Practical Lab with Storm, 2nd part

THIS PAGE IS AVAILABLE AT : https://goo.gl/4ffvdC

A. COURSE MATERIAL

Hereafter, you can find all the lecture slides of this seminar :

e Lecture 1: Big Data Panorama - https://goo.gl/Bo1gX1
Lecture 2: Data stream analysis, model and background - https://goo.gl/ehLAeJ
Lecture 3: Similarity Metrics of distributed data stream - https://go0.gl/RyMA50
Lecture 4: Distributed monitoring: the need of sampling - https://goo.gl/M9xLva
Lecture 5: Enhancement of a core sketching algorithm - https://goo.gl/gcG1HC
Lecture 6: usage of stream analysis methods for stream processing -
https://goo.al/VdOhWY

Email : Yann.Busnel@ensai.fr

B. PRACTICAL LAB WITH STORM, 1st PART

Before going any further, you must have finished the first part of the lab :
https://goo.gl/Pz2uPT

C. UNBIASING A STREAM AND COMPARING IT WITH THE
ORIGINAL ONE

In this lab, you will implement an advance topology in storm, with two main objective :

e Use of the technique provided in the following paper to unbiased a stream with a
skewed distribution :

Emmanuelle Anceaume, Yann Busnel, Bruno Sericola. Uniform Node Sampling
Service Robust against Collusions of Malicious Nodes. Dans the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2013), Budapest, Hungary, June 2013.

e Compare the initial stream distribution and the unbiased one to estimate the gain of
the aforementioned approach. This comparison should use the Kullback-Liebler
divergence with the uniform distribution, for both streams, and send the difference of
these values.

Below, you can find the topology abstraction to be implemented:

https://goo.gl/Bo1qX1
https://goo.gl/ehLAeJ
https://goo.gl/RyMA5O
https://goo.gl/M9xLva
https://goo.gl/gcG1HC
https://goo.gl/Vd0hWY
mailto:Yann.Busnel@ensai.fr
https://goo.gl/Pz2uPT

® Integer tuple /;\
Balt | | Bolt |

N N
I/ - \ / \‘- Difference of

H\‘-.
\Pﬂl—ﬂ) ! divergence
_ k S

Integer luple KL{UnbiasedStream,uniform)

Integer tuple | Bolt / KL (BiasedStream,unifanm)

The initial Spout will generate stream of Random Integers, following a given biased
distribution. In order to implement it, you can use the famous Commons Math library, from
Apache : https://commons.apache.org/proper/commons-math/

It can provide to you a collection of classical distribution as Uniform, Zipfian, Poisson, etc. :
https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/di

stribution/package-summary.html

The Unbiaser Bolt will receive this stream and execute the sampling algorithm provided in
the aforementioned paper (cf. Lecture 4). You then have to implement the Count-Min sketch
(cf. Lecture 2) and the sampling memory in this bolt. At each reception, the bolt update the
data structure (CM and Sampling memory) and emit an integer extract uniformly at random
from the latter.

The KL Bolt has to compute the Kullback-Leibler divergence from the input stream and an
uniform one:

https://en.wikipedia.org/wiki/Kullback—Leibler_divergence

Recall that the KL-divergence is provided by (cf. Lecture 3):

Pu
D(pllg) =) pulog o= Hp.a) - Hp)
ueN u

where p and g are two probability distributions.
We can then rewrite the last equation with the empirical distribution.

D(go|lp™)) = Zq log (g:) — Z% log ((u))

=1

= log(n) — log(m Zml log (m;) .

You will then need to track in this bolt the exact frequency vector of the stream, and the
number of tuples received so far, and the number of distinct item.

Upon reception of a new tuple, you will have to update the data structure and to emit the
updated value of the KL-divergence.

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/package-summary.html
https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/package-summary.html
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Finally, the Diff Bolt will make the difference between the last values received by the two
instance of KL Bolt (one from the biased one, representing the baseline and one from the
unbiased one), normalized by the biased one, that reflect the gain of the sampiler.

You will have to differentiate the input stream (think on getSourceStreamld() in the Storm
interface Tuple for instance).

Hint: to synchronize the diff value, you should also emit, with the KL-divergence value, the
current m, as a time stamp. You then will also have to implement a dynamic buffer in case of
desynchronization of input streams.

Finally, you should store these values in a log file, which will be plotted after execution to see
the evolution of this gain according to time.

D. IF YOU HAVE TIME

Exploit the above result by showing that processing the input stream with sketches put in
series decreases this convergence time, and this is achieved without requiring any additional
space nor additional operations per item.

For instance, consider the following cascade:

.

Input stream A 7 1 S,(k) Output stream

EAmAGNANDEE s T2 P T

Gl
e oz)

This can be easily obtained with storm, as you just have to put several Unbiaser Bolt in
series (take care to reduced consequently the memory usage of each Bolt to remain fair with
respect to the previous topology memory usage).

I]
[11

1N
I s
|
V]
s

I
I

(Y

E

Compare the evolution of the gain with the previous one.

	Practical Lab with Storm, 2nd part

