-username>/meshery.git
cd meshery/docs

2.​ Serve
make docs
or
bundle exec jekyll serve --drafts --config _config_dev.yml

https://docs.meshery.io

Learning Path: Mastering Contribution to Meshery

Section: For MacOs
Goal: Run Jekyll with system Ruby or rbenv.

1.​ Install Homebrew (if needed)
https://brew.sh

2.​ Install Ruby

3.​ Clone and install deps
git clone https://github.com/<your-username>/meshery.git
cd meshery/docs

4.​ Serve
make docs
 or
bundle exec jekyll serve --drafts --config _config_dev.yml

Section: Serving the site (what the commands do)
●​ make docs runs Jekyll in dev mode (drafts enabled, local server, live reload).
●​ bundle exec jekyll serve --drafts --config _config_dev.yml does the same, but explicitly (handy

when make is not available or you want to toggle flags).
When it boots, open http://localhost:4000 and browse your changes.

Section: Using Docker
Best when you don’t want to install Ruby/Jekyll locally.
From the meshery/docs folder:
make docker
This builds a container and serves the site. Open the port it prints (usually http://localhost:4000).
Heads-up: This path can be flaky on Windows. If it misbehaves, prefer WSL2 or Codespaces/Gitpod.

Section: Using Gitpod
Best when you want zero local setup.

1.​ Install the Gitpod browser extension.
2.​ Open your fork on GitHub and click Gitpod (button appears with the extension).
3.​ In the Gitpod terminal:

cd docs
make docs
Gitpod will expose a preview URL in the Ports panel.

Section: Serve GitHub Codespaces
Best when you want a cloud VS Code with your fork.

1.​ On your fork, click Code → Open with Codespaces → New codespace.
2.​ In the terminal:

cd docs
make docs

https://brew.sh
http://localhost:4000
http://localhost:4000

Learning Path: Mastering Contribution to Meshery

Codespaces will show a forwarding URL (click it). If you want to work from local VS Code
connected to your Codespace, you can just open the port link from there.

Chapter: Documentation Contribution Flow

Section: Contribute and Preview the changes
 Contributing to Meshery Docs follows a simple and structured process to ensure consistency and
quality.

1.​ Fork the Repository
●​ Start by forking the Meshery repository into your GitHub account.

2.​ Clone Locally
●​ Clone your fork to your local machine and navigate to the /docs directory.

git clone https://github.com/<your-username>/meshery.git
cd meshery/docs

3.​ Create a New Branch

●​ Always create a new branch for your changes.
git checkout -b my-docs-update

4.​ Make Edits
●​ Update the relevant Markdown file (.md).
●​ If you are adding a new page, don’t forget to update navigation or sidebar files if

needed.
5.​ Preview Locally

●​ Run make docs (or the relevant command for your platform) to serve the
documentation site locally.

●​ Open http://localhost:4000 in your browser to see the changes.
6.​ Commit with Sign-off

●​ Meshery uses the Developer Certificate of Origin (DCO). Always sign your commits.
git commit -s -m "docs: updated contributing guide"

7.​ Push and Open a Pull Request

●​ Push your branch to your fork and open a PR against meshery/meshery:master.
●​ A Netlify preview will be automatically generated for reviewers to test.

This flow ensures all the contributions are traceable, reviewable, and meet project standards.

Chapter: Documentation Framework
The Meshery Docs site is powered by modern static site tooling. Understanding the framework helps
contributors work effectively with the system.

Section: What Powers the doc - rendering and structuring
-​ YAML Frontmatter

https://github.com/meshery/meshery?utm_source=chatgpt.com
http://localhost:4000

Learning Path: Mastering Contribution to Meshery

Each documentation file begins with a block of YAML frontmatter. This metadata defines
properties of the page:

—
layout: default
title: "Contributing to Meshery Docs"
abstract: "Learn how to contribute to Meshery Docs."
permalink: guides/tutorials/contributing-to-docs
language: en

❖​ layout → Which template to use (default = standard page look).
❖​ title → The name of your page (shows up in headings & navigation).
❖​ abstract → A summary that appears in previews or cards.
❖​ permalink → The URL path where this page will live (e.g.,

/guides/tutorials/contributing-to-docs).
❖​ language → The language of the page (default is en).

