Learning Path: Mastering Contribution
To Meshery

LAYERS=

Certification: Contributing To Meshery

Innovation through Collaboration

Learning Path: Mastering Contribution to Meshery

Document Purpose
Document Scope

Document Purpose

1. To provide a roadmap for a complete Learning Path to Mastering Contribution to Meshery.
2. To enable collaborative drafting and review of the content itself (written in markdown).

Tips and Tricks from Maintainers
Having Maintainers offer questions and review as beta testers.

Create FAQs

What happens if | fail? Can | retake and how many times, if so?
Does my credential (certificate) expire?

How do | show-off my credentials (I'm proud of it)?

Other faqgs

Create one exam per architectural component.

e SErver, ui, cli,
e Adapters

Lee Calcote Create a badge graphics
Ritesh Karankal Brainstorm a name

Lee Calcote Create a new repo from template: github.com/meshery-extensions/meshery-academy

Blog post

sSOl
Put into an email and send

Document Scope

Out of Scope:
1. Regurgitating all of Meshery Docs.
In Scope:
1. Highlighting best practices, covering common user flows.

d}

mailto:lee.calcote@layer5.io
mailto:ritesh.karankal200@gmail.com
mailto:lee.calcote@layer5.io
http://github.com/%E2%80%A6%E2%80%A6

Learning Path: Mastering Contribution to Meshery

Resources:
- See

CNCF Hub for a taxonomy of Learning Paths.

https://docs.google.com/presentation/d/1OqY5EvYYxj91MFEwoMaJVLyStDX9rTc7CyiF4w6qbNA/edit#slide=id.g2cf595f6400_0_516

Draft Learning Path Table of Contents

Document Purpose
Document Scope
Learning Path: Contributing to Meshery
Course: Overview

d}

Chapter: Contributing overview
Chapter: Projects and Repository overview
Chapter: How, Why, and Where to Contribute
Section: How to Contribute
Section: Where to Contribute
Chapter: Contributing Flow
Chapter: GitHub Process
Chapter: Community Guidelines and Code of Conduct

Course: Working with Docs

Chapter: Meshery docs
Section: Meshery Docs structure
Chapter: Setting up the dev environment
Section: For Windows
Section: For Linux
Section: For MacOs
Section: Serving the site (what the commands do)
Section: Using Docker
Section: Using Gitpod
Section: Serve GitHub Codespaces
Chapter: Documentation Contribution Flow
Section: Contribute and Preview the changes
Chapter: Documentation Framework
Section: What Powers the doc - rendering and structuring
Chapter: Understanding the Flow of Meshery Docs Rendering
Section: Flow
Chapter: Using the Features of Meshery docs
Section: Clipboard
Section: Alerts
Section: Image Handling
Section: Quotes
Chapter: Table of Contents in Sidebar

© © © © W Ww

11
11
12
12
14
14
14
14
14
15
15
15
15
15
15
16
16
16
16
17
17
18
18
18
18
19
19
19
20

Section: Manual generation of TOC in Meshery Docs
Chapter: How Docs are Versioned

20
20

Section: Meshery maintains multiple versions of documentation. This ensures users
can reference docs matching the Meshery release they’re running. Contributors may

need to:
e Add content under the current version folder.
e Update links and redirects for older versions if the content moves.

20
20
20

e Ensure breaking changes in Meshery are documented clearly in the right version.

20
Chapter: Writing Tips and Resources
Section: <section>
Tutorial: Contributor Training Series: Working with Meshery Docs (Zihan Kuang)
Course: Contributing to Meshery Ul
Chapter: Meshery Ul
Section: Overview
Section: Architecture
Section: Design
Section: Setup Development Environment
Section: Meshery server API’s
Quiz
Chapter: Schema-Driven Ul Development
Section: Overview
Section: Repo Structure
Section: Schema Drive Ul Development Workflow
Section: Integration Points in Ul
Quiz
Section: <section>
Chapter: Dashboard Widgets
Section: <section>
Quiz
Chapter: Notification Center
Section: What is a Notification Center
Section: Metadata Formatter
Section: How Notification Metadata is Rendered
Section: Repository Structure
Section: Types of Event Specific Notification Formatter
Quiz
Tutorial: Contributor Training Series: Meshery Ul (Amit Amrutiya)
Course: Contributing to Meshery CLI

