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Glossary
● Specialize - given a tensor whose dimension is dynamic (may vary across runs),

specializing that dimension means we assume that the size is fixed and may no longer
vary



● Guard - whenever we specialize, we must ensure that the size does not actually vary in
the future. A guard is a conditional expression we test before running a model to ensure
that this invariant is upheld

● SymInt - short for symbolic integer, this represents an abstract integer that may vary and
we want to trace symbolically (as opposed to a normal int)

Error cookbook

RuntimeError: Cannot call sizes() on tensor with symbolic
sizes/strides
Typically, this means there is a C++ composite operator that isn’t written to support symbolic
shapes (specifically, it is calling tensor.sizes() when it should call tensor.sym_sizes()). However,
the sizes() call doesn’t have to occur inside an operator; it can also occur in framework code in
PyTorch. The general recipe for dealing with this situation is to:

1. Find what C++ is making the failing call
2. Make the C++ support symbolic shapes, either by How to SymInt’ify C++ operator or

possibly How to write a Python composite (CompositeImplicitAutograd) if the C++ code
in question is an operator.

For step 1, there are a few strategies you can use:

● You can use gdb to find the C++ call stack. This can give useful insights even if you
didn’t compile with debug symbols (in fact, Edward prefers it this way, as gdb runs quite
a bit faster without debug symbols.)

○ Open source: Run gdb --args python repro.py, catch throw, run. If the first
exception thrown doesn’t look related, use the ignore trick:
https://fb.workplace.com/groups/1144215345733672/?multi_permalinks=233364
4346790760&hoisted_section_header_type=recently_seen

■ Throws of TypeError typically are spurious and should be ignored
○ fbcode: As above, but follow the instructions at

https://www.internalfb.com/intern/wiki/Python/Debugging/Debugging_with_GDB/#
debugging-python-unit-te for how to actually run your PAR file with gdb

○ Remember that on an optimized build many functions will have gotten inlined
away, but you should still be able to see the dispatcher calls in your stack frame

○ You can also manually induce a segfault with `import ctypes; ctypes.string_at(0)`
● You can use torch dispatch tracing to see what operators were called before the error.

With a DEBUG=1 build of PyTorch (@mode/dev-nosan in fbcode), run your program with
TORCH_SHOW_DISPATCH_TRACE=1 environment variable

https://fb.workplace.com/groups/1144215345733672/?multi_permalinks=2333644346790760&hoisted_section_header_type=recently_seen
https://fb.workplace.com/groups/1144215345733672/?multi_permalinks=2333644346790760&hoisted_section_header_type=recently_seen
https://www.internalfb.com/intern/wiki/Python/Debugging/Debugging_with_GDB/#debugging-python-unit-te
https://www.internalfb.com/intern/wiki/Python/Debugging/Debugging_with_GDB/#debugging-python-unit-te


● You can use Python dispatcher to see what operators were called before your error. This
is a more complicated workflow, but a notable benefit over the previous bullet is you
don’t have compile with DEBUG=1 for this to be available.

○ Turn on python dispatcher: torch._dispatch.python.enable_python_dispatcher()
context manager (to apply it globally just manually call .__enter__() on it).

○ Uncomment # print(self, key, final_key) in torch/_ops.py

For step 2, there are a few rules of thumb for making the decision:

● If the C++ call site is relatively simple, just update the C++ (e.g., it’s a one or two line
PR)

● If the C++ call site is not in an operator, you don’t have a choice: update the C++. (Most
common examples are derivatives.yaml and manual backwards functions.)

