
Secure Production Identity
Framework For Everyone

Joe Beda
Written: March 2, 2016
Last Edit: August 1, 2016

This document lives at spiffe.io. As the project matures, more will be hosted at that site beyond
this design document. Feel free to follow@SPIFFEio on twitter or join the (nascent) mailing list

spiffe-dev.

This is a work in progress draft. I’d love discussion and comments. If you want to comment
please reach out to joe@spiffe.io and I’ll give you permission.

For a softer introduction that sets some context, there is a slide deck with speaker notes from my
presentation at GlueCon 2016.

Introduction
SPIFFE proposes a new set of protocols and conventions to securely communicate and identify
service to service communication in modern production environments.

Modern production environments are quickly moving to a world that is much more dynamic than
existing IT systems. Specifically, workloads are being dynamically placed and scaled (often via
container orchestration). At the same time, parts of applications are being broken out as
micro-services and being reused widely across larger organizations. Security systems and processes
need to adapt to this more fluid environment.

One common approach to securing communication between services is being described as
“micro-segmentation”. Micro-segmentation consists of programming the network to only allow
traffic between specific endpoints as a matter of policy. Eventually it is expected that as part of
describing and running a service, the user will describe which other endpoints that service expects
to both receive and send network traffic to. This approach is valuable but also very limited. The lack
of context at the packet and firewall level not only makes it a blunt instrument but is also limited to
just the security domain. If one relies on just micro-segmentation, it implies that “reachability is
authorization”.

1

https://spiffe.io
https://twitter.com/spiffeio
https://groups.google.com/forum/#!forum/spiffe-dev
mailto:joe@spiffe.io
http://slides.eightypercent.net/spiffe-intro/index.html#p1


Right now, many folks see micro-services as a way to break large monolithic applications down into
more manageable parts. But as the architectures mature, we will see micro-services being used
widely from multiple other services. This can create a network of connected services that spans an
organization. As this happens, the protections of micro-segmentation decline. A first class identity
system becomes necessary.

Another way to look at this: just as DevOps has redefined the lines between developers and
operations roles, so too must we redefine the roles between application developers and security
operations. While DevOps has many many definitions, it is clear that developers are now expected
to understand and play a role in how applications are deployed and managed in production.
Similarly, operations teams must be more aware of the applications that are being managed. As we
move to a more evolved security stance, we must offer better tools to application developers so
they can play an active role in building securable applications.1

Here are the qualities that we will look for in a such a system:
● Easy to use. Cryptography can be very difficult to use and even more difficult to use

correctly. Above all, we must fix that.
● Wide Integration. The more frameworks and tools that build in support for SPIFFE the

more useful it will be. Built in support in RPC/micro-service frameworks, storage systems
and orchestrators will multiply its usefulness. There are parallels to the OpenTracing project.

● Secure. Modern proven cryptographic systems should be leveraged to verify identity of
both clients and servers.

● Identity and privacy. Users should be able to use the system for both identity and privacy
of communication. There are different costs for each of these and we should be open to
exploring trading off costs.

● Reliable. The single points of failures in the system should be minimized and the system
should degrade gracefully when any SPOF is down. All “steady state” operations shouldn’t
have requirements off of a specific node. This precludes any centralized signing/verification
service.

● Flexible Bootstrap. Identity is about trust and that trust needs to be bootstrapped. The
system should have multiple mechanisms including being able to hook into hardware
security mechanisms (such as TPMs) as that makes sense..

● Scoped trust roots. While PKI may used as part of the solution, there should be no
hardcoded, global trust roots as we see in the web browser world. It is up to users to
explicitly decide which roots they will trust for which identities. Typically, these roots will be
set per organization.

● Federatable. It should be possible to use these identity mechanisms across organizations.
However, federation trust will have to be explicitly configured. The nitty gritty of how to
establish this trust may be out of scope for the first cut of these specifications.

● Legacy Friendly. Legacy is perhaps not the right word here. Regardless, users should be
able to apply SPIFFE without rewriting applications or moving them to a new management
system. It should be possible to adapt this system as separable infrastructure to secure
existing systems with little or no code change.