20
20
21
21
21
21
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
23
24
25
26
31
31
31

|
e
L |

Chapter: Building CLI
Section: <section>
Chapter: Documenting
Chapter: Designing commands Guidelines
Chapter: Unit Testing
Chapter: End-to-End Testing

31
31
31
31
31
31

Tutorial: Contributor Training Series: Meshery CLI (Aadhitya Amarendiran and Matthieu

Evrin)
Course: End-to-End Testing in Meshery Ul using Playwright
Chapter: <Chapter>
Section: <section>
Tutorial: Contributor Training Series: E2E Testing in Meshery Ul (lan Whitney)
Course: End-to-End Testing in Meshery CLI using BATS
Chapter: Introduction
Section: About Mesheryctl
Chapter: Setup Local Development Environment
Section: Prerequisites
Section: Setup BATS core
Section: Setup Dependencies
Section: Starting Meshery Server
Section: Authentication
Chapter: Folder Structure and Naming Conventions
Section: Understanding Meshery Repo Directories
Section: E2E Test Folder Structure
Section: Test Naming Conventions
Chapter: Run End-to-End Tests Locally
Section: Running All tests
Section: Running Specific Command Test Suite
Section: Running Specific Test Files
Section: Alternative Test Execution
- Run tests with already built binary
Chapter: Finding Issues to Work on
Section: Navigating Open Issues
Section: Using the Meshery Test Plan
Chapter: Writing Tests with BATs
Section: BATs Basics and interacting with mesheryctl
Section: Assertions
Section: Setup and Teardown
Chapter: Developing Your Tests

31
31
31
31
31
31
31
31
32
32
32
32
32
32
32
32
33
33
34
34
34
34
34
34
34
34
34
35
35
35
35
35

d}

Chapter: Best Practices for Quality and Coverage
Section: Ensuring Quality
Section: Ensuring Coverage

Chapter: Reporting Bugs during Test Development
Section: Identifying bugs while writing tests

Section: Using the “mesheryctl Bug Report” template

Section: Providing Detailed Reports
Section: Linking Back to Tests

Tutorial: Contributor Training Series: E2E Testing in Meshery CLI (Riya Garg)

Course: Build and Release
Chapter: <Chapter>
Section: <section>

Tutorial: Contributor Training Series: Meshery Cl (Sangram Rath)

Course: Meshery Server
Chapter: <Chapter>
Section: <section>

Tutorial: Contributor Training Series: Meshery Server (Shlok Mishra)

Course: Meshery Models
Chapter: Models
Section: What are Meshery Models?
Section: Core Constructs of Model
Section: What is Model Schema

Section: Portability, Registry, and Intellectual Property
Section: Design Principles behind Meshery Models

Section: Entity Lifecycle in Meshery
Section: Capabilities in Model
Section: Importing model

Section: Creating a model

Section: Post-Generation Enrichment
Section: How models are versioned

Tutorial: Contributor Training Series: Meshery Models (Aabid Sofi)

Labs:
Chapter: Components
Section: What Are Components?

Section: Semantics vs Non-Semantics Components

Section: Component Properties

Section: How to Contribute New Components
Chapter: Relationships

Section: Introduction to Relationships

35
35
35
36
36
36
36
36
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
38
38
38
38
38
38
38
38
38
38
38
38
38
38
39
39

d}

Section: Types of Relationships
Section: The Mechanics of Relationships
Section: How to create new Relationships
Course: Meshery Schema
Chapter: <Chapter>
Section: <section>
Course: Meshery Policies
Chapter: <Chapter>
Section: <section>
Course: Meshery Adapters
Chapter:

39
39
39
39
39
39
39
39
39
39
39

d}

Learning Path: Mastering Contribution to Meshery

d}

Learning Path: Contributing to Meshery

Course: Overview

Chapter: Contributing overview
About Meshery

Chapter: Projects and Repository overview

Chapter: How, Why, and Where to Contribute

Section: How to Contribute

Assessing your skills & interests, choosing an area to contribute, Where to Ask for help, Discuss, and
Collaborate: GitHub Issues, Slack, Discussion Forum, and Meetings.