● If the C++ call site is from TensorIterator, make a PrimTorch decomposition in torch/_refs
using the preexisting elementwise/reduction helpers

● If the C++ call site is complicated and a composite function, you may consider rewriting
the decomposition in Python instead of refactoring the C++ to permit SymInts. Refer to
How to write a Python composite (CompositeImplicitAutograd) or How to write a Python
decomposition for non-composite operator depending on if it has an explicit autograd
formula (you can check by seeing if it is registered as CompositeImplicitAutograd or
CompositeExplicitAutograd in derivatives.yaml)

NotImplementedError: could not find kernel for aten.func.overload
at dispatch key DispatchKey.Meta
This means we don’t have a meta function for the operator. This is pretty simple go to How to
write a Python meta function

Expected a value of type 'int' for argument ‘x’ but instead found
type 'SymInt'.
This means that the operator doesn’t take SymInts as arguments: it’s schema says it only
supports ints! Go to How to SymInt’ify an operator schema

torch._subclasses.fake_tensor.DynamicOutputShapeException:
aten.func.overload
This means that you’ve hit an operator that has data-dependent output size, e.g., nonzero. Go
to Handling data-dependent shapes



Understanding C++ exceptions
PyTorch’s C++ exceptions can be difficult to understand. There are two reasons for this:

1. Exceptions often get rethrown multiple times (e.g, a c10::Error gets rethrown as
python_error to propagate itself as a Python error across Python-C++ boundaries), so it
is not always obvious if you are looking at the right stack.

2. PyTorch throws exceptions as part of its normal operation, so ‘catch throw’ may give you
the wrong exception.

3. The exceptions are quite long and very metaprogrammed.

Finding the important part of an exception
In these examples, I’ve highlighted the important part of the exception.

In this backtrace, we’ve hit a C++ meta function that calls into TensorIterator which doesn’t
support symbolic sizes. See also https://github.com/pytorch/pytorch/pull/92914

#0 __cxxabiv1::__cxa_throw (obj=0x376b6960, tinfo=0x7fffa705b220 <typeinfo for

c10::Error>, dest=0x7ffff73834f0 <c10::Error::~Error()>)

at

/opt/conda/conda-bld/gcc-compiler_1654084175708/work/gcc/libstdc++-v3/libsupc++

/eh_throw.cc:77

#1 0x00007ffff737e941 in c10::detail::torchCheckFail(char const*, char const*,

unsigned int, char const*) [clone .cold.75] ()

from /data/users/ezyang/b/pytorch/torch/lib/libc10.so

#2 0x00007ffff739258f in c10::TensorImpl::sizes_custom() const () from

/data/users/ezyang/b/pytorch/torch/lib/libc10.so

#3 0x00007fff9d697576 in

at::TensorIteratorBase::compute_shape(at::TensorIteratorConfig const&) ()

from /data/users/ezyang/b/pytorch/torch/lib/libtorch_cpu.so

#4 0x00007fff9d698439 in

at::TensorIteratorBase::build(at::TensorIteratorConfig&) ()

from /data/users/ezyang/b/pytorch/torch/lib/libtorch_cpu.so

#5 0x00007fff9d699790 in

at::TensorIteratorBase::build_borrowing_unary_float_op(at::TensorBase const&,

at::TensorBase const&) ()

from /data/users/ezyang/b/pytorch/torch/lib/libtorch_cpu.so

#6 0x00007fff9ec6cf09 in at::(anonymous

namespace)::wrapper_Meta_polygamma(long, at::Tensor const&) ()

from /data/users/ezyang/b/pytorch/torch/lib/libtorch_cpu.so

#7 0x00007fff9ecb55f9 in

c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoF

https://github.com/pytorch/pytorch/pull/92914


unctor_<c10::CompileTimeFunctionPointer<at::Tensor (long, at::Tensor const&),

&at::(anonymous namespace)::wrapper_Meta_polygamma>, at::Tensor,

c10::guts::typelist::typelist<long, at::Tensor const&> >,

false>::call(c10::OperatorKernel*, c10::OperatorHandle const&,

c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)

() from /data/users/ezyang/b/pytorch/torch/lib/libtorch_cpu.so

#8 0x00007fffa6877dc8 in (anonymous

namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle

const&, c10::DispatchKeySet, std::vector<c10::IValue,

std::allocator<c10::IValue> >*) const () from

/data/users/ezyang/b/pytorch/torch/lib/libtorch_python.so

...

Sometimes, it is not a good idea to stop looking at the backtrace when you start seeing Python
frames. There may be more C++ frames after the Python frames: this will occur if you have a
Python->C++->Python->C++ transition.