➢​ TOC in sidebar​

 Controlled by front matter (e.g., toc: true) and sidebar config. Don’t hand-roll complex
sidebars in-page; follow existing patterns.

➢​ Liquid
Meshery Docs use Liquid, the templating language from Jekyll, to dynamically include
content, variables, and layouts.

●​ Example: {% include alert.html type="info" title="Heads up!" %}
This displays a styled alert box without repeating code.

Jekyll templating syntax

➢​ Jekyll
●​ Jekyll is a static site generator used to build Meshery Docs.
●​ Converts Markdown files (.md) into static HTML pages.
●​ Applies layouts and themes for consistent styling.
●​ Supports drafts, collections, and custom plugins.

➢​ Theme https://github.com/vsoch/docsy-jekyll

●​ Meshery Docs are styled with the Docsy Jekyll Theme.
●​ Ensures responsive design and clean navigation.
●​ Simplifies maintenance and reduces custom CSS.

Chapter: Understanding the Flow of Meshery Docs Rendering

Section: Flow
Meshery Docs are written in Markdown (.md), which are then processed through Jekyll and
rendered into static HTML pages. The flow is:
Markdown (.md) → Jekyll (Liquid + Layouts) → HTML → Deployed site

●​ Markdown provides the content.

https://github.com/vsoch/docsy-jekyll
https://github.com/vsoch/docsy-jekyll?utm_source=chatgpt.com

Learning Path: Mastering Contribution to Meshery

●​ YAML frontmatter adds metadata like title, description, and layout.
●​ Jekyll with Liquid templates applies layouts and formatting.
●​ Docsy Jekyll theme ensures consistent styling and navigation.

Understanding this flow helps contributors preview how their raw .md edits become styled
pages on docs.meshery.io.

Chapter: Using the Features of Meshery docs

Section: Clipboard

Code snippets in Meshery Docs automatically include a clipboard copy button.

mesheryctl system start

Readers can copy commands with one click, improving usability.