Section: Why to Contribute
Learning opportunity, impact, recognition

Section: Where to Contribute

Documentation, Codebase, Community & Outreach, Design & UX, Testing and QA, Project
Management

Chapter: Contributing Flow
Chapter: GitHub Process

Chapter: Community Guidelines and Code of Conduct

Course: Working with Docs

In this course, you will learn how Meshery docs are structured, how to set up your dev environment,
and how to contribute docs that actually get merged.

Chapter: Meshery docs

Section: Meshery Docs structure

Overview of docs.meshery.io layout, How users can navigate, and find relevant content

Meshery Docs live at docs.meshery.io and act as the go-to place for users, contributors, and
maintainers to learn, explore, and contribute to Meshery. Understanding how these docs are
organized will help you navigate them smoothly and know where to add your contributions.

Layout Overview
e Home: The landing page introduces Meshery and links to the guides.
e Guides and Tutorials: Step-by-Step instructions for using Meshery features.
e Concepts and Architecture: Background material that explains Meshery's building blocks,
like components, patterns, models, and more.
Installation: Platform-specific installation instructions (Docker, Kubernetes, Minikube, etc.)
Reference: Command-line reference (mesheryctl), APl reference, and error codes.
Contributing: Documentation for contributors, explaining workflows, style guides, and best
practices for writing and submitting changes.
Navigation
e The sidebar is the main way to move through the docs. It is grouped by topics like
Installation, Guides, Concepts, etc.
Each page uses YAML frontmatter at the top to control how it shows up in the sidebar.
Internal links (cross-links) make it easy to jump between related pages without losing
context.
Why Structure Matters
Keeping the docs structured ensures:
e Clarity for users: Readers can quickly find what they are looking for.
e Ease for contributors: You know exactly where your new page or section belongs.
e Consistency: Docs look and feel uniform across all topics.

Chapter: Setting up the dev environment

A local docs setup lets you preview changes before you open a PR. Pick your OS and follow the steps.
If something feels off, there is a small Troubleshooting box in each section.

Section: For Windows
Goal: run the Meshery docs site locally with Jekyll inside WSL2 (Linux on Windows).

Section: For Linux

Goal: Same as Windows, just native Linux.
1. Clone and install deps:
git clone https://github.com/<your-username>/meshery.git
cd meshery/docs

2. Serve
make docs
or
bundle exec jekyll serve --drafts --config _config_dev.yml

d}

https://docs.meshery.io

d}

Section: For MacOs

Goal: Run Jekyll with system Ruby or rbenv.
1. Install Homebrew (if needed)

https://brew.sh

2. Install Ruby

3. Clone and install deps
git clone https://github.com/<your-username>/meshery.git
cd meshery/docs
4. Serve
make docs
or
bundle exec jekyll serve --drafts --config _config_dev.yml

Section: Serving the site (what the commands do)

e make docs runs Jekyll in dev mode (drafts enabled, local server, live reload).
e bundle exec jekyll serve --drafts --config _config_dev.yml does the same, but explicitly (handy
when make is not available or you want to toggle flags).
When it boots, open http://localhost:4000 and browse your changes.

Section: Using Docker

Best when you don't want to install Ruby/Jekyll locally.

From the meshery/docs folder:

make docker

This builds a container and serves the site. Open the port it prints (usually http://localhost:4000).
Heads-up: This path can be flaky on Windows. If it misbehaves, prefer WSL2 or Codespaces/Gitpod.

Section: Using Gitpod

Best when you want zero local setup.
1. Install the Gitpod browser extension.
2. Open your fork on GitHub and click Gitpod (button appears with the extension).
3. Inthe Gitpod terminal:
cd docs
make docs
Gitpod will expose a preview URL in the Ports panel.

Section: Serve GitHub Codespaces

Best when you want a cloud VS Code with your fork.
1. Onyour fork, click Code — Open with Codespaces — New codespace.
2. Inthe terminal:
cd docs
make docs

https://brew.sh
http://localhost:4000
http://localhost:4000

d}

Codespaces will show a forwarding URL (click it). If you want to work from local VS Code
connected to your Codespace, you can just open the port link from there.

Chapter: Documentation Contribution Flow

Section: Contribute and Preview the changes

Contributing to Meshery Docs follows a simple and structured process to ensure consistency and
quality.