1 It would be great to come up with a name for evolving the standard relationship between security
teams and the rest of the IT org. It parallels the evolution embodied with “DevOps”. Perhaps
“SecDevOps”?

2

http://opentracing.io/


● Container Friendly. The system should work well in dynamically orchestrated containerized
environments.

● Minimal Knowledge. A compromised machine should only expose any secrets for
workloads that happen to be running on that machine.

● Optional/Future qualities that should be taken into consideration but may perhaps have to
be secondary to other considerations:

○ Delegatable. Things are never as simple as A talking to B. There are often other
processes and proxies in between. We should allow for and explore ways to enable
identity to be layered in interesting ways.

○ Scopeable. There is lots to like about a capabilities based authorizations system. But
as SPIFFE is just about identity and authentication. We should explore ways to have
intermediaries scope down what identification tokens can be used for. This goes
hand in hand with delegation.

This document lays out a sketch of how we can start to address this problem. There are plenty of
open questions and decisions to be made. Hopefully this sketch will light the path to a more
rigorous set of conventions/standards and reference implementations.

There are certain things that are explicitly out of scope for the initial version of SPIFFE. This includes:
● Authorization. SPIFFE is about identity. It is up to individual programs to decide how to

grant access to resources based on that identity.
● Directory Services. Things like grouping and metadata about identities are out of scope.

We don’t want to reinvent AD or LDAP. However, users can pick a scheme for their SPIFFE
IDs (defined below) so that they can use SPIFFE identity as a key to looking up information in
a directory.

SPIFFE in Practice

SPIFFE provides all of the plumbing so that a workload can easily obtain 2 things:
● A set of certificates and private keys used to prove identities that the workload has access

to. A specific identity is marked as default to ease configuration.
● A set of root certificates along with data for which identities those certificates apply to.

When a workload is launched, it refers to a SPIFFE Node CA to obtain this information. The address
of the Node CA is specified in an environment variable or command line flag. If neither of these are
present the workload must assume it is not operating in a SPIFFE enabled environment.

From the end user point of view, there are two common ways that this certificate can be used:
● Without any application changes whatsoever, use a proxy (forward and reverse) that will

apply and verify identity. As we see proxies take on more and more interesting behavior
(linkerd, Weave Flux, CoreOS jwtproxy) this behavior can be bundled in.

● Use a micro-services or RPC framework that automatically recognizes when it is run in a
SPIFFE environment and uses the certificates.

3



The certificates should be flexible enough to be used in multiple different ways. Note also that just
because two workloads are SPIFFE enabled doesn’t mean that they can communicate effectively.
They must agree on how to use those certificates.

● Secure the link via TLS. It is possible for clients to use these certificates and keys at the
socket layer. This becomes even more compelling with HTTP/2 as server TLS is pretty much
required.

● Payload signing. It is easy to use the cert and key to sign a payload directly. Something like
JSON Web Signaturesmight work well here. However, doing public key cryptography for
each message may be overly expensive.

● Establish a shared secret followed by signed payloads. This is more efficient but assumes
peer to peer negotiation of a shared secret by the client and server (using Diffie Hellman key
exchange?). There are sure to be subtle cryptography considerations here and is out of
scope of this plan. This also starts to duplicate much of TLS at the payload level. NaCL/box
looks interesting here but requires further study.

Design Sketch
At its core, SPIFFE will be a set of conventions around how to get and use x.509 certificates. Public
key encryption is a great fit for the challenges both inside a datacenter and out. But the expertise to
specify and deploy a certificate system is outside the capabilities of most organizations. In addition,
integration with other automated systems is difficult as APIs are lacking in this space.

Moving to an automated API driven system will force clean “certificate lifecycle” management. If all
certificates are short lived, then rotation must be automated. In addition, the same API mechanisms
can be used for managing revocation.

Let’s break SPIFFE down into some separable components. This will make it easier to understand
and easier to implement. We’ll go into detail bellow on these.

1. SPIFFE ID and the x.509 certificate mapping.
2. SPIFFE workload API. This is how workloads get and verify certificates
3. Open source reference implementation of SPIFFE.

