

I. Limite en zéro d'une fonction

Exemples

• Soit la fonction f définie sur $] - ; 0[\cup]0; + [par]$

$$f(x) = \frac{(x+1)^2 - 1}{x}$$

L'image de 0 par la fonction f n'existe pas. On s'intéresse cependant aux valeurs de f(x) lorsque x se rapproche de 0.

	х	- 0,5	- 0,1	- 0,01	- 0,001		0,001	0,01	0,1	0,5
I	f(x)	1,5	1,9	1,99	1,999	?	2,001	2,01	2,1	2,5

On constate que f(x) se rapproche de 2 lorsque x se rapproche de 0. On dit que la limite de f lorsque x tend vers 0 est égale à 2 et on note

$$f(x) = 2$$

• Soit la fonction g définie sur $] - ; 0[\cup]0 ; + [par]$

$$g(x) = \frac{1}{x^2}$$

A l'aide de la calculatrice, on constate que g(x) devient de plus en plus grand lorsque x se rapproche de 0. On dit que la limite de g lorsque x tend vers 0 est égale à + et on note

$$g(x) = +$$

Définition

On dit que f(x) a pour limite L lorsque x tend vers 0 si les valeurs de f(x) peuvent être aussi proche de L que l'on veut pourvu que x soit suffisamment proche de 0.

On note f(x) = L et on lit : « La limite de f(x) lorsque x tend vers 0 est égale à L. »

II. Dérivabilité

1. Rappel: Coefficient directeur d'une droite

Soit une fonction f définie sur un intervalle I. Soit deux réels a et b appartenant à I tels que a < b.

Soit A et B deux points de la courbe représentative de f d'abscisses respectives a et b.

Le coefficient directeur de la droite (AB) est égal à

$$\frac{f(b)-f(a)}{b-a}$$

2. Fonction dérivable

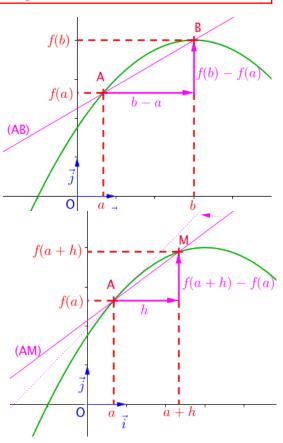
Soit une fonction f définie sur un intervalle I. Soit un réel a appartenant à I. Soit un réel $h\neq 0$ tel que $a+h\in I$.

Soit A et M deux points de la courbe représentative de f d'abscisses respectives a et a + h.

Le coefficient directeur de la droite (AM) est égal à

$$\frac{f(a+h)-f(a)}{a+h-a} = \frac{f(a+h)-f(a)}{h}$$

Lorsque le point M se rapproche du point A, le coefficient directeur de la droite (AM) est égal à la limite de $\frac{f(a+h)-f(a)}{h}$ lorsque h tend vers 0.



La limite de ce coefficient directeur lorsque h tend vers 0 s'appelle le **nombre dérivé de** f **en** a.

Définition

On dit que la fonction f est **dérivable en a** s'il existe un nombre réel L, tel que

$$\frac{f(a+h)-f(a)}{h} = L$$

L est appelé le **nombre dérivé** de f en a. On note alors f(a) = L

Méthode

Démontrer qu'une fonction est dérivable

- **▶ Vidéo** https://youtu.be/UmT0Gov6yyE
- **▶ Vidéo** https://youtu.be/Iv5_mw1EYBE
- **1.** Soit la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x 3$ Démontrer que f est dérivable en x = 2
- **2.** Soit la fonction g définie sur \mathbb{R} par g(x) = |x 5|*La fonction g est-elle dérivable en x = 5?*

Solution

1. On commence par calculer
$$\frac{f(2+h)-f(2)}{h}$$
 pour $h \neq 0$.
$$\frac{f(2+h)-f(2)}{h} = \frac{(2+h)^2+2(2+h)-3-\left(2^2+2\times 2-3\right)}{h} = \frac{4+4h+h^2+4+2h-3-5}{h} = \frac{6h+h^2}{h} = 6 + h$$
 Donc
$$\frac{f(2+h)-f(2)}{h} = 6$$

On en déduit que f est dérivable en x = 2. Le nombre dérivé de f en 2 vaut 6.

$$f(2) = 6$$

2. On commence par calculer
$$\frac{g(5+h)-g(5)}{h}$$
 pour $h\neq 0$.
$$\frac{g(5+h)-g(5)}{h} = \frac{|5+h-5|-|5-5|}{h} = \frac{|h|}{h} = \{\frac{h}{h} = 1 \ pour \ h > 0 \ -\frac{h}{h} = -1 \ pour \ h < 0$$
 $\frac{g(5+h)-g(5)}{h}$ n'admet donc pas de limite (unique) lorsque h tend vers 0 donc g **n'est pas dérivable en** $x=5$.

III. Tangente à une courbe

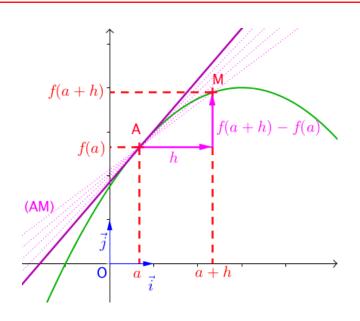
Soit une fonction f définie sur un intervalle I et dérivable en un nombre réel a appartenant à I.

L est le nombre dérivé de f en a. f(a) = L

A est un point d'abscisse a appartenant à la courbe représentative C_f de f.

Définition

La **tangente** à la courbe C_{ϵ} au point A est la droite passant par A de **coefficient directeur le nombre dérivé** L.



Méthode

Déterminer le coefficient directeur d'une tangente à une courbe

▶ Vidéo https://youtu.be/0jhxK55jONs

On considère la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$ dont la dérivabilité en 2 a été étudiée plus haut.

Déterminer le coefficient directeur de la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.

Solution

On a vu que le nombre dérivé de f en 2 vaut 6.

Ainsi la tangente à la courbe représentative de *f* au point A est la droite passant par A et de coefficient directeur 6.

Propriété

Une équation de la tangente à la courbe \mathcal{C}_f en A est

$$y = f'(a)(x - a) + f(a)$$

Démonstration

La tangente a pour coefficient directeur L = f'(a) donc son équation est de la forme y = Lx + b où b est un réel. Déterminons b.

La tangente passe par le point A(a; f(a)), donc

$$f(a) = La + b$$

Soit

$$b = f(a) - La$$

On en déduit que l'équation de la tangente peut s'écrire

$$y = Lx + f(a) - La$$

Soit

$$y = L(x - a) + f(a)$$

Méthode

Déterminer une équation d'une tangente à une courbe

- **▶** Vidéo https://youtu.be/fKEGoo50Xmo
- **▶** Vidéo https://youtu.be/7-z62dSkkTQ

On considère la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

Déterminer une équation de tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.

Solution

On a vu plus haut que le coefficient directeur de la tangente est égal à 6.

Donc son équation est de la forme
$$y = 6(x - 2) + f(2)$$

Soit

$$y = 6(x - 2) + 2^{2} + 2 \times 2 - 3y = 6x - 12 + 5$$

Une équation de tangente à la courbe représentative de f au point A de la courbe d'abscisse 2 est

$$y = 6x - 7$$