1. Fork the Repository
e Start by forking the Meshery repository into your GitHub account.
2. Clone Locally
e Clone your fork to your local machine and navigate to the /docs directory.

git clone https://github.com/<your-username>/meshery.git
cd meshery/docs

3. Create a New Branch
e Always create a new branch for your changes.
git checkout -b my-docs-update
4. Make Edits
e Update the relevant Markdown file (.md).
e Ifyou are adding a new page, don't forget to update navigation or sidebar files if
needed.
5. Preview Locally
e Run make docs (or the relevant command for your platform) to serve the
documentation site locally.
e Openhttp://localhost:4000 in your browser to see the changes.
6. Commit with Sign-off
e Meshery uses the Developer Certificate of Origin (DCO). Always sign your commits.
git commit -s -m "docs: updated contributing guide"

7. Push and Open a Pull Request
e Push your branch to your fork and open a PR against meshery/meshery :master.
e A Netlify preview will be automatically generated for reviewers to test.
This flow ensures all the contributions are traceable, reviewable, and meet project standards.

Chapter: Documentation Framework

The Meshery Docs site is powered by modern static site tooling. Understanding the framework helps
contributors work effectively with the system.

Section: What Powers the doc - rendering and structuring
- YAML Frontmatter

https://github.com/meshery/meshery?utm_source=chatgpt.com
http://localhost:4000

Each documentation file begins with a block of YAML frontmatter. This metadata defines
properties of the page:
layout: default
title: "Contributing to Meshery Docs"
abstract: "Learn how to contribute to Meshery Docs."
permalink: guides/tutorials/contributing-to-docs
language: en
<+ layout — Which template to use (default = standard page look).
 title — The name of your page (shows up in headings & navigation).
% abstract — A summary that appears in previews or cards.
% permalink — The URL path where this page will live (e.g.,
/guides/tutorials/contributing-to-docs).
“ language — The language of the page (default is en).

> TOC in sidebar
Controlled by front matter (e.g., toc: true) and sidebar config. Don't hand-roll complex
sidebars in-page; follow existing patterns.

> Liquid
Meshery Docs use Liquid, the templating language from Jekyll, to dynamically include
content, variables, and layouts.
e Example: {% include alert.html type="info" title="Heads up!" %}
This displays a styled alert box without repeating code.
Jekyll templating syntax

> Jekyll
e Jekyll is a static site generator used to build Meshery Docs.
e Converts Markdown files (.md) into static HTML pages.
e Applies layouts and themes for consistent styling.
e Supports drafts, collections, and custom plugins.

> Theme https://github.com/vsoch/docsy-jekyll
e Meshery Docs are styled with the Docsy Jekyll Theme.
e Ensures responsive design and clean navigation.
e Simplifies maintenance and reduces custom CSS.

Chapter: Understanding the Flow of Meshery Docs Rendering

Section: Flow

Meshery Docs are written in Markdown (.md), which are then processed through Jekyll and
rendered into static HTML pages. The flow is:
Markdown (.md) — Jekyll (Liquid + Layouts) — HTML — Deployed site

e Markdown provides the content.

}

https://github.com/vsoch/docsy-jekyll
https://github.com/vsoch/docsy-jekyll?utm_source=chatgpt.com

YAML frontmatter adds metadata like title, description, and layout.
Jekyll with Liquid templates applies layouts and formatting.
Docsy Jekyll theme ensures consistent styling and navigation.

Understanding this flow helps contributors preview how their raw .md edits become styled
pages on docs.meshery.io.

Chapter: Using the Features of Meshery docs

Section: Clipboard

Code snippets in Meshery Docs automatically include a clipboard copy button.
mesheryctl system start

Readers can copy commands with one click, improving usability.

Section: Alerts

Use alerts to highlight important information. Meshery Docs includes reusable
‘alert.html” partials.

T 1liquid

{% include alert.html type="info" title="Note" %}

Types include: info, warning, danger, success, primary, etc.

Section: Alerts

Alerts are used in Meshery Docs to call attention to important notes, warnings, or tips. They help
readers quickly spot key information without cluttering the flow of the page.

Meshery Docs provides a reusable include file, alert.html, for creating alerts. You can choose
from different types such as info, warning, success, danger, and more.