4

https://tools.ietf.org/html/rfc7515
http://nacl.cr.yp.to/box.html


SPIFFE ID and x.509 Certs
To start with, we will define an identity namespace. This is a simple structured string that will be the
key part of the certificate. While it is possible that we could borrow from existing types of names
(such as email or x.509 Distinguished names) it may make sense to have a bit of a clean break here.
I’d suggest we define a new type of URI for this name.

urn:spiffe:example.com:caribou:frontend

This has the benefit of being based on the DNS namespace but not implying that there is anything
reachable over, say, HTTP. Let’s break it into parts:

● urn -- this explicitly states that this isn’t a resource but just a name
● spiffe -- this name is part of the SPIFFE framework
● example.com -- the organization that this name belongs to.
● caribou:frontend -- a list of ‘:’ delimited strings that are up to the organization to define.

Best practices would be to not put too much structure into this part of the namespace as
organizations change over time.

This scheme is a straw man and is worth investigating other approaches deeply. However, it will
suffice for the discussions here.

5



Why not email addresses or URLs or LDAP distinguished names? Email addresses and URLs imply
that the names can be used in a certain way that may not be supported. They probably won’t be an
email box for each of the names in question. Similarly, using URLs makes it easy to confuse where
to talk to a service with the identity of a service. LDAP style hierarchy maps very easily to x.509
certificates but is alien to many users and has concepts that don’t map easily.2

It is an open question on how to encode this into x.509 certificates . I’m still exploring the options3

in this area and would appreciate input. Regardless of how the names are encoded into
certificates, they will be represented as a simple string that can be compared easily .4

It will be common for organizations to map employees into identities also so that their actions can
be represented and tracked in this system. While production services wouldn’t be run with an
employee identity, one off jobs and tests may be. In this case, we may see
urn:spiffe:example.com:eng:jbeda.

Hostname Certificates

This is still a bit of an open question.

All we’ve talked about so far is around abstract identity. However, most TLS libraries expect to verify
against a hostname when making a connection. The actual host name used is generally going to be
a function of the service discovery system used and may not even be DNS based. In addition a
single identity may offer multiple services.

For Kubernetes, as an example, the discovery DNS scheme for services is
<service>.<namespace>.svc.<cluster-base>. <cluster-base> defaults to cluster.local.
If we map each Kubernetes namespace to a SPIFFE ID, then we could also make those SPIFFE certs
good for every service in that namespace by issuing a certificate with a subjectAltName of
*.<namspace>.svc.<cluster-base>.

The domain to put in the certificate will be highly dependent on the granularity of SPIFFE IDs and the
services that those SPIFFE IDs expose. It will be easier for users if there is a predictable mapping and
no need for explicitly configuring which services which IDs own.

4 We’ll have to be specific about what characters are allowed and how these are compared. Ideally
we can also easily define globbing type structure for specifying a space of SPIFFE IDs. See RFC 6943.

3 Options include trying to squeeze it into the CN, breaking it apart into standard DN components,
inventing new extensions to the DN, or perhaps the URI type in the SubjectAltName extension.
Furthermore, we must consider if the certificate duplicates information found in the root.
Specifically, if the root cert specifies that it handles urn:spiffe:example.com:* but it signs a cert
for urn:spiffe:example.net:id then it would be up to the client to catch and verify this.
Perhaps the root cert should include the namespace and the identity cert should include the relative
ID? Then it is up to the client to reconstruct the FQSID (Fully Qualified SPIFFE ID).

2 LDAP DNs are actually a list of sets of KV pairs. The double nested nature is very confusing. In fact,
the Go implementation (and I assume many others) over simplifies and throws away data when
parsing these. See https://golang.org/src/crypto/x509/pkix/pkix.go?s=1953:2006#L52.

6

https://github.com/kubernetes/kubernetes/blob/release-1.2/cluster/addons/dns/kube2sky/kube2sky.go#L58
https://tools.ietf.org/html/rfc6943#section-3.3


SPIFFEWorkload API
This is the protocol that the workload (usually through a microservices/RPC framework) will use to
communicate with the Node CA.

It assumed that workloads have been enlightened to know about SPIFFE and speak this protocol. If
they have not been, they should instead run behind a SPIFFE aware proxy.

