Interface with Electrical Devices Over 12C

Written By Sage Wu 27
Updated by DaHee Kim ‘27
Updated as of Aug 1, 2024

For the purposes of this tutorial, | am describing how to interface with
the LT8491 over I12C. You can follow this tutorial with any 12C-compatible
device, not just the LT8491! The Microcontroller Unit (MCU) board | am
using is the Feather MO Adalogger, but any MCU board that can run
CircuitPython and use 12C works.

Hardware Setup
1. Connect the LT8491 12C pins.

a. Connect SDA and SCL pins on the LT8491 to the corresponding
SDA and SCL pins on your MCU board.

b. Ensure that both your LT8491 and your MCU share a common
GND connection.

c. If necessary, use pull-up resistors on the SDA and SCL lines
(typical values range from 4.7kQ to 10kQ)

2. Power the LT8491 as specified in its datasheet.

Software Setup
Now that you have the hardware setup, it’s time to write some

CircuitPython L code! This code runs on your MCU.
I. Setup your environment
1. Import the libraries you need
import board
import busio
2. Initialize 12C object
i2c = busio.I2C(board.SCL, board.SDA)

3. Declare the LT8491’s I2C (slave) address. Check the data sheet to
find this address. This address is used to identify the LT8491 on the
I2C bus. For the LT8491 specifically, this address is set by the
resistor(s). To achieve this specific address, we used a 100k.

LT8491_ADDR = 0x160

4. Declare the LT8491’s 12C device registers.

Device registers are small storage locations inside the LT8491
that store configuration settings, status information, or any
other data the LT8491 needs to operate. Device registers can
be read from/written to by the MCU, allowing your code to
control the LT8491’s functions.

You can find all the registers on the LT8491 using its data
sheet! You won’t need all of them, though. The ones I’m using

are.
TELE_TBAT = 0x00 # Battery temperature
TELE_PIN = 06x02 # Input power

TELE_POUT = 0Xo04 # Output power

STAT_CHARGER = 0x12 # Charger status

Il. Configure registers

5.

Before writing to/reading from registers, you need to configure your
registers. Configuring your registers changes your hardware from its
default settings to the specific operational settings you need - for
instance, whether a device should amplify signals, filter them, or
pass them through directly depends on your configuration settings.

. Find the configuration settings, try and find the 12C register

configuration section of your datasheet. For the LT8491’s datasheet,
this is on page 42, called ‘I2C Register Descriptions’.

. Follow the instructions for the registers you need. | will

walkthrough one of the LT8491’s register configurations for you
here.

First, get the register address we want to write to
CFG_RSENSE1 = 0x28

If we think of each register as a slot in a bookshelf (each slot
being 1 byte), this register requires 2 slots (2 bytes). So
CFG_RSENSET is actually 6x28 and 6x29. So we are going to
write these 2 bytes separately.

In order to do this, we need to separate the bytes. When you
convert a number to hexadecimal, you get something that
looks like this:

0x2710

There is a high byte and a low byte. You can make the
program calculate this for you.

0x27 = high_byte = (value >> 8) & OxFF

Ox10 = low_byte = value & OxFF

Once you get them, you need to write to the registers. The
registers in which you write in are dependent on what system
you are working with. The LT8491 is low-endian, meaning the
first byte written in the register will be the low byte. The
other option is high-endian, meaning the high byte is written
first.

out_buffer = bytearray(2)
out_buffer[@] = register_address

in order to write to the register address, it must be
the first thing in the array.

out_buffer[1] = low_byte
i2c.writeto(LT8491_ADDR, out_buffer)
out_buffer[1] = high_byte
i2c.writeto(LT8491_ADDR, out_buffer)

And then you are done! You have configured the register with
a specific value.

lll. Enter the main loop of code
8. Add a try_lock() statement.

This is necessary because 12C is mutually exclusive (MutEx) —
only one thread of code can use 12C at a time, so we need to
lock the 12C bus so that no other code can infiltrate the bus.

If i2c.try_lock() returns True, then the bus is available
and we can use it!

while not i2c.try_lock():

pass

9. Once the I2C bus can be used, we try to send commands to the
device register in a try block.

try:
out_buffer = bytearray(1)
out_buffer[0] = TELE_TBAT
in_buffer = bytearray(RESPONSE_LENGTH)

i2c.writeto_then_readfrom(LT8491_ADDR,
out_buffer, in_buffer)

out_buffer is a byte array of length 1 that holds the
commands we want to run. In this case, we define the first
(and only) element of the array to be the command
TELE_TBAT

in_buffer is a byte array of RESPONSE_LENGTH (check the
data sheet for the exact response length) which holds the
result from the LT8491

i. The function i2c.writeto_then_readfrom() writes

the out_buffer[0] to LT8491, then reads the result
into in_buffer
10. Release the lock on the 12C.

finally:
i2c.unlock()

11. Finally, initialize the hardware state, effectively

Example for LT8491 MPPT

This guide is for porting Linux drivers to CircuitPython. We do this so we can
use a feather to communicate with a device over 12C.
https://github.com/craigpeacock/LT8491/tree/master
- This person (craigpeacock) wrote a linux driver (in C)

Basically craigpeacock wanted to talk to this device (LT8491) on a linux

computer

But the feathers we run aren’t linux computers, so we need to write

circuit python code instead to talk to the device
https://docs.circuitpython.org/en/latest/shared-bindings/busio/

Write code for the feather
1. Create a code.py file in an IDE of your choice. Eventually you will port this to
the feather. code.py runs before everything
2. Do a print(“test”) to make sure the feather works
3. Import busio & board libraries
a. Import busio
b. Import board
4. Define device address
a. MPPT_ADDR =
5. Define device’s command codes (hexadecimal)
a. LT8491_TELE_TBAT = 0x00
b. LT8491_STAT_VERSION = Ox1A
i. The hex is a code which represents an instruction/command that
the LT8491 device can perform.
ii. You can find all the commands in LT8491/1t8491.h
iii. Eventually you will need to turn all of these into CircuitPython
constants.
. Initialise 12C object and write 12C scan code
a. 12c = busio.l2C(board.SCL, board.SDA)
b. i2c.try_lock()
i. Required because the I12C bus is mutually exclusive (mutex)
ii. ie. only one thread of code can use i2c at a time, so we need to
lock the i2c bus so that no other code can infiltrate the bus.
c. out_buffer = bytearray(1)
i. Make a byte array of length 1
ii. The byte array will hold the commands we want to run. We send
it to the LT8491 device over 12C.
d. in_buffer = bytearray(/response_length|)

o

https://github.com/craigpeacock/LT8491/tree/master
https://docs.circuitpython.org/en/latest/shared-bindings/busio/

i. Empty byte array of length [response_length|, where
|response_length| is different for each of LT8491’s commands.
i. The byte array will be populated by the LT8491’s response to our
out_buffer
e. Out_buffer[0] = LT8491_TELE_TBAT
i. ~ Command [0] in the byte array, which is the command
f. i2c.write_then_radfrom(MPPT_ADDR, out_buffer, in_buffer)

LT8491/i2c.c
Linux kernel communication