Example (info alert):

{% include alert.html type="info" title="Heads up!" %}
This is an informational message.
{% endinclude %}

This will render a styled alert box with the heading “Heads up!” and your message beneath it.
Other alert types available:

e info - highlights helpful information.
e warning - flags something users should be careful about.
e success - indicates an action completed successfully.

d}

https://docs.meshery.io?utm_source=chatgpt.com

e danger - calls out critical issues or errors.

Section: Image Handling

Images can be added with Markdown:

ITAlt text](/assets/img/example.png)
Or with custom HTML for controlling size:

Section: Quotes
Use > for blockquotes:

> This is an example of a blockquote.
Chapter: Table of Contents in Sidebar

Section: Manual generation of TOC in Meshery Docs

Meshery Docs sidebar navigation is built from the TOC (table of contents) in YAML. Example:

toc:
- title: Docs
subfolderitems:

- page: Setup
url: /project/contributing/contributing-docs

TOC ensures chapters and sections appear in the sidebar hierarchy (parent — child — grandchild).

d}

e
e
L

Chapter: How Docs are Versioned

Section: Meshery maintains multiple versions of documentation. This ensures users can reference
docs matching the Meshery release they're running. Contributors may need to:

® Add content under the current version folder.
® Update links and redirects for older versions if the content moves.
e Ensure breaking changes in Meshery are documented clearly in the right version.

Chapter: Writing Tips and Resources

Section: <section>

Clarity first: Write as if explaining to a newcomer.

Keep it consistent: Follow the tone/style already used in Meshery Docs.

Use active voice: e.g., “Run make docs to serve the site.”

Link generously: If content is explained elsewhere (e.g., tutorials, CLI guides), link to it.
Test locally: Always preview your edits before PR.

Resources:

ekyll Docs

Liquid Templating
Meshery Docs Contributing Guide

Tutorial: Contributor Training Series: Working with Meshery Docs
(Zihan Kuang)

Course: Contributing to Meshery Ul

Chapter: Meshery Ul
Section: Overview

Section: Architecture
ReactS, NextJS, Material Ul, Billboard]S, Cytoscape)S, Redux Toolkit, Sistent, Schemas

https://jekyllrb.com/docs/?utm_source=chatgpt.com
https://shopify.github.io/liquid/?utm_source=chatgpt.com
https://docs.meshery.io/project/contributing/contributing-docs?utm_source=chatgpt.com

Learning Path: Mastering Contribution to Meshery

Section: Design

Userflow/Wireframing/Mockups - Figma files
Design Goals

Section: Setup Development Environment

Linting, install Ul dependencies, build and export Ul, Run Meshery server, Ul development server

Section: Meshery server API's
REST API, GraphQL API

Quiz
Chapter: Schema-Driven Ul Development
Section: Overview

Section: Repo Structure

Section: Schema Drive Ul Development Workflow

- Define or update the schema

- Generate TS types and Schema objects
- Build and export

- Use schema

Section: Integration Points in Ul

- RJSF
- General Form Ul
- Ul-Specific Description
- Type Safety
Chapter: Sistent Design System

Quiz

Learning Path: Mastering Contribution to Meshery

Section: Intro to Notification Center

Chapter: Dashboard Widgets
Section: Notification Center overview
Quiz

Chapter: Notification Center
Section: What is a Notification Center
Section: Metadata Formatter

Section: How Notification Metadata is Rendered

Section: Repository Structure

NotificationCenter/ (Root Directory)
formatters/ (NotificationCenter/formatters)

Section: Types of Event Specific Notification Formatter

- Common Formatter

- Error Formatter

- Model Registry Formatter

- Relation Evaluation Formatter

- Dry Run Formatter

- Deployment summary Formatter

- Property Formatters and Property Link Formatters

=
Learning Path: Mastering Contribution to Meshery h‘
L

Quiz
Tutorial: Contributor Training Series: Meshery Ul (Amit Amrutiya)
Course: Contributing to Meshery CLI

Chapter: Building CLI

Section: <section>

Chapter: Documenting

Chapter: Designing commands Guidelines
Chapter: Unit Testing

Chapter: End-to-End Testing

Tutorial: Contributor Training Series: Meshery CLI (Aadhitya
Amarendiran and Matthieu Evrin)