A scenario that requires more study is a workload that knows how to use x.509 certificates but
doesn’t know about SPIFFE. These workloads won’t be able to deal with short lived certificates and
manage their own rotation.

When a workload runs, it should be able to get a key/certificate with very little work. There is an
environment variable that is passed into the workload that specifies the Node CA that the workload
should look to and trust. It is expected that this environment variable will specify either a UNIX
domain socket, localhost, or a link-local address (maybe?).

As it is expected that this address will be to a Node CA on the same machine, the workload can
communicate without the overhead of authentication or encryption. This makes it very easy to use.

Services provided over the SPIFFE Client Protocol:
● Get the root certificates it should trust. (Those certificates have the namespaces that they

cover embedded in them).
● List the identities that are available to the workload, including a “default” identity.
● Get a key pair and certificate for each of those identities.

○ This certificate is very short lived (1-2 hours?)5

○ It may further be scoped to specify that it can only be used from a specific set of IP6

addresses.
● Process a CSR for a pre-existing public key.
● Sign a blob of data so that the workload never sees the key.

Question: Can/should this be a variant of ACME?

SPIFFE Proxies

While new code can talk the SPIFFE client protocol directly, it is likely that existing workloads will
want to take advantage of SPIFFE with no or few changes. It will also be a challenge for polyglot7

multi-service applications to have consistent libraries and behavior across languages.

7 Polyglot here means applications built up of services implemented with different
languages/runtimes/platforms.

6 The certs the Node CA would get from the root/intermediate would be locked to its IP. That would
trickle down to the certificates it creates/signs. Workload developers wouldn't be able to use those
certs outside of that IP. (NAT obviously creates problems here and so we'll want to be careful if this
system is used with NAT.)

5 We need to think through what happens when a certificate expires while being used for an active
connection. Most likely we would keep this connection alive and grandfather the auth for the
lifetime of the connection. New connections would have to use an updated certificate.

7



To accomplish this, SPIFFE can be integrated into a “sidecar” proxy. This proxy would run in a very
trusted context with the workload (localhost, domain socket) and would handle all communication
that goes off the machine for that workload. In effect, the workload would only talk to the proxy
over localhost (or a domain socket, etc.). The proxy, in turn, will encrypt and handle connections to
the rest of the cluster.

● The proxy would handle both incoming and outgoing connections. Outgoing connections
are a little more complicated and may require some client changes.

● The proxy may inspect/modify the request. For instance, for outgoing connections, it may
key off of the ‘Host’ header to determine the ultimate destination. Or, for incoming
connections, it may add an additional header to communicate the SPIFFE ID of the caller.

● The proxy can implement an ACL mechanism based on the ID.

The sidecar proxy could operate at either (or both) the TCP and HTTP layers. However, HTTP will be
much richer as it can do advanced things like inject identity into the headers, do SPIFFE ID based
flow control, or implement ACLs on HTTP paths/verbs. Similar things can be done with raw TCP but8

standards are lacking and not widely supported.

As we see smarter microservice oriented proxies come to market (linkerd,Weave Flux, CoreOS
jwtproxy) it will become more and more natural to put authentication and authorization into those
proxies. Note that there is a tradeoff here between making authorization rich and built in to the
application versus putting it in a proxy and more generic.

SPIFFE Cert Sync Sidecar

This optional component will help “legacy” servers use SPIFFE certificates that also cover hostnames.

If we put DNS hostnames into SPIFFE certificates those certificates can be used directly by “legacy”
servers. However, those servers won’t know how to get and rotate the certificates. This is where the
“cert sync sidecar” (better name welcome!) comes in. This helper will talk the SPIFFE Workload API
and write certificates to disk. It will also take some action (such as sending a HUP signal to a
process) so to cause the certificate to be reloaded.

Open Reference SPIFFE Implementation

Certificate Authority Infrastructure

It is expected that each organization will have a root certificate authority and a (rotatable) Root
certificate. This can either be run via a dedicated CA for just their organization or via a shared
service. While it is possible for this CA to sign certificates that go beyond the scenarios listed here,
we won’t specify those.

8 See the HAProxy PROXY protocol as a direction to take. Note that only the very new version 2 of
the protocol supports extensibility for other “headers”. Headers defined so far are not rich enough
for SPIFFE so more extensions would be needed.