#0 __cxxabiv1::__cxa_throw (obj=0x36f47c00, tinfo=0x7fffa705ad28 <typeinfo

for python_error>,

dest=0x7fffa66801c0 <python_error::~python_error()>)

at

/opt/conda/conda-bld/gcc-compiler_1654084175708/work/gcc/libstdc++-v3/libsu

pc++/eh_throw.cc:77

...

#10 0x00007fffa65adbb3 in pybind11::cpp_function::dispatcher(_object*,

_object*, _object*) ()

from /data/users/ezyang/b/pytorch/torch/lib/libtorch_python.so

#11 0x0000000000507357 in cfunction_call (func=0x7fff25996400,

args=<optimized out>, kwargs=<optimized out>)

at /usr/local/src/conda/python-3.9.16/Objects/methodobject.c:543

...

#47 0x000000000059489d in PyObject_CallMethod (obj=<optimized out>,

name=<optimized out>, format=0x7fffa6eba02d "OOOO")

at /usr/local/src/conda/python-3.9.16/Objects/call.c:635

#48 0x00007fffa6bf0c73 in

torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::h

andle>, _object*, _object*, char const*, _object*, char const*,

torch::TorchFunctionName) () from

/data/users/ezyang/b/pytorch/torch/lib/libtorch_python.so

...

#73 0x00007fffa67a79eb in

torch::autograd::THPVariable_special_polygamma(_object*, _object*,



_object*) ()

from /data/users/ezyang/b/pytorch/torch/lib/libtorch_python.so

#74 0x0000000000507357 in cfunction_call (func=0x7fffbd4b12c0,

args=<optimized out>, kwargs=<optimized out>)

at /usr/local/src/conda/python-3.9.16/Objects/methodobject.c:543

...

Typical situations

How to SymInt’ify an operator schema
Given an operator schema which takes int/int[] arguments, change the type to SymInt/SymInt[]
so that it accepts SymInt.

Before:

- func: tensor_split.sections(Tensor(a -> *) self, int sections, int dim=0) ->

Tensor(a)[]

After:

- func: tensor_split.sections(Tensor(a -> *) self, SymInt sections, int dim=0)

-> Tensor(a)[]

There may be some side effects of the schema change, which should become clear when you
attempt to build PyTorch / run CI. However, this are for edge cases, and we believe we have
already ported all schemas that hit these cases. Things to watch out for:

● If it’s a view op, FunctionalInverses.cpp may need updating
● If the op is supported by LTC, you may need to update LTC’s bindings
● If it is supported by functorch, you may need to update the functorch batching rule
● If the kernel has Metal support, you may need to update this registration, e.g.,

https://www.internalfb.com/diff/D39084762 (fortunately, OSS CI will catch this)

One thing you do not have to do: SymInt’ifying a signature is backwards compatible as far as
TorchScript is concerned (under the hood, we translate SymInt back into int for interaction with
TorchScript and other legacy systems.) In particular, it is NOT strictly necessary to change any
of the C++ kernels (although you probably want to know How to write a Python meta function; or

https://www.internalfb.com/diff/D39084762


if there is a preexisting CompositeImplicitAutograd and Meta, either How to SymInt’ify C++
operator or How to write a Python composite (CompositeImplicitAutograd)).

Notes:
● More obscure types that are supported: SymInt? (translates into

c10::optional<c10::SymInt>), SymInt[]? (translates into at::OptionalSymIntArrayRef). The
canonical list of supported C++ SymInt operator types can be found in the has_symint
template in aten/src/ATen/core/boxing/KernelFunction.h. If you need support for another
C++ type, you must add support for it; see https://github.com/pytorch/pytorch/pull/86088

● If an operator accepts Scalar, it already automatically accepts SymInt/SymFloat/etc, no
schema modifications necessary.

