
Raspberry Pi Geocaching System (Pi Hiker) 
Author: Bob Alexander 
 

A kid friendly, high accuracy geocaching platform. 

●​ Accuracy of the GPS location could be improved by putting the L80 into 10Hz mode 

and then performing an averaging function such as outlined in this paper: 

          An Effective Approach to Improving Low-Cost GPS Positioning Accuracy in Real-Time Navigation 

●​ With the addition of a magnetometer, a direction indicator could be added that would 

not be dependent upon movement to show the target azimuth. 

●​ We would utilize our Makerspace's 3D printer to print an enclosure for this platform 

to sit in such that it could be used by children. 

●​ I think the Pi 2 is a good candidate for this project as it should have the horsepower 

to perform the averaging function and be able to utilize a database of geocaches 

downloaded before the trip. 

 

Journal: 
Received notification that I won a Raspberry Pi 2 GPS kit from Christopher Stanton on July 17th 2015. 

Received kit in mail August 4th 2015. 

:) 

http://www.hindawi.com/journals/tswj/2014/671494/
http://www.element14.com/community/docs/DOC-76982/l/whats-in-the-geocaching-raspberry-pi-2-kit
http://www.element14.com/community/people/cstanton?et=notification.mention


 

 

Look at all the goodies!!  



 

Starting to assemble... 



 

I soldered the right angle header pins to the PiFace GPIO Duplication Board Shim and tacked 

the shim in place on the Raspberry Pi 40 pin header board by soldering the four outermost 

pads as I applied pressure against the shim. It was a little loose and didn’t maintain good 

contact without this. Yes, I soldered the pins on the wrong side and the silk screen is 

backwards. Oh well. A quick assembly sheet would be nice to prevent this as it wasn’t 

obvious to me - NOOB! 



 

The footprint is a lot bigger than I expected! How am I going to house all this?! 

The Microstack is definitely a nice system for prototyping but I don’t think it will work for a 

‘finished’ project.  

Ben Heck style chopping/hacking in store? 



 

Maybe a game pad style case will accommodate the assembly as is? 

 



 

Connected to GPS antenna sitting on the window sill. Retractable reel for the GPS antenna? 



 

Ready to power up! Note the DVI-HDMI adaptor for my DVI only monitor. 



 

It works! 



 

After downloading the PiFace Control and Display software and enabling the SPI bus I ran 

the sysinfo demo. 

 
Just a quick tweak and it displays my local weather!  

http://www.piface.org.uk/guides/setting_up_pifacecad/fitting_PiFace_Control_and_Display/


August 5th 2015: GPS testing 
Following along with Christopher Stanton’s blog: 
Putting Together the Pieces - Raspberry Pi 2 GPS Geocaching Project 
 
After not having luck with 
cat /dev/ttyAMA0  
and ‘cgps -s’ just returning “cgps: GPS timeout” 
I unplugged the PiFace CAD and moved the GPS Microstack to the direct connection instead of 
going through the shim (after powering off the pi). 

 
 
After booting back up and waiting for the GPS to initialize, I reran ‘cgps -s’ and BINGO! 
┌───────────────────────────────────────────┐┌─────────────────────────────────┐ 
│    Time:       2015-08-06T02:07:10.000Z   ││PRN:   Elev:  Azim:  SNR:  Used: │ 
│    Latitude:    3X.650558 N               ││  15    78    169    41      Y   │ 
│    Longitude:   7Y.667636 W               ││  20    71    001    32      Y   │ 
│    Altitude:   214.9 m                    ││  21    45    311    29      Y   │ 
│    Speed:      0.4 kph                    ││  29    44    220    36      Y   │ 
│    Heading:    252.9 deg (true)           ││  18    26    274    36      Y   │ 
│    Climb:      0.0 m/min                  ││  24    08    163    00      N   │ 
│    Status:     3D FIX (1 secs)            ││  43    00    000    00      N   │ 
│    Longitude Err:   +/- 173 m             ││                                 │ 
│    Latitude Err:    +/- 20 m              ││                                 │ 
│    Altitude Err:    +/- 478 m             ││                                 │ 
│    Course Err:      n/a                   ││                                 │ 
│    Speed Err:       +/- 1251 kph          ││                                 │ 
│    Time offset:     -0.511                ││                                 │ 
│    Grid Square:     FM08pp                ││                                 │ 
└───────────────────────────────────────────┘└─────────────────────────────────┘ 

 
Now, I just need to troubleshoot the shim…  
Even though I soldered the connector on backwards shouldn’t the one for one pinout be the 
same? Or, maybe the serial port connections are not making contact? 
Time to ohm it out and check! 

http://www.element14.com/community/people/cstanton
http://www.element14.com/community/community/raspberry-pi/raspberrypi_projects/geocaching/blog/2015/07/21/raspberry-pi-2-gps-project--putting-together-the-pieces


 
 
Nope, pinout is fine - but the gap around the solder pads on the shim and the pins themselves 
seems to be too big and is not making a connection with the board.  