8

http://linkerd.io/
https://www.weave.works/products/weave-flux/
https://github.com/coreos/jwtproxy
https://github.com/coreos/jwtproxy
http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt


Unlike web browsers, there will be no large set of universally trusted root certificates. It is expected
that the location of the root CA and an initial root certificate will be installed into client machines as
part of a machine provision process. The Node CA will be responsible for any necessary rotation
and surfacing the trust roots to client workloads.

Federation between organizations is largely left as an option question for now. For SPIFFE instance
A to trust instance B, A will have to be configured with B’s root certificate and namespace. It is
possible that DNSSec may be used but that shifts the burden to the trust roots for the DNS system.
HTTPS could be used to retrieve SPIFFE root certificates if an organization desires to trust HTTPS. Or
that machines can get the organization's root cert as part of the machine provisioning process.

Signing other certificates by root certificate should be API driven -- potentially via the ACME protocol
(with necessary extensions ). There may be other APIs into the CA for actions that aren’t specified9

for ACME. Specifically, many implementations will have a manual approval flow for certain entities.

Simple configurations of SPIFFE will have a root CA that is always online. More complex
configurations will have offline roots with intermediate CAs that handle the day to day workload.

Root certificates should have long expiration times -- on the order of years. If intermediate
certificates are used, they should have shorter lifetimes. There is a tradeoff between the manual
labor of rotating the intermediate certificates vs. the risk of long term compromise.

Node Certificate Authority

A trusted agent running on each node, the “Node CA,” plays a unique and critical for SPIFFE. It has
two main jobs: mediating certificate issuance for workloads and distributing SPIFFE configuration
information (mainly trust roots). This works for both dynamically scheduled systems (Kubernetes,
Swarm, Mesos, etc) and for more statically provisioned workloads.

The Node CA has a trust relationship (via a public key) with the CA infrastructure. It then plays traffic
cop for all certificates issued to workloads on that particular node. The CA infrastructure will ensure
that the Node CA cannot get certificates for workloads that are not assigned to it. In this way a
compromised Node will only compromise identities for workloads that are assigned to run on that
node.

When a workload asks the Node CA for a certificate, the Node CA can map that workload to the set
of identities that it should have access too. This mapping is supplied as part of the configuration
information provided by the CA infrastructure. This mapping can be flexible and extensible. Starting
out, the mapping could be open (any workload on a machine gets access to an identity), pinned to a
local UID or to a specific container.

9 The DNS based challenges defined as part of ACME now probably aren’t appropriate. But they are
extensible. I’m thinking we could (a) use a pre-existing key pair that is on the machine as the ACME
account key (TPM?) and thus no challenge, (b) use a time limited one time code that is
communicated in a slightly insecure way during machine provisioning or (c) have a manual approval
process similar to many existing systems. I’m sure there are other ways we could bootstrap trust in
a low risk way.

9

https://tools.ietf.org/html/draft-ietf-acme-acme-02


Because the Node CA is running on the same kernel as the workload, it has the unique ability to
trace networking connections back to the actual calling process. For example, it can look at the
other end of a UNIX domain socket to determine the UID of that user. Or, in a containerized
environment, it can offer certificates to containers by tracing the networking connection in a trusted
way.

Open question: is the Node CA a true CA or a trusted forwarder? In other words, does the Node CA
have longer lived certificates for each identity that it can use to sign short lived certificates for a
workload or does it forward all certificate requests to the CA infrastructure. There are pros and cons
to each approach around complexity and reliability.

Other interesting aspects of the Node CA:
● Its certificates have a relatively short expiration time -- on the order of hours .10

● Beyond providing keys/certs to the workload, it could act as a “software TPM” and sign data
without exposing the key to the workload at all. Similarly, it could provide a trusted
implementation for verifying an incoming certificate chain.

● Assuming the Node CA is a true CA, colocating the Node CA with the workload will provide
for increased robustness. The workload and the “Node CA” share fate in that they are on the
same hardware.

● The Node CA would provide other limited restrictions on the certificates that it hands to the
workload. Specifically, the certificates could be locked down to the specific node. This
further limits the damage when a node is compromised.