● Functions that return SymInt are special; see
https://github.com/pytorch/pytorch/pull/92402

● If Executorch already has created an out-version of the operator, the Executorch schema
needs to be updated too. See https://github.com/pytorch/pytorch/pull/87604

How to SymInt’ify C++ operator
You only need to SymInt’ify a C++ operator if it is CompositeImplicitAutograd,
CompositeExplicitAutograd or Meta; it is not useful to SymInt’ify a CPU/CUDA kernel as it is
expected that if you are going to do the actual CPU/CUDA compute, you always will have
concrete (non-symbolic) integers.

native_functions.yaml changes: A C++ operator will be referenced in a dispatch table in
native_functions.yaml. To indicate that the C++ implementation can directly accept SymInts, you
must suffix the name of the kernel with _symint. If you are creating an out-of-tree custom
operator registration, you will instead change the schema string in the m.def(...) call in your
TORCH_LIBRARY block.

Before:

- func: empty.memory_format(SymInt[] size, *, ScalarType? dtype=None,

Layout? layout=None, Device? device=None, bool? pin_memory=None,

MemoryFormat? memory_format=None) -> Tensor

dispatch:

Meta: empty_meta

https://github.com/pytorch/pytorch/pull/86088
https://github.com/pytorch/pytorch/pull/92402
https://github.com/pytorch/pytorch/pull/87604


After:

- func: empty.memory_format(SymInt[] size, *, ScalarType? dtype=None,

Layout? layout=None, Device? device=None, bool? pin_memory=None,

MemoryFormat? memory_format=None) -> Tensor

dispatch:

Meta: empty_meta_symint

If the schema has no dispatch table AND IT DOESN’T HAVE A structured_delegate entry,
that is equivalent to it having a dispatch table with a single entry CompositeImplicitAutograd:
func_name. To SymIntify it, you have to explicitly add the previously implicit dispatch table and
then add the suffix.

Before:

- func: broadcast_to(Tensor(a) self, SymInt[] size) -> Tensor(a)

variants: function, method

After:

- func: broadcast_to(Tensor(a) self, SymInt[] size) -> Tensor(a)

variants: function, method

dispatch:

CompositeImplicitAutograd: broadcast_to_symint

If the schema has a structured_delegate entry, that means it is a structured kernel. We do not
support directly SymInt’ifying C++ kernels that are structured; you should do the Python meta
instructions instead.

C++ changes: Anywhere the C++ operator previously handled a int64_t/at::IntArrayRef at a
SymInt/SymInt[] function schema type, it now must handle a c10::SymInt/at::SymIntArrayRef
instead. The sections below give common situations; however, it’s also a good idea to grep for
SymInt in aten/src/ATen which will give you ideas about idioms how the code is currently
working.

The prototype for the native function is different.

Before:



Tensor broadcast_to(const Tensor& self, IntArrayRef size) {

After:

Tensor broadcast_to_symint(const Tensor & self, SymIntArrayRef size) {

If you are an out-of-tree custom function, just directly change the signature of your function; the
operator registration API will automatically detect that you are providing a SymInt aware
function.

If you would retrieve sizes/strides/storage_offset/numel from a Tensor, you must use the sym_
prefixed variant of the method.

Before:

int64_t batch = self.size(0);

After:

c10::SymInt batch = self.sym_size(0);

If you would call a function/method with a SymInt/SymIntArrayRef/... C++ type, you must use the
_symint prefixed variant of the function/method.

Before:

return self.expand(size);

After:

return self.expand_symint(size);

If you define an integer literal / integer initializer list in a context where it needs to be sent to a
function/method expecting a SymInt, you must explicitly specify its type.



Before:

auto values = grad.reshape({-1, num_features});

After:

auto values = grad.reshape_symint({c10::SymInt(-1),

std::move(num_features)});

If you have a SymInt and you need an int64_t (because you need to call a function that isn’t
SymInt’ified yet, or there is some fundamental reason we cannot treat size symbolically--e.g.,
the size will be used to provide the size of an output list or the dimension of a tensor), call
guard_int(__FILE__, __LINE__) to induce a guard on the integer size, eliminating dynamic
support for that particular shape.

Before:

std::vector<Tensor> splits(sections);

After:

// NB: intentional, sections specifies number of output tensors, which

// cannot be polymorphic

int64_t sections = sym_sections.guard_int(__FILE__, __LINE__);

std::vector<Tensor> splits(sections);

If you are modifying a performance critical function, you may want to create both an int64_t and
a SymInt specialization of the function and dispatch them separately. In that case, use the
at::symint:: namespace of function calls, which use a (mandatory) template argument to specify
if they need SymInt or not.