Section: Alerts
Use alerts to highlight important information. Meshery Docs includes reusable
`alert.html` partials.
```liquid 
{% include alert.html type="info" title="Note" %} 

Types include: info, warning, danger, success, primary, etc. 

Section: Alerts 

Alerts are used in Meshery Docs to call attention to important notes, warnings, or tips. They help 
readers quickly spot key information without cluttering the flow of the page. 

Meshery Docs provides a reusable include file, alert.html, for creating alerts. You can choose 
from different types such as info, warning, success, danger, and more. 

Example (info alert): 

{% include alert.html type="info" title="Heads up!" %} 
This is an informational message. 
{% endinclude %} 

This will render a styled alert box with the heading “Heads up!” and your message beneath it. 

Other alert types available: 

●​ info – highlights helpful information. 
●​ warning – flags something users should be careful about. 
●​ success – indicates an action completed successfully. 

https://docs.meshery.io?utm_source=chatgpt.com


Learning Path: Mastering Contribution to Meshery 

●​ danger – calls out critical issues or errors. 

 

Section:  Image Handling 

Images can be added with Markdown: 

![Alt text](/assets/img/example.png) 

Or with custom HTML for controlling size: 

<img src="/assets/img/example.png" style="width:500px;" alt="Example"> 
 

Section: Quotes 

Use > for blockquotes: 

> This is an example of a blockquote. 

Chapter: Table of Contents in Sidebar  

Section: Manual generation of TOC in Meshery Docs 

Meshery Docs sidebar navigation is built from the TOC (table of contents) in YAML. Example: 

toc: 
- title: Docs 
  subfolderitems: 
  - page: Setup 
    url: /project/contributing/contributing-docs 
TOC ensures chapters and sections appear in the sidebar hierarchy (parent → child → grandchild). 



Learning Path: Mastering Contribution to Meshery 

Chapter: How Docs are Versioned 

Section: Meshery maintains multiple versions of documentation. This ensures users can reference 
docs matching the Meshery release they’re running. Contributors may need to: 

●​ Add content under the current version folder. 

●​ Update links and redirects for older versions if the content moves. 
●​ Ensure breaking changes in Meshery are documented clearly in the right version. 

 

Chapter: Writing Tips and Resources 

Section: <section> 
●​ Clarity first: Write as if explaining to a newcomer. 
●​ Keep it consistent: Follow the tone/style already used in Meshery Docs. 
●​ Use active voice: e.g., “Run make docs to serve the site.” 
●​ Link generously: If content is explained elsewhere (e.g., tutorials, CLI guides), link to it. 
●​ Test locally: Always preview your edits before PR.​

 
Resources:​
Jekyll Docs​
Liquid Templating​
Meshery Docs Contributing Guide 

 

Tutorial: Contributor Training Series: Working with Meshery Docs 
(Zihan Kuang) 

 
 

Course: Contributing to Meshery UI 

Chapter: Meshery UI 

Section: Overview 

Section: Architecture 
ReactJS, NextJS, Material UI, BillboardJS, CytoscapeJS, Redux Toolkit, Sistent, Schemas 

https://jekyllrb.com/docs/?utm_source=chatgpt.com
https://shopify.github.io/liquid/?utm_source=chatgpt.com
https://docs.meshery.io/project/contributing/contributing-docs?utm_source=chatgpt.com


Learning Path: Mastering Contribution to Meshery 

Section: Design 
Userflow/Wireframing/Mockups - Figma files 
Design Goals 

Section: Setup Development Environment 
Linting, install UI dependencies, build and export UI, Run Meshery server, UI development server 

Section: Meshery server API’s 
REST API, GraphQL API 

Quiz 

Chapter: Schema-Driven UI Development 

Section: Overview 

Section: Repo Structure 

Section: Schema Drive UI Development Workflow 
-​ Define or update the schema 
-​ Generate TS types and Schema objects 
-​ Build and export 
-​ Use schema 

Section: Integration Points in UI 
-​ RJSF 
-​ General Form UI 
-​ UI-Specific Description 
-​ Type Safety​

Chapter: Sistent Design System 
 

Quiz 
-​  



Learning Path: Mastering Contribution to Meshery 

Section: Intro to Notification Center 

Chapter: Dashboard Widgets 

Section: Notification Center overview 

Quiz 

Chapter: Notification Center 

Section: What is a Notification Center 

Section: Metadata Formatter 

Section: How Notification Metadata is Rendered 

Section: Repository Structure 
NotificationCenter/ (Root Directory) 
formatters/ (NotificationCenter/formatters) 

Section: Types of Event Specific Notification Formatter 