Course: End-to-End Testing in Meshery Ul using Playwright

Chapter: <Chapter>

Section: <section>

Tutorial: Contributor Training Series: E2E Testing in Meshery Ul (lan
Whitney)

Course: End-to-End Testing in Meshery CLI using BATS

Chapter: Introduction

Section: About Mesheryctl

Learning Path: Mastering Contribution to Meshery

Chapter: Setup Local Development Environment

Section: Prerequisites

Meshery CLI + Meshery Server installation

Provider account (e.g., Layer5 Cloud)

Kubernetes cluster (optional for k8s-related tests)
Tools: bash, jq, yq for processing JSON and YAML inputs

Section: Setup BATS core

MacOS (homebrew)
Any OS (npm)
Windows (from source via bash)

Section: Setup Dependencies

Section: Starting Meshery Server

Running Meshery for E2E tests
Using make server
When adapters/K8s are needed

Section: Authentication

Chapter: Folder Structure and Naming Conventions

Section: Understanding Meshery Repo Directories

meshery/meshery repo overview
Directories: /mesheryctl, /server, /tests/e2e

Section: E2E Test Folder Structure

Walkthrough of mesheryctl/tests/e2e
Explanation of helpers, setup/teardown scripts

Section: Test Naming Conventions

- Folder prefix (e.g., 802-model/)
- File prefix (e.g., 81-model-1list.bats)
- Consistency rules

Chapter: Run End-to-End Tests Locally

Make sure you are in the meshery/mesheryctl directory

=
Learning Path: Mastering Contribution to Meshery h‘
L

Section: Running All tests
make e2e (with build)

make e2e-no-build (without build)

Section: Running Specific Command Test Suite
make e2e-no-build BATS_FOLDER_PATTERN=<test folder name>

Section: Running Specific Test Files

make e2e-no-build BATS_FILE_PATTERN=<test folder name>
BATS_FILE_PATTERN=<test command name>

Section: Alternative Test Execution

- Run tests with already built binary

Using bash run_tests_local.sh

- Enforce rebuilding the binary
Forcing rebuild with -b flag

Chapter: Finding Issues to Work on

Section: Navigating Open Issues
Epic issue: meshery/meshery#14031

Create a sub-issue or comment down for the command you want to write tests for, or get yourself
assigned a task under this area.

Track other tests progress, feel free to add reviews, and also take inspiration from how others have
written the tests

Section: Using the Meshery Test Plan
Accessing the Meshery Test Plan (Sheet Views)

Chapter: Writing Tests with BATs

Official documentation is available at https://bats-core.readthedocs.io/en/stable/

The GitHub organization https://github.com/bats-core contains the bats-core repository and also the
bats libraries repositories

https://github.com/meshery/meshery/issues/14031
https://bats-core.readthedocs.io/en/stable/
https://github.com/bats-core

Learning Path: Mastering Contribution to Meshery

Section: BATs Basics and interacting with mesheryctl

@test blocks
Run command execution
Capturing status and output

Section: Assertions

assert_success, assert_failure
assert_output, assert_output --partial
assert_equal, file assertions

Section: Setup and Teardown

Using setup() and teardown() to manage test environment

Chapter: Developing Your Tests

Chapter: Best Practices for Quality and Coverage

Section: Ensuring Quality

Use existing BATS utilities, avoid reinventing scripts
Keep test files clean, externalize data in fixtures
Add test scenarios in your PR, so that they can be added to the Meshery Test Plan

Section: Ensuring Coverage

Test core functionality
Test command flags
Test covering errors thrown by the command and invalid input files

Chapter: Reporting Bugs during Test Development
Section: Identifying bugs while writing tests
Section: Using the “mesheryctl Bug Report” template

Section: Providing Detailed Reports

Steps to reproduce
Expected vs actual behavior
Logs and environment details

https://docs.google.com/spreadsheets/d/13Ir4gfaKoAX9r8qYjAFFl_U9ntke4X5ndREY1T7bnVs/edit?gid=838298230#gid=838298230

=
Learning Path: Mastering Contribution to Meshery h‘
L

Section: Linking Back to Tests

Mentioning the test case and file in the issue

Tutorial: Contributor Training Series: E2E Testing in Meshery CLI (Riya
Garg)

Course: Build and Release

Chapter: <Chapter>

Section: <section>

Tutorial: Contributor Training Series: Meshery Cl (Sangram Rath)

Course: Meshery Server

Chapter: <Chapter>

Section: <section>

Tutorial: Contributor Training Series: Meshery Server (Shlok Mishra)

Course: Meshery Models

Chapter: Models

Section: What are Meshery Models?