Before:

std::vector<Tensor> tensor_split(const Tensor& self, IntArrayRef indices,

int64_t dim) {



...

for (const auto split_idx : c10::irange(num_indices)) {

int64_t end_idx = indices[split_idx];

splits[split_idx] = at::slice(self, dim_, start_idx, end_idx);

...

After:

template <typename T>

std::vector<Tensor> _tensor_split_indices(const Tensor& self, ArrayRef<T>

indices, int64_t dim) {

...

for (const auto split_idx : c10::irange(num_indices)) {

auto end_idx = indices[split_idx];

splits[split_idx] = at::symint::slice<T>(self, dim_, start_idx,

end_idx);

...

In similar spirit, we also have at::symint::size<T>, sizes<T>, stride<T>, etc to support size/stride
queries in templated code like this.

How to write a C++ meta function
To support dynamic shapes, an operator must have a SymInt aware meta function that can
propagate symbolic shapes through it. In C++, what you need to do is similar to How to
SymInt’ify C++ operator. However, we don’t really recommend this for in-tree operators; it’s
usually easier and quicker to write a Python meta function instead.

In-tree: Add a Meta entry to the dispatch table, give the function name a _symint suffix, and
then implement the function as you would a normal meta function, following the C++ rules at
How to SymInt’ify C++ operator. A meta function looks like a normal operator implementation,
except all you do is allocate the outputs and return it; you do not do any compute (if you have a
preexisting C++ operator implementation, it is usually fairly easy to make a meta version: copy
paste the old implementation, and then delete all the code that actually does data manipulation.)

You should seriously consider writing a Python meta function instead; you skip recompile cycles
and the resulting meta is easier to debug. The only exception is for extremely low level
operations (like torch.empty), where there are not enough public Python APIs to actually write
the Meta function in Python.



Out-of-tree (e.g., custom operators): Write a meta function as per How to SymInt’ify C++
operator and then register it at the dispatch key Meta. C++ meta function can be convenient for
custom operators which aren’t a logical place to place a Python meta registration (as the Python
meta registration must be somehow imported to be made available.)

Example:

TORCH_LIBRARY_IMPL(fbgemm, Meta, m) {

m.impl(

"jagged_to_padded_dense_forward",

TORCH_FN(fbgemm_gpu::jagged_to_padded_dense_forward_meta));

}

How to write a Python meta function
To support dynamic shapes, you need a meta function for an operator. Python meta function is
the recommended way to add symbolic shape support (to give a sense for how much better
Python meta functions are than the other options, after we added support for Python meta
functions, our symbolic shape productivity tripled.) If you are not in a rush, writing a Python
decomposition for non-composite operator subsumes writing a meta function (and has the
added benefit of producing a compiler lowering for the function), but decomps are considerably
more complicated so there is not much wasted work in writing the (typically simple) meta
function first, and upgrading it later if necessary.

In-tree: Add your meta function to torch/_meta_registrations.py. There are plenty of examples in
this file, but there are a few important points:

● The meta function must be registered with @register_meta decorator (which takes
aten.funcname.overloadname as argument).

● You cannot register a meta function if an operator is CompositeImplicitAutograd. You will
get an error message if you try to do this; make sure to check on this before you start
writing the meta function.

● Consider using @out_wrapper() decorator so that your function can also have out=
support, and then you can register the implementation for both the functional and out
variant; e.g., @register_meta([aten._fft_c2c.default, aten._fft_c2c.out])

● Use check(...) to test for input validity
● Unlike C++ SymInt support, you can generally write Python meta functions for symbolic

shapes the same way you write meta functions for regular shapes, as Python is
duck-typed and int/SymInt can generally be treated interchangeably. (One major caveat
are Python builtins like int()/float() which are not overloadable. You should get a clear
error message if you mess this up.)