-​ Common Formatter 
-​ Error Formatter 
-​ Model Registry Formatter 
-​ Relation Evaluation Formatter 
-​ Dry Run Formatter 
-​ Deployment summary Formatter 
-​ Property Formatters and Property Link Formatters 

 



Learning Path: Mastering Contribution to Meshery 

Quiz 

Tutorial: Contributor Training Series: Meshery UI (Amit Amrutiya) 

Course: Contributing to Meshery CLI 

Chapter: Building CLI 

Section: <section> 

Chapter: Documenting 

Chapter: Designing commands Guidelines 

Chapter: Unit Testing 

Chapter: End-to-End Testing 

Tutorial: Contributor Training Series: Meshery CLI (Aadhitya 
Amarendiran and Matthieu Evrin) 

Course: End-to-End Testing in Meshery UI using Playwright 

Chapter: <Chapter> 

Section: <section> 

Tutorial: Contributor Training Series: E2E Testing in Meshery UI (Ian 
Whitney) 

Course: End-to-End Testing in Meshery CLI using BATS 

Chapter: Introduction 

Section: About Mesheryctl 



Learning Path: Mastering Contribution to Meshery 

Chapter: Setup Local Development Environment 

Section: Prerequisites 
Meshery CLI + Meshery Server installation 
Provider account (e.g., Layer5 Cloud) 
Kubernetes cluster (optional for k8s-related tests) 
Tools: bash, jq, yq for processing JSON and YAML inputs 

Section: Setup BATS core 
MacOS (homebrew)  
Any OS (npm) 
Windows (from source via bash) 

Section: Setup Dependencies 

Section: Starting Meshery Server 
Running Meshery for E2E tests 
Using make server 
When adapters/K8s are needed 

Section: Authentication 

Chapter: Folder Structure and Naming Conventions 

Section: Understanding Meshery Repo Directories 
meshery/meshery repo overview 
Directories: /mesheryctl, /server, /tests/e2e 

Section: E2E Test Folder Structure 
Walkthrough of mesheryctl/tests/e2e 
Explanation of helpers, setup/teardown scripts 

Section: Test Naming Conventions 
-​ Folder prefix (e.g., 002-model/) 
-​ File prefix (e.g., 01-model-list.bats) 
-​ Consistency rules 

Chapter: Run End-to-End Tests Locally 
Make sure you are in the meshery/mesheryctl directory 



Learning Path: Mastering Contribution to Meshery 

Section: Running All tests 
make e2e (with build)​
 
make e2e-no-build (without build) 
 

Section: Running Specific Command Test Suite 
make e2e-no-build BATS_FOLDER_PATTERN=<test folder name> 

Section: Running Specific Test Files 
make e2e-no-build BATS_FILE_PATTERN=<test folder name> 
BATS_FILE_PATTERN=<test command name> 

Section:  Alternative Test Execution 

-​ Run tests with already built binary 

Using bash run_tests_local.sh​
 

-​ Enforce rebuilding the binary 
Forcing rebuild with -b flag 

Chapter: Finding Issues to Work on 

Section: Navigating Open Issues 
Epic issue: meshery/meshery#14031​
 
Create a sub-issue or comment down for the command you want to write tests for, or get yourself 
assigned a task under this area. 

 
Track other tests progress, feel free to add reviews, and also take inspiration from how others have 
written the tests 

Section: Using the Meshery Test Plan 
Accessing the Meshery Test Plan (Sheet Views) 

Chapter: Writing Tests with BATs 
Official documentation is available at https://bats-core.readthedocs.io/en/stable/ 

The GitHub organization https://github.com/bats-core contains the bats-core repository and also the 
bats libraries repositories 

https://github.com/meshery/meshery/issues/14031
https://bats-core.readthedocs.io/en/stable/
https://github.com/bats-core


Learning Path: Mastering Contribution to Meshery 

Section: BATs Basics and interacting with mesheryctl 
@test blocks 
Run command execution 
Capturing status and output 

Section: Assertions 
assert_success, assert_failure 
assert_output, assert_output --partial 
assert_equal, file assertions 
 

Section: Setup and Teardown 
Using setup() and teardown() to manage test environment 
 

Chapter: Developing Your Tests 

Chapter: Best Practices for Quality and Coverage 

Section: Ensuring Quality 
Use existing BATS utilities, avoid reinventing scripts 
Keep test files clean, externalize data in fixtures 
Add test scenarios in your PR, so that they can be added to the Meshery Test Plan 
 

Section: Ensuring Coverage 
Test core functionality 
Test command flags 
Test covering errors thrown by the command and invalid input files 

Chapter: Reporting Bugs during Test Development 

Section:  Identifying bugs while writing tests 

Section: Using the “mesheryctl Bug Report” template 

Section:  Providing Detailed Reports 
Steps to reproduce 
Expected vs actual behavior 
Logs and environment details 