 
This is probably a symptom of me soldering the right angle pins on the wrong side of the shim. 
Perhaps the holes drilled and plated on the other side of the shim (where the right angle pins 
are now) are smaller? Rather than desolder the shim/header pins and do it all over again (never 
have had much luck desoldering right angle pins without destroying the board and the pins) I 
just soldered the shim VERY carefully to the Pi’s headers with a tiny amount of solder so as to 



not interfere with the rest of the GPIO pin on the board itself. I want it to be reliable and at least 
somewhat durable anyways! A quick run through with the continuity tester verified this fixed the 
problem.  

 
Reassemble and power back up the system and continue with the testing! 
 
The cgps command checks out - I get a fix!  :) 
Running the weather python script displays the data to the screen but it isn’t acting the same. 
The buttons/city toggle aren’t working now!  :( 
Unplugging the microstack/GPS module doesn’t seem to help matters any. 
Looks like more troubleshooting is needed. Perhaps the shim/my soldering is preventing the 
CAD from seating all the way? It looks fully seated.  
 
Running through the print(cad.switches[x].value) in Python while toggling the switches seems to 
be working fine. I’m not sure what has changed at this point as all of the buttons seem to be 
working but the weather.py demo program is not.  Moving on! 
 
 
August 6th 2015: GPS output to LCD screen 
Referencing: 
Microstack GPS and Piface Control and Display Geocaching by callum smith 
This code will simply get the coordinates and time from the GPS and display them on the LCD: 
#!/usr/bin/env python3 
""" 
Grab data from GPS and spit it out to LCD 
""" 
 
import sys 
PY3 = sys.version_info[0] >= 3 
if not PY3: 
    print("Please use `python3`.") 

http://www.piface.org.uk/guides/setting_up_pifacecad/first_commands_with_pifacecad/
http://www.element14.com/community/docs/DOC-71480/l/microstack-gps-and-piface-control-and-display-geocaching
http://www.element14.com/community/people/callum.ds


    sys.exit(1) 
 
###import libraries and set up gps 
from time import sleep 
import pifacecommon 
import pifacecad 
import sys,math,time,microstacknode.gps.l80gps 
gps=microstacknode.gps.l80gps.L80GPS() 
cad=pifacecad.PiFaceCAD() 
cad.lcd.backlight_on() 
cad.lcd.cursor_off() 
cad.lcd.blink_off() 
cad.lcd 
cad.lcd.home() 
cad.lcd.write("Obtaining pos...") 
 
while True: 
    cad.lcd.home() 
    current_pos=False 
    while current_pos==False: 
      try:          # try command used to prevent crash when no 
response from GPS 
          current_pos=gps.gpgll          # gets current GPS position 
      except (microstacknode.gps.l80gps.DataInvalidError, 
microstacknode.gps.l80gps.NMEAPacketNotFoundError):          # if no 
GPS response or if response is invalid 
          time.sleep(1)                    #pauses before retry to 
connect to GPS 
          cad.lcd.write("No GPS Lock\nTry moving or check ant") 
    
cad.lcd.write(str(current_pos["latitude"])[:7]+","+str(current_pos["l
ongitude"])[:8]+"\n"+str(current_pos["utc"])) 
    time.sleep(1)                    #pauses before looping to allow 
user to read output 
    #cad.lcd.clear()  #will cause flickering but will ensure no mess 
is left on screen 
 
 
 
 
 
  
 



August 12th 2015:  
This code will grab the coordinates from the GPS and stick them into an array. Once 10 values 

have been accumulated it will spit out the average and standard deviation. 

This is a VERY basic averaging and not the permanent or intended method of obtaining a 'high 

accuracy' reading. In this mode it takes 10 seconds for the averaging, I intend to speed up the 

GPS output to 10Hz which will give a simple average once per second. 

The goal of this method is to provide a baseline (which will be logged to a CSV file by the Pi) to 

compare methods of obtaining a highly accurate location.  