Orchestrator Integration

The Node CA needs to be configured to only be able to author certificates for the workloads that are
running on that machine. It also needs to know which identities map to which workloads. This
should be coordinated through any Orchestrator that happens to be active in the production11

environment.

The Orchestrator will configure the CA infrastructure with information about which Node CAs should
have access to which identities. Along with this will be mapping information that will be made
available to the Node CAs.

In order to scope down the power of the Orchestrator, the CA infrastructure may have further policy
to limit which identities the orchestrator can control for which Node CAs. For instance, a user may
have a set of dedicated machines for doing payment processing. The Orchestrator may have policy
as to which workloads gets scheduled on to those machines. The root CA could provide an extra
policy to ensure that the identities for payment processing will only ever be given to that set of
machines. This could be done in the way where the root CA has policy that supersedes the
orchestrator and so the orchestrator is not fully trusted.

11 Orchestrator here could be a system such as Kubernetes, Docker Swarm or Mesos. Or it could be
a more monolithic PaaS. Or it could be a traditional config management system such as Puppet,
Chef, Salt or Ansible.

10 This assumes that workloads using these certificates are written with SPIFFE in mind and support
automatic key rotation. This should be true for both microservice frameworks and SPIFFE proxies. If
“legacy” workloads want to use these certificates things get more complicated.

10



Beyond v0

Federation
SPIFFE supports wide and loose federation. In order for OrgA to call OrgB, OrgB must be configured
with OrgA’s root certificate and the SPIFFE ID namespace that corresponds to that root cert.

A practical example: the current state of the art for authenticating to a web service is to get a
relatively static token (usually via a web page) and use that as part of an HMAC signature or just
simply embed it in a header over an HTTPS connection. The biggest problem with a shared secret
approach like this is that it is up to the user to responsibly manage storing that token. It is all too
likely that the token will either be lost or leaked.

With SPIFFE we can do better. Instead of getting a token from the web service, the user instead
provides the root certificate for the calling code along with the SPIFFE IDs to trust for that certificate.
This is much preferred as (a) the caller has no need to store a separate secret and (b) all
configuration information could be made public with no compromise.

WhyX.509?
Maik Zumstrull says:

I would recommend reconsidering [using X.509 certificates].

It seems to me the only thing you want from X.509 here is "raw PKI": the ability to make a tree out
of keypairs and signed blobs.

But with X.509, you are also getting:

● A family of file formats widely understood to be the worst.
● A hypercomplex identity model that you don't plan to use at all, but can't entirely avoid

because it's deeply tied into the format.
● A collection of existing implementations that are all terrible.
● Unfortunate technology choices around how to make cryptographic signatures that can

never be fixed because compatibility.
● Difficulty building flexible PKI models because each cert encodes the identity of the cert it

expects to be signed by (Issuer Name).
● Zero hint of any plan for migration to post-quantum crypto primitives.

11



I get that I'm basically recommending "invent your own crypto" now, which is not good, but I feel
like if you have someone on the team (or can get someone) who is qualified to get this right, this
might be situation where you want to.

While I agree that x.509 (and ASN) is a very complex specification that is hard to understand,
reinventing it is out of scope for this effort. While the libraries for dealing with x.509 certs may be
lacking, they exist. Using an alternate certificate format would require much more code to be
written to drive to wide acceptance.

There is prior art here in avoiding X.509. Both OpenPGP and OpenSSH use public key encryption
with alternate certificate formats. Since these formats are only supported for these specific projects
adopting them will provide yet another barrier to entry for SPIFFE. OpenPGP, specifically, has a trust
model that is less adaptable to a business organization and will likely result in a hard coded “root”.

Even if we had an alternate certificate format, we would then have to adapt TLS to use this new
certificate type. RFC 6091 starts this for OpenPGP but it is not widely implemented.

However, X.509 is not a critical part of this framework. The general flow and protocols can be used
with alternate certificate formats. To this end, we’ll ensure that all APIs specify that they are looking
for X.509 certificates to leave room for alternate formats in the future.