https://docs.google.com/spreadsheets/d/13Ir4gfaKoAX9r8qYjAFFl_U9ntke4X5ndREY1T7bnVs/edit?gid=838298230#gid=838298230


Learning Path: Mastering Contribution to Meshery 

Section: Linking Back to Tests 
Mentioning the test case and file in the issue 

Tutorial: Contributor Training Series: E2E Testing in Meshery CLI (Riya 
Garg) 

Course: Build and Release 

Chapter: <Chapter> 

Section: <section> 

Tutorial: Contributor Training Series: Meshery CI (Sangram Rath) 

Course: Meshery Server 

Chapter: <Chapter> 

Section: <section> 

Tutorial: Contributor Training Series: Meshery Server (Shlok Mishra) 

Course: Meshery Models 

Chapter: Models 

Section: What are Meshery Models? 
What exactly is a model? What can a model represent? Why are Models important in Meshery? How 
do Models help me manage apps, services, and infrastructure? 

Section: Core Constructs of Model 
Components, relationships, policies, connections and credentials, designs, patterns, metadata 

Section: What is Model Schema 
What’s a schema, and why do we need it?​
How is a schema different from the actual Model? 



Learning Path: Mastering Contribution to Meshery 

Section: Portability, Registry, and Intellectual Property 
Why package models as OCI images?, What is a Registry and a registrant?  

Section: Design Principles behind Meshery Models 

Section: Entity Lifecycle in Meshery 
Breaking down the confusing terms  
Schema, Definition, Declaration, Instance 

Section: Capabilities in Model 
What are capabilities?  

Section: Importing model 

Section: Creating a model 

Section: Post-Generation Enrichment 

Section: How models are versioned 

Tutorial: Contributor Training Series: Meshery Models (Aabid Sofi) 

Labs:  

Chapter: Components 

Section: What Are Components? 

Section: Semantics vs Non-Semantics Components 

Section: Component Properties 

Section: How to Contribute New Components 
Prework: 

1.​  Understand Model Generation and Packaging 
-​ Components exist within Models 
-​ Read through [Contributing to Models] first; without a model, a component is 

homeless 
2.​ Customize Component Metadata & Representation 

-​ Form-based Representation 



Learning Path: Mastering Contribution to Meshery 

-​ Visual Representation 
Development 

3.​ Create Component Definition as a JSON file 
4.​ Component Authoring Best Practices and Considerations 
5.​ Contributing your component to the Meshery Project 

Chapter: Relationships 

Section: Introduction to Relationships 

Section: Types of Relationships 

Section: The Mechanics of Relationships 
Anatomy of Relationship, Selectors, Actions, Operators 

Section: How to create new Relationships 
Prework - Relationship Identification, Relationship Classification 
Development - Create a Relation definition as a JSON file, Configuring scope 
Postwork - Testing and contribution 

Course: Meshery Schema 

Chapter: <Chapter> 

Section: <section> 

Course: Meshery Policies 

Chapter: <Chapter> 

Section: <section> 

Course: Meshery Adapters 

Chapter:  
 

Certification 



Learning Path: Mastering Contribution to Meshery 

 
 


	Learning Path: Mastering Contribution To Meshery 
	 
	 
	 
	Certification: Contributing To Meshery 
	Document Purpose 
	Blog post 
	 
	Document Scope 


	 
	Learning Path: Contributing to Meshery 
	Course: Overview 
	Chapter: Contributing overview 
	Chapter: Projects and Repository overview 
	Chapter: How, Why, and Where to Contribute 
	Section: How to Contribute 
	Section: Where to Contribute 

	Chapter: Contributing Flow 
	Chapter: GitHub Process 
	Chapter: Community Guidelines and Code of Conduct 

	Course: Working with Docs 
	Chapter: Meshery docs 
	Section: Meshery Docs structure 

	Chapter: Setting up the dev environment 
	Section: For Windows 
	Section:  For Linux  
	Section: For MacOs 
	Section: Serving the site (what the commands do) 
	Section: Using Docker 
	Section: Using Gitpod 
	Section: Serve GitHub Codespaces 

	Chapter: Documentation Contribution Flow 
	Section: Contribute and Preview the changes 

	Chapter: Documentation Framework 
	Section: What Powers the doc - rendering and structuring 
	Chapter: Understanding the Flow of Meshery Docs Rendering 
	Section: Flow 

	Chapter: Using the Features of Meshery docs 
	Section: Clipboard 
	Section: Alerts 
	Section:  Image Handling 
	Section: Quotes 

	Chapter: Table of Contents in Sidebar  
	Section: Manual generation of TOC in Meshery Docs 
	Chapter: How Docs are Versioned 