This method will be called 'Simple Averaging' and will be compared with 'Recursive Averaging', 

the Kalman filter, the Wiener filter, autoregressive-moving average (ARMA), and 

the method outlined in the paper referenced above which improves position while 

moving. Once the data from these methods is graphed I will decide which 

method to implement for the geocaching tool. 
 
#!/usr/bin/env python3 
""" 
Grab data from GPS and average it over 10 data points 
""" 
 
import sys 
PY3 = sys.version_info[0] >= 3 
if not PY3: 
    print("Please use `python3`.") 
    sys.exit(1) 
 
###import libraries and set up gps 
from time import sleep 
import numpy 
import sys,math,time,microstacknode.gps.l80gps 
gps=microstacknode.gps.l80gps.L80GPS() 
lat_pos = numpy.zeros(10) #initialize latitude array 
lon_pos = numpy.zeros(10) #initialize longitude array 
 
current_pos=False 
while current_pos==False: 
    try:          # try command used to prevent crash when no 
response from GPS 
        current_pos=gps.gpgll          # gets current GPS position 



    except (microstacknode.gps.l80gps.DataInvalidError, 
microstacknode.gps.l80gps.NMEAPacketNotFoundError):          # if no 
GPS response or if response is invalid 
            time.sleep(1)                    #pauses before retry to 
connect to GPS 
count=0 
lat_pos.itemset((count),current_pos["latitude"]) 
lon_pos.itemset((count),current_pos["longitude"]) 
while True: 
    if count == 9: 
        print(lat_pos)#+" STD: "+numpy.std(lat_pos)                             
# for debugging 
        print(lon_pos)#+" STD: "+numpy.std(lon_pos)                             
# for debugging 
        print(numpy.mean(lat_pos, 
dtype=numpy.float64),numpy.std(lat_pos))                                
# for debugging 
        print(numpy.mean(lon_pos, 
dtype=numpy.float64),numpy.std(lon_pos))                                
# for debugging 
        count=0 
    else: 
         count += 1 
    try:          # try command used to prevent crash when no 
response from GPS 
        current_pos=gps.gpgll          # gets current GPS position 
    except (microstacknode.gps.l80gps.DataInvalidError, 
microstacknode.gps.l80gps.NMEAPacketNotFoundError):          # if no 
GPS response or if response is invalid 
            time.sleep(1)                    #pauses before retry to 
connect to GPS 
    lat_pos[count]=current_pos["latitude"] 
    lon_pos[count]=current_pos["longitude"] 
 
Published with edits to: 
http://www.element14.com/community/community/raspberry-pi/raspberrypi_projects/geocaching/
blog/2015/08/13/pi-hiker--raspberry-pi-geocaching-system 
 
 
https://github.com/adafruit/Adafruit-GPS-Library/blob/master/Adafruit_GPS.h 
http://www.farnell.com/datasheets/1860443.pdf 
http://www.adafruit.com/datasheets/PMTK_A11.pdf 
 

http://www.element14.com/community/community/raspberry-pi/raspberrypi_projects/geocaching/blog/2015/08/13/pi-hiker--raspberry-pi-geocaching-system
http://www.element14.com/community/community/raspberry-pi/raspberrypi_projects/geocaching/blog/2015/08/13/pi-hiker--raspberry-pi-geocaching-system
https://github.com/adafruit/Adafruit-GPS-Library/blob/master/Adafruit_GPS.h
http://www.farnell.com/datasheets/1860443.pdf
http://www.adafruit.com/datasheets/PMTK_A11.pdf


To set 5Hz mode: 
First change the Baud rate 
To be able to go above 1Hz you will need to switch to a higher baud rate: 

  echo -e "\$PMTK251,57600*2C\r\n" > /dev/ttyAMA0 

Don't forget to update your tools connection speed to 57600! 

 
Then 
   echo -e "\$PMTK220,200*2C\r\n" > /dev/ttyAMA0 

for 5Hz mode 

 
To go back to 9600bps: 
echo -e "\$PMTK251,9600*17\r\n" > /dev/ttyAMA0 
 
Supported speeds: 
4800,9600,14400,19200,38400,57600,115200 
 
Other update rates: 
100mHz  "$PMTK220,10000*2F" // Once every 10 seconds, 100 millihertz 
200mHz  "$PMTK220,5000*1B"  // Once every 5 seconds, 200 millihertz 
1HZ  "$PMTK220,1000*1F" 
5HZ  "$PMTK220,200*2C" 
10HZ "$PMTK220,100*2F" 
 