What exactly is a model? What can a model represent? Why are Models important in Meshery? How
do Models help me manage apps, services, and infrastructure?

Section: Core Constructs of Model

Components, relationships, policies, connections and credentials, designs, patterns, metadata

Section: What is Model Schema

What's a schema, and why do we need it?
How is a schema different from the actual Model?

Learning Path: Mastering Contribution to Meshery

Section: Portability, Registry, and Intellectual Property
Why package models as OCl images?, What is a Registry and a registrant?

Section: Design Principles behind Meshery Models

Section: Entity Lifecycle in Meshery

Breaking down the confusing terms
Schema, Definition, Declaration, Instance

Section: Capabilities in Model

What are capabilities?

Section: Importing model

Section: Creating a model

Section: Post-Generation Enrichment

Section: How models are versioned
Tutorial: Contributor Training Series: Meshery Models (Aabid Sofi)
Labs:

Chapter: Components

Section: What Are Components?

Section: Semantics vs Non-Semantics Components
Section: Component Properties

Section: How to Contribute New Components

Prework:
1. Understand Model Generation and Packaging
- Components exist within Models
- Read through [Contributing to Models] first; without a model, a component is
homeless
2. Customize Component Metadata & Representation
- Form-based Representation

Learning Path: Mastering Contribution to Meshery

- Visual Representation
Development
3. Create Component Definition as a JSON file
4. Component Authoring Best Practices and Considerations
5. Contributing your component to the Meshery Project

Chapter: Relationships
Section: Introduction to Relationships
Section: Types of Relationships

Section: The Mechanics of Relationships

Anatomy of Relationship, Selectors, Actions, Operators

Section: How to create new Relationships

Prework - Relationship Identification, Relationship Classification

Development - Create a Relation definition as a JSON file, Configuring scope

Postwork - Testing and contribution

Course: Meshery Schema

Chapter: <Chapter>

Section: <section>

Course: Meshery Policies

Chapter: <Chapter>

Section: <section>
Course: Meshery Adapters
Chapter:

Certification

Learning Path: Mastering Contribution to Meshery

	Learning Path: Mastering Contribution To Meshery
	
	
	
	Certification: Contributing To Meshery
	Document Purpose
	Blog post
	
	Document Scope

	
	Learning Path: Contributing to Meshery
	Course: Overview
	Chapter: Contributing overview
	Chapter: Projects and Repository overview
	Chapter: How, Why, and Where to Contribute
	Section: How to Contribute
	Section: Where to Contribute

	Chapter: Contributing Flow
	Chapter: GitHub Process
	Chapter: Community Guidelines and Code of Conduct

	Course: Working with Docs
	Chapter: Meshery docs
	Section: Meshery Docs structure

	Chapter: Setting up the dev environment
	Section: For Windows
	Section: For Linux
	Section: For MacOs
	Section: Serving the site (what the commands do)
	Section: Using Docker
	Section: Using Gitpod
	Section: Serve GitHub Codespaces

	Chapter: Documentation Contribution Flow
	Section: Contribute and Preview the changes

	Chapter: Documentation Framework
	Section: What Powers the doc - rendering and structuring
	Chapter: Understanding the Flow of Meshery Docs Rendering
	Section: Flow

	Chapter: Using the Features of Meshery docs
	Section: Clipboard
	Section: Alerts
	Section: Image Handling
	Section: Quotes

	Chapter: Table of Contents in Sidebar
	Section: Manual generation of TOC in Meshery Docs
	Chapter: How Docs are Versioned
	Section: Meshery maintains multiple versions of documentation. This ensures users can reference docs matching the Meshery release they’re running. Contributors may need to:
	●​Add content under the current version folder.
	●​Update links and redirects for older versions if the content moves.
	●​Ensure breaking changes in Meshery are documented clearly in the right version.
	

