
Interface with Electrical Devices Over I2C

Written By Sage Wu ‘27

Updated by DaHee Kim ‘27

Updated as of Aug 1, 2024

For the purposes of this tutorial, I am describing how to interface with

the LT8491 over I2C. You can follow this tutorial with any I2C-compatible

device, not just the LT8491! The Microcontroller Unit (MCU) board I am

using is the Feather M0 Adalogger, but any MCU board that can run

CircuitPython and use I2C works.

Hardware Setup

1.​Connect the LT8491 I2C pins.

a.​Connect SDA and SCL pins on the LT8491 to the corresponding

SDA and SCL pins on your MCU board.

b.​Ensure that both your LT8491 and your MCU share a common

GND connection.

c.​ If necessary, use pull-up resistors on the SDA and SCL lines

(typical values range from 4.7kΩ to 10kΩ)

2.​Power the LT8491 as specified in its datasheet.

Software Setup

Now that you have the hardware setup, it’s time to write some

CircuitPython code! This code runs on your MCU.

I. Setup your environment

1.​ Import the libraries you need

import board

import busio

2.​ Initialize I2C object

i2c = busio.I2C(board.SCL, board.SDA)

3.​Declare the LT8491’s I2C (slave) address. Check the data sheet to

find this address. This address is used to identify the LT8491 on the

I2C bus. For the LT8491 specifically, this address is set by the

resistor(s). To achieve this specific address, we used a 100k.

LT8491_ADDR = 0x10

4.​Declare the LT8491’s I2C device registers.

Device registers are small storage locations inside the LT8491

that store configuration settings, status information, or any

other data the LT8491 needs to operate. Device registers can

be read from/written to by the MCU, allowing your code to

control the LT8491’s functions.

You can find all the registers on the LT8491 using its data

sheet! You won’t need all of them, though. The ones I’m using

are:

TELE_TBAT = 0x00​ ​ ​ # Battery temperature

TELE_PIN = 0x02​ ​ ​ # Input power

TELE_POUT = 0X04​ ​ ​ # Output power

STAT_CHARGER = 0x12 ​ ​ # Charger status

II. Configure registers

5.​Before writing to/reading from registers, you need to configure your

registers. Configuring your registers changes your hardware from its

default settings to the specific operational settings you need – for

instance, whether a device should amplify signals, filter them, or

pass them through directly depends on your configuration settings.

6.​Find the configuration settings, try and find the I2C register

configuration section of your datasheet. For the LT8491’s datasheet,

this is on page 42, called ‘I2C Register Descriptions’.

7.​Follow the instructions for the registers you need. I will

walkthrough one of the LT8491’s register configurations for you

here.

First, get the register address we want to write to

CFG_RSENSE1 = 0x28

If we think of each register as a slot in a bookshelf (each slot

being 1 byte), this register requires 2 slots (2 bytes). So

CFG_RSENSE1 is actually 0x28 and 0x29. So we are going to

write these 2 bytes separately.

In order to do this, we need to separate the bytes. When you

convert a number to hexadecimal, you get something that

looks like this:

0x2710

There is a high byte and a low byte. You can make the

program calculate this for you.

0x27 = high_byte = (value >> 8) & 0xFF

0x10 = low_byte = value & 0xFF

Once you get them, you need to write to the registers. The

registers in which you write in are dependent on what system

you are working with. The LT8491 is low-endian, meaning the

first byte written in the register will be the low byte. The

other option is high-endian, meaning the high byte is written

first.

out_buffer = bytearray(2)​

out_buffer[0] = register_address

in order to write to the register address, it must be
the first thing in the array.

out_buffer[1] = low_byte

i2c.writeto(LT8491_ADDR, out_buffer)

out_buffer[1] = high_byte

i2c.writeto(LT8491_ADDR, out_buffer)

And then you are done! You have configured the register with

a specific value.

 ​

III. Enter the main loop of code

8.​Add a try_lock() statement.

This is necessary because I2C is mutually exclusive (MutEx) —

only one thread of code can use I2C at a time, so we need to

lock the I2C bus so that no other code can infiltrate the bus.

If i2c.try_lock() returns True, then the bus is available

and we can use it!

while not i2c.try_lock():

pass

9.​Once the I2C bus can be used, we try to send commands to the

device register in a try block.

try:

​ ​ ​ out_buffer = bytearray(1)

​ ​ ​ out_buffer[0] = TELE_TBAT

​ ​ ​ in_buffer = bytearray(RESPONSE_LENGTH)

​ ​ ​ i2c.writeto_then_readfrom(LT8491_ADDR,
out_buffer, in_buffer)

out_buffer is a byte array of length 1 that holds the

commands we want to run. In this case, we define the first

(and only) element of the array to be the command

TELE_TBAT

in_buffer is a byte array of RESPONSE_LENGTH (check the

data sheet for the exact response length) which holds the

result from the LT8491

i.​ The function i2c.writeto_then_readfrom() writes

the out_buffer[0] to LT8491, then reads the result

into in_buffer

10.​ Release the lock on the I2C.

finally:

​ ​ ​ i2c.unlock()

11.​ Finally, initialize the hardware state, effectively

Example for LT8491 MPPT

-​ This guide is for porting Linux drivers to CircuitPython. We do this so we can

use a feather to communicate with a device over I2C.

-​ https://github.com/craigpeacock/LT8491/tree/master

-​ This person (craigpeacock) wrote a linux driver (in C)

-​ Basically craigpeacock wanted to talk to this device (LT8491) on a linux

computer

-​ But the feathers we run aren’t linux computers, so we need to write

circuit python code instead to talk to the device

-​ https://docs.circuitpython.org/en/latest/shared-bindings/busio/

Write code for the feather

1.​ Create a code.py file in an IDE of your choice. Eventually you will port this to

the feather. code.py runs before everything

2.​ Do a print(“test”) to make sure the feather works

3.​ Import busio & board libraries

a.​ Import busio

b.​ Import board

4.​ Define device address

a.​ MPPT_ADDR =

5.​ Define device’s command codes (hexadecimal)

a.​ LT8491_TELE_TBAT = 0x00

b.​ LT8491_STAT_VERSION = 0x1A

i.​ The hex is a code which represents an instruction/command that

the LT8491 device can perform.

ii.​ You can find all the commands in LT8491/lt8491.h

iii.​ Eventually you will need to turn all of these into CircuitPython

constants.

6.​ Initialise I2C object and write I2C scan code

a.​ I2c = busio.I2C(board.SCL, board.SDA)

b.​ i2c.try_lock()

i.​ Required because the I2C bus is mutually exclusive (mutex)

ii.​ ie. only one thread of code can use i2c at a time, so we need to

lock the i2c bus so that no other code can infiltrate the bus.

c.​ out_buffer = bytearray(1)

i.​ Make a byte array of length 1

ii.​ The byte array will hold the commands we want to run. We send

it to the LT8491 device over I2C.

d.​ in_buffer = bytearray() response_length

https://github.com/craigpeacock/LT8491/tree/master
https://docs.circuitpython.org/en/latest/shared-bindings/busio/

i.​ Empty byte array of length , where

 is different for each of LT8491’s commands.

ii.​ The byte array will be populated by the LT8491’s response to our

out_buffer

e.​ Out_buffer[0] = LT8491_TELE_TBAT

i.​ Command [0] in the byte array, which is the command

f.​ i2c.write_then_radfrom(MPPT_ADDR, out_buffer, in_buffer)

LT8491/i2c.c

-​ Linux kernel communication

response_length

response_length