Out-of-tree: The main difference is you don’t use the register_meta decorator; instead, use
Python operator registration API.

from torch.library import impl_abstract

@impl_abstract("fbgemm::jagged_to_padded_dense_forward")

def jagged_to_padded_dense_forward_meta(values, offsets, max_lengths,

padding_value=0):

return torch.empty(...)

Note that you must actually import the Python file that defines this Python registration for it to be
available. If there is not an obvious Python module to trigger this import, consider looking at
How to write a C++ meta function instead.

Please see the docstring or for more details on how toThe C++ Custom Operators Manual
use this API.

TODO: pt2_compliant c++ tag

How to write a Python decomposition for non-composite operator
A Python decomposition for a non-composite operator is an alternative to writing a meta
function. The added benefit of writing a decomposition is that it can be helpful for compilers: the
decomposition can be used not only for dynamic shape propagation, but also to add compilation
support for the operator if the operations it decomposes to are supported by the compiler. It can
be quite a lot more difficult to write a Python decomposition though, so no harm if you write a
Python reference instead! Be careful to distinguish this from How to write a Python
decomposition for a composite operator (CompositeImplicitAutograd), where typically the C++
implementation is already a composite and it’s mostly a question if you want it to be in Python or
C++ (and also, the recipe described here WILL NOT WORK; your decomposition will be silently
ignored if you use the API here).

There are two places where these decompositions can live: torch/_decomp or torch/_ref. The
rule for which directory to place it in, is if the operator is directly exposed in the Python torch.*
API with exactly the same API as the ATen operator, place it in torch/_ref; otherwise, put it in
torch/_decomp (which is for all the “internal” ATen operators that aren’t publicly exposed.) In
other words, torch/_refs is intended to be a replication of the public Python torch API, so if you
need to write an operator that isn’t in the public Python API, you can’t put it there.

In-tree for torch/_decomp (ATen decomposition): Add your decomposition to
torch/_decomp/decompositions.py. There are plenty of examples in this file; the main points:

https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU/edit#heading=h.ahugy69p2jmz


● Use @register_decomposition to register the function as a decomposition
● It’s easy to forget handling type promotion behavior. There are some helper decorators

like pw_cast_for_opmath
● See also How to write a Python meta function for more tips about writing operator

implementations in Python

In-tree for torch/_refs (Torch decomposition): If the public function is available at torch.foo
module, then place your decomposition in torch/_ref/foo.py . Feel free to write your
decomposition in the same style as torch/_decomp (in particular, you should feel free to call
other torch.* functions); however, in torch/_ref you also have the option to decompose to
PrimTorch prims. Some backends (e.g., Inductor) prefer decomposition to ATen rather than
Prims, so if you can write your decomposition going entirely to torch.*, prefer that. There are
also plenty of examples in this directory. You still must use the @register_decomposition
decorator to register the function as a decomposition.

Out-of-tree: This is currently un-tested, but it should work to just use @register_decomposition
decorator out of tree.

Implementation note: in-tree decompositions don’t register to CompositeExplicitAutograd
dispatch key. Maybe they should, but in eager mode we prefer the C++ implementation if it
exists (this is different from Meta, where we made the call that we should always prefer the
Python implementation for consistency, since Meta invocations are not performance critical.)

How to write a Python decomposition for a composite operator
(CompositeImplicitAutograd)
CompositeImplicitAutograd decompositions are special because they cannot be overridden in
the ‘normal’ way; e.g., if you use @register_decomposition, it will not do anything. This is
because autograd decompositions happen before we apply other decompositions/meta
functions, so a layer like make_fx never actually sees the operator before it is decomposed. If
you have chosen to reimplement these operators in Python (as opposed to modifying the C++
implementation aka per How to SymInt’ify C++ operator).

The place to put the operator (torch/_decomp or torch/_refs) is the same choice per How to
write a Python decomposition for non-composite operator.

To register a composite, use py_impl method on the operator:

@aten.matmul.default.py_impl(DispatchKey.CompositeImplicitAutograd)



def matmul(tensor1, tensor2):

...

The internals of this function are the same as non-composite Python decompositions, but every
operator you call must be differentiable (this typically excludes prims from PrimTorch).

Warning: this WILL NOT work if the operator in question is not actually composite (e.g., if it is a
regular operator that has an autograd formula).