	Chapter: Writing Tips and Resources
	Section: <section>

	Tutorial: Contributor Training Series: Working with Meshery Docs (Zihan Kuang)
	

	Course: Contributing to Meshery UI
	Chapter: Meshery UI
	Section: Overview
	Section: Architecture
	Section: Design
	Section: Setup Development Environment
	Section: Meshery server API’s

	Quiz
	Chapter: Schema-Driven UI Development
	Section: Overview
	Section: Repo Structure
	Section: Schema Drive UI Development Workflow
	Section: Integration Points in UI

	Quiz
	Section: Intro to Notification Center

	Chapter: Dashboard Widgets
	Section: Notification Center overview

	Quiz
	Chapter: Notification Center
	Section: What is a Notification Center
	Section: Metadata Formatter
	Section: How Notification Metadata is Rendered
	Section: Repository Structure
	Section: Types of Event Specific Notification Formatter

	Quiz
	Tutorial: Contributor Training Series: Meshery UI (Amit Amrutiya)

	Course: Contributing to Meshery CLI
	Chapter: Building CLI
	Section: <section>

	Chapter: Documenting
	Chapter: Designing commands Guidelines
	Chapter: Unit Testing
	Chapter: End-to-End Testing
	Tutorial: Contributor Training Series: Meshery CLI (Aadhitya Amarendiran and Matthieu Evrin)

	Course: End-to-End Testing in Meshery UI using Playwright
	Chapter: <Chapter>
	Section: <section>

	Tutorial: Contributor Training Series: E2E Testing in Meshery UI (Ian Whitney)

	Course: End-to-End Testing in Meshery CLI using BATS
	Chapter: Introduction
	Section: About Mesheryctl

	Chapter: Setup Local Development Environment
	Section: Prerequisites
	Section: Setup BATS core
	Section: Setup Dependencies
	Section: Starting Meshery Server
	Section: Authentication

	Chapter: Folder Structure and Naming Conventions
	Section: Understanding Meshery Repo Directories
	Section: E2E Test Folder Structure
	Section: Test Naming Conventions

	Chapter: Run End-to-End Tests Locally
	Section: Running All tests
	Section: Running Specific Command Test Suite
	Section: Running Specific Test Files
	Section: Alternative Test Execution
	-​Run tests with already built binary

	Chapter: Finding Issues to Work on
	Section: Navigating Open Issues
	Section: Using the Meshery Test Plan

	Chapter: Writing Tests with BATs
	Section: BATs Basics and interacting with mesheryctl
	Section: Assertions
	Section: Setup and Teardown

	Chapter: Developing Your Tests
	Chapter: Best Practices for Quality and Coverage
	Section: Ensuring Quality
	Section: Ensuring Coverage

	Chapter: Reporting Bugs during Test Development
	Section: Identifying bugs while writing tests
	Section: Using the “mesheryctl Bug Report” template
	Section: Providing Detailed Reports
	Section: Linking Back to Tests

	Tutorial: Contributor Training Series: E2E Testing in Meshery CLI (Riya Garg)

	Course: Build and Release
	Chapter: <Chapter>
	Section: <section>

	Tutorial: Contributor Training Series: Meshery CI (Sangram Rath)

	Course: Meshery Server
	Chapter: <Chapter>
	Section: <section>

	Tutorial: Contributor Training Series: Meshery Server (Shlok Mishra)

	Course: Meshery Models
	Chapter: Models
	Section: What are Meshery Models?
	Section: Core Constructs of Model
	Section: What is Model Schema
	Section: Portability, Registry, and Intellectual Property
	Section: Design Principles behind Meshery Models
	Section: Entity Lifecycle in Meshery
	Section: Capabilities in Model
	Section: Importing model
	Section: Creating a model
	Section: Post-Generation Enrichment
	Section: How models are versioned

	Tutorial: Contributor Training Series: Meshery Models (Aabid Sofi)
	Labs:
	Chapter: Components
	Section: What Are Components?
	Section: Semantics vs Non-Semantics Components
	Section: Component Properties
	Section: How to Contribute New Components

	Chapter: Relationships
	Section: Introduction to Relationships
	Section: Types of Relationships
	Section: The Mechanics of Relationships
	Section: How to create new Relationships

	Course: Meshery Schema
	Chapter: <Chapter>
	Section: <section>

	Course: Meshery Policies
	Chapter: <Chapter>
	Section: <section>

	Course: Meshery Adapters
	Chapter:

	