OpenQuestions

Cluster Bootstrapping

With a new cluster, it is necessary to establish a trust relationship between the Node CAs and the
root CA. Similarly, the orchestrator will have a privileged role and that trust relationship needs to be
set up. What techniques can be used to do that in a painless and secure way?

Ideas to enable easy bootstrapping:
● A manual approval queue with tooling. Administrators would look at pending requests and

approve/deny those requests based on out of band knowledge.
● One use time limited tokens. The root CA could provide an API to get tokens for

“pre-provisioned” accounts. These would be good for a short amount of time and would be
single use to bootstrap longer term trust relationships.

● Automated “cloud” verification. It is possible to use lower level APIs (such as cloud APIs) to
collect enough information to confidently automatically approve trusting a new machine.

● Hardware encryption. With TPMs and HSMs it is possible to tie this to unique aspects of the
machine that cannot be counterfeited.

Delegation

If TLS becomes the common mechanism for authentication, how do we implement delegation -- that
is trust a third party to act on behalf of other identities?

12

https://tools.ietf.org/html/rfc6091


Ideas here include impersonation at the application and authorization layer. The immediate caller is
clear but other solutions are used to identify indirect callers. This could be implemented via
capability tokens that are signed by SPIFFE keys.

The “blessing” mechanism from Vanadiummay provide some additional inspiration here.

Grouping

Many times when doing authorization, users want to specify a dynamic group of principals.
Resolving a “group” name to the transitive group of individual identities is a subtle problem. There
are concerns around security, caching and performance.

Down-scoping

What ways can we further limit the power of certificates in appropriate ways. Can more be done
beyond locking those certs to a machine and having a short expiration?

Authorization

How is a client's SPIFFE ID mapped by a server to a role with associated authorization policy? Part of
the power of SPIFFE is that this is left undefined. For some situations authorization may be as
simple as a command line flag and a an “if” statement. Other scenarios may call for centralized
access management ACL systems with centralized auditing. However, extending SPIFFE with
optional conventions and examples would be helpful.

Alternatives
I’m sure that there are existing systems that echo the design decisions and principles of SPIFFE. I’m
not, however, aware of any system that is in wide use and open for this type of scenario.

TODO: Add lots more detail here.

● Kerberos --
● Active Directory -- AD combines a direoctory, kerberos infrastructure and, optionally, x.509.

While it may be usable for the use cases described here, it is brings in too many assumptions
for the simplest applications. In other words, any system that starts with “first install AD” will
see limited uptake.

● Vanadium Security Model -- while both the Vanadium project and SPIFFE are both inspired
by Google systems such as LOAS, the Vanadium security model assumes that users are
taking on the entire Vanadium model. It also avoids existing crypto implementations (x.509
certs, TLS) in favor of optimal and less widely deployed technologies. We should look to
borrow/merge ideas in the future as applicable.

● SDN w/ 802.1X
● VPN mesh

TODO: list alternatives and analysis. Kerberos?

13

https://vanadium.github.io/concepts/security.html
https://vanadium.github.io/concepts/security.html


Thank You!
Many of the use cases for SPIFFE are inspired by an internal system at Google called LOAS. I never
looked under the covers there so I can’t say how much the implementation overlaps.

Lots of folks have given feedback and advice here. Note that a name listed here does not imply
endorsement.

● William Morgan, Buoyant
● Brendan Burns, Google
● Brandon Philips, CoreOS
● Jimmy Zelinskie, CoreOS
● Jake Moshenko, CoreOS
● Maik Zumstrull, SysEleven GmbH
● Sunil James, BVP
● Erica Lan, Salesforce
● Eric Tune, Google
● David Strauss, Pantheon
● Solomon Boulos, Google
● Vijay Gill, SalesForce
● Asim Aslam, Micro
● Sasha Klizhentas, Gravataional
● Christopher Liljenstolpe, Tigera

Also lots of folks on the Xoogler Slack.

If I forgot you here, please reach out and I’ll happily add you.

Changelog
June 14, 2016. Broke out design into parts. SPIFFE ID and certs, workload API and reference
implementation. Documented thoughts on including hostnames in certs and how those might be
used (SPIFFE cert sync sidecar). Also explicitly state what is out of scope in intro (authz, directory).

14

https://twitter.com/jbeda/status/715373975182807040