Handling data-dependent shapes
See Dealing with GuardOnDataDependentSymNode errors

Handling guards on unbacked SymInts
An unbacked SymInt is a SymInt which cannot be guarded on, either because we do not know
what the real value of it is (because it’s data dependent) or because we are enforcing that a
dimension must be dynamic and rejecting guards on it. When working with unbacked SymInts,
you will frequently run into code that should be guard-free, but actually isn’t, resulting in this
error:

GuardOnDataDependentSymNode: It appears that you're trying to get a value out of
symbolic int/float whose value is data-dependent (and thus we do not know the true value.)
The expression we were trying to evaluate is i0 >= 16. Scroll up to see where each of these
data-dependent accesses originally occurred.

There are a few different strategies for handling this sort of situation. In general, however,
removing guards from PyTorch library code requires some understanding what semantically the
original code did, and whether or not you can remove the guard in a semantics preserving way.
The strictest form of semantics preservation is to match the original behavior exactly, but it may
also be acceptable to remove fast paths (given that the slow path has the same semantics, and
the fast path existed purely for eager PyTorch) or slightly change the striding behavior of a
function (given that changing the stride doesn’t affect downstream semantics, which is usually
true and will be formally true with stride agnostic PyTorch).

https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit


Remove a fast path
Sometimes the guard is coming from special case logic in PyTorch, which is testing if it can run
some fast path, but the slow path is exactly equivalent. Avoiding the fast path check when there
are unbacked SymInts can save you a guard.

Example: https://github.com/pytorch/pytorch/pull/94399 Avoid guarding zeroness on meta
tensors

Before:

// Default TensorImpl has size [0]

if (size.size() != 1 || size[0] != 0) {

tensor.unsafeGetTensorImpl()->generic_set_sizes_contiguous(size);

}

After:

// NB: test for meta dispatch key to avoid guarding on zero-ness

if (ks.has(c10::DispatchKey::Meta) || size.size() != 1 || size[0] != 0) {

tensor.unsafeGetTensorImpl()->generic_set_sizes_contiguous(size);

}

Originally, the code had a fast-path to avoid generic_set_sizes_contiguous when the Tensor was
already sized correctly. However, this logic results in a guard on size[0] != 0. It is always safe to
generic_set_sizes_contiguous, so we can skip the guard check (or in this case, we keep it for
eager mode but suppress it when symbolic shapes may be involved.)

Example: https://github.com/pytorch/pytorch/pull/95218 Disable matrix multiply folding

Before:

elif should_fold(tensor1, dim_tensor2) or should_fold(tensor2,

dim_tensor1):

# fast path code

After:

# The folding logic ends up triggering a lot of guards in a hard to

# understand way. Suppress folding if you have unbacked SymInts. It's

https://github.com/pytorch/pytorch/pull/94399/files
https://github.com/pytorch/pytorch/pull/95218


# possible you can get the folding code to work with unbacked SymInts

# but I couldn't figure out how to do it.

elif (

tensor_has_hints(tensor1)

and tensor_has_hints(tensor2)

and (should_fold(tensor1, dim_tensor2) or should_fold(tensor2,

dim_tensor1))

):

# fast path code

Here we use the tensor_has_hints helper to test if the tensor has backed SymInts everywhere,
and only go into the fast path if we do.

Add a fast path / short circuit
Conversely, sometimes code triggering guards is written in a very general way, and if you add a
short circuit if the input is, e.g., contiguous, you can avoid the guards / guard on something that
is in fact hinted.

Examples: https://github.com/pytorch/pytorch/pull/95216

Tensor reshape_symint(const Tensor& self, c10::SymIntArrayRef

proposed_shape) {

if (self.is_sparse()) {

AT_ERROR("reshape is not implemented for sparse tensors");

}

if (self.is_contiguous() && !self.is_mkldnn()) {

return self.view_symint(proposed_shape);

}

By testing if the tensor is contiguous, we can avoid performing a heavy correctness test in
computeStride later in reshape.