	Section: Meshery maintains multiple versions of documentation. This ensures users can reference docs matching the Meshery release they’re running. Contributors may need to: 
	●​Add content under the current version folder. 
	●​Update links and redirects for older versions if the content moves. 
	●​Ensure breaking changes in Meshery are documented clearly in the right version. 
	 

	Chapter: Writing Tips and Resources 
	Section: <section> 

	Tutorial: Contributor Training Series: Working with Meshery Docs (Zihan Kuang) 
	 


	Course: Contributing to Meshery UI 
	Chapter: Meshery UI 
	Section: Overview 
	Section: Architecture 
	Section: Design 
	Section: Setup Development Environment 
	Section: Meshery server API’s 

	Quiz 
	Chapter: Schema-Driven UI Development 
	Section: Overview 
	Section: Repo Structure 
	Section: Schema Drive UI Development Workflow 
	Section: Integration Points in UI 

	Quiz 
	Section: Intro to Notification Center 

	Chapter: Dashboard Widgets 
	Section: Notification Center overview 

	Quiz 
	Chapter: Notification Center 
	Section: What is a Notification Center 
	Section: Metadata Formatter 
	Section: How Notification Metadata is Rendered 
	Section: Repository Structure 
	Section: Types of Event Specific Notification Formatter 

	Quiz 
	Tutorial: Contributor Training Series: Meshery UI (Amit Amrutiya) 

	Course: Contributing to Meshery CLI 
	Chapter: Building CLI 
	Section: <section> 

	Chapter: Documenting 
	Chapter: Designing commands Guidelines 
	Chapter: Unit Testing 
	Chapter: End-to-End Testing 
	Tutorial: Contributor Training Series: Meshery CLI (Aadhitya Amarendiran and Matthieu Evrin) 

	Course: End-to-End Testing in Meshery UI using Playwright 
	Chapter: <Chapter> 
	Section: <section> 

	Tutorial: Contributor Training Series: E2E Testing in Meshery UI (Ian Whitney) 

	Course: End-to-End Testing in Meshery CLI using BATS 
	Chapter: Introduction 
	Section: About Mesheryctl 

	Chapter: Setup Local Development Environment 
	Section: Prerequisites 
	Section: Setup BATS core 
	Section: Setup Dependencies 
	Section: Starting Meshery Server 
	Section: Authentication 

	Chapter: Folder Structure and Naming Conventions 
	Section: Understanding Meshery Repo Directories 
	Section: E2E Test Folder Structure 
	Section: Test Naming Conventions 

	Chapter: Run End-to-End Tests Locally 
	Section: Running All tests 
	Section: Running Specific Command Test Suite 
	Section: Running Specific Test Files 
	Section:  Alternative Test Execution 
	-​Run tests with already built binary 

	Chapter: Finding Issues to Work on 
	Section: Navigating Open Issues 
	Section: Using the Meshery Test Plan 

	Chapter: Writing Tests with BATs 
	Section: BATs Basics and interacting with mesheryctl 
	Section: Assertions 
	Section: Setup and Teardown 

	Chapter: Developing Your Tests 
	Chapter: Best Practices for Quality and Coverage 
	Section: Ensuring Quality 
	Section: Ensuring Coverage 

	Chapter: Reporting Bugs during Test Development 
	Section:  Identifying bugs while writing tests 
	Section: Using the “mesheryctl Bug Report” template 
	Section:  Providing Detailed Reports 
	Section: Linking Back to Tests 

	Tutorial: Contributor Training Series: E2E Testing in Meshery CLI (Riya Garg) 

	Course: Build and Release 
	Chapter: <Chapter> 
	Section: <section> 

	Tutorial: Contributor Training Series: Meshery CI (Sangram Rath) 

	Course: Meshery Server 
	Chapter: <Chapter> 
	Section: <section> 

	Tutorial: Contributor Training Series: Meshery Server (Shlok Mishra) 

	Course: Meshery Models 
	Chapter: Models 
	Section: What are Meshery Models? 
	Section: Core Constructs of Model 
	Section: What is Model Schema 
	Section: Portability, Registry, and Intellectual Property 
	Section: Design Principles behind Meshery Models 
	Section: Entity Lifecycle in Meshery 
	Section: Capabilities in Model 
	Section: Importing model 
	Section: Creating a model 
	Section: Post-Generation Enrichment 
	Section: How models are versioned 

	Tutorial: Contributor Training Series: Meshery Models (Aabid Sofi) 
	Labs:  
	Chapter: Components 
	Section: What Are Components? 
	Section: Semantics vs Non-Semantics Components 
	Section: Component Properties 
	Section: How to Contribute New Components 

	Chapter: Relationships 
	Section: Introduction to Relationships 
	Section: Types of Relationships 
	Section: The Mechanics of Relationships 
	Section: How to create new Relationships 


	Course: Meshery Schema 
	Chapter: <Chapter> 
	Section: <section> 


	Course: Meshery Policies 
	Chapter: <Chapter> 
	Section: <section> 


	Course: Meshery Adapters 
	Chapter:  


	 