NB: if is_contiguous() is unbacked, adding this special case can introduce more guards! So it is
better to do this as definitely_true(), but that requires a sym_is_contiguous which doesn’t exist
yet.

Handle things at a higher level, making the guard is unnecessary

https://github.com/pytorch/pytorch/pull/95216


Examples:
● https://github.com/pytorch/pytorch/pull/95069 Introduce torch.empty_permuted and then

https://github.com/pytorch/pytorch/pull/94523
● https://github.com/pytorch/pytorch/pull/95004 Remove unnecessary TensorMeta rewrap
● https://github.com/pytorch/pytorch/pull/95003 Hard code known true contiguity settings
● https://github.com/pytorch/pytorch/pull/94681 Don’t use PrimTorch decomposition for

empty

Use definitely_true to take advantage of symmetry, e.g.,
broadcasting
Example: https://github.com/pytorch/pytorch/pull/95217

Allow for differing stride behavior when unbacked
Example:

● https://github.com/pytorch/pytorch/pull/95218 the expand implementation
● https://github.com/pytorch/pytorch/pull/95222 the conv implementation

Handling Dynamo problems
TODO: I don’t know how to write this section

More obscure situations

How to SymInt’ify a TensorImpl method
This is similar to the template section in How to SymInt’ify C++ operator but you only have
TensorImpl methods available. The templated ones are typically prefixed generic_

How to SymInt’ify a C++ utility function (non-SymInt)
This is the same playbook as the templated case in How to SymInt’ify C++ operator. One thing
to be careful about is that if you have a pre-existing C++ utility function, turning it into a template
may cause overload resolution to fail (as a template does not induce implicit conversions.) The

https://github.com/pytorch/pytorch/pull/95069
https://github.com/pytorch/pytorch/pull/94523
https://github.com/pytorch/pytorch/pull/95004
https://github.com/pytorch/pytorch/pull/95003
https://github.com/pytorch/pytorch/pull/94681
https://github.com/pytorch/pytorch/pull/95217
https://github.com/pytorch/pytorch/pull/95218
https://github.com/pytorch/pytorch/pull/95222


typical workaround for this is to keep the old overloads, and have an internal template function
that does the actual implementation.

Example:

template <typename T>

inline bool is_channels_last_strides_3d(

const ArrayRef<T> sizes,

const ArrayRef<T> strides) {

switch (sizes.size()) {

case 5:

return is_channels_last_strides_3d_s5(sizes, strides);

case 4:

// TODO dim == 4 case will be enabled once it is fully tested

return false;

default:

return false;

}

}

inline bool is_channels_last_strides_3d(

const IntArrayRef sizes,

const IntArrayRef strides) {

return is_channels_last_strides_3d<int64_t>(sizes, strides);

}

How to add a new SymInt operation
Grep for an existing SymInt operation to see what you need to update: at time of writing
sym_float was a pretty good example. You’ll expect to have to update:

● c10/core/SymInt.h, cpp
● c10/core/SymNodeImpl.h
● torch/csrc/jit/python/init.cpp
● torch/csrc/utils/python_symnode.h
● torch/fx/experimental/symbolic_shapes.py

How to add a new type of symbolic quantity (e.g., SymComplex)
Look at https://github.com/pytorch/pytorch/pull/92149

https://github.com/pytorch/pytorch/pull/92149


How things work under the hood
UNDER CONSTRUCTION

The way to think about the underlying implementation of our system is that we have a number of
extension points in PyTorch, and the various ways of adding dynamic shape support are using
the various extension points. These extension points also get run “in an order”; e.g., outer
extension points apply before inner extension points.

Going outside-in (higher priority extension points come first):

1. TorchFunctionMode. We do not use this in our current stack.
2. Autograd$BACKEND key in Python dispatcher

a. This can be
3. Meta key in C++ dispatcher (How to write a C++ meta function).
4. Just directly modify PyTorch C++ code (How to SymInt’ify C++ operator). This is not a

“real” extension point, but this is a valid way to add symbolic support and is the starting
point.

Topics to cover wishlist
● (add here)
● Which systems use the python global decomp table? (probably covered by how things

work under the hood)
● What’s the flow for the system (how do you know what is going to get hit)


