
TokenOrchestration

Intro & Terms
The current DTCG specification (as ofMar 2024) is primarily concernedwithout outlining the
token types (8) and composite token types (9). To avoid using the term “tokens” toomuch, I’ll
refer to these together as “data structures.” But an open question is how the DTCG spec
allows composition and implementation of those data structures. Many design systems have
the concept of “modes” (e.g. lightmode vs darkmode) and “themes” (e.g.MUI Themes or
Tailwind Themes), and tools have varying concepts, such as Figma’s collections andmodes.
This “higher layer” of composing data structures is what I’ll refer to in this document as
“orchestration” as it’s a question of not only how these data structures are organized but also
how they are utilized in a working design system.

Other than the terms “data structures” and “orchestration,” there are no other repeating terms
that have the same definitions. I’ll be referring to “modes,” “themes,” “collections,” andmore
only to borrow terms defined by specific tools and implementations. They have no shared
definitions, andwill conflict with one another.

This document is a guide to different notable terms and patterns that exist in token
orchestration.

Approach 1: Linear
The linear approach to token orchestration treatsmodes as the children of tokens, often
appearing as optional metadata. This results in every token having a “default” value, and only
some tokens extending that withmode-specific values.

Note that the order inversion—tokens being children ofmodes—isn’t really a consideration. It
wouldmake scanning tokens far harder which are currently foundational to everything.

Hierarchy
● TokenManifest

○ Group
■ Token

● Mode (optional)

https://design-tokens.github.io/community-group/format/#types
https://design-tokens.github.io/community-group/format/#composite-types
https://mui.com/material-ui/customization/theming/
https://tailwindcss.com/docs/theme
https://help.figma.com/hc/en-us/articles/14506821864087-Overview-of-variables-collections-and-modes


Examples
● Supernova (uses the term “theme” which operates like amode)
● Specify

Approach 2: Matrix
Thematrix approach to token orchestration puts tokens andmodes on the same level, and
examines all the combinations of each. For everymode, a tokenmust have a value, and
vice–versa. It’s often represented as a spreadsheet (matrix) for viewing and editing.

And though tokens can exist in hierarchical groups, there exists another dimension called
collections that serve as a boundary formodes. In other words, modes don’t reach across the
entire tokenmanifest; they only exist within an individual collection. Collections do not share
tokens (or token groups).

Hierarchy
● TokenManifest

○ Collection
■ Group

● Token
■ Mode

Examples
● Figma

Approach 3: Resolver
The resolver approach is less of a hierarchy andmore of a proposal of putting tokens through
ordered stages to a final state. This changes the current JSON format intomore of a
Domain-specific Language (DSL)with a runtime (almost like a bundler). The token values
can’t be ascertainedwithout a “build” process (in a sense).

Hierarchy
TokenManifest->Tokens->Modifiers-> Sets-> (result)

Examples
● Tokens Studio

https://en.wikipedia.org/wiki/Domain-specific_language


Considering all approaches
Evaluating the approaches isn’t straightforward. Here are some key points to evaluate them
on:

Pros/cons

Pro Con

Linear DRY Hard/impossible to validate

Fallbacks built-in to the design Hard to determinemodes +
mode values

Works with current spec

Matrix Built-in validation Unnecessary repetition

Modes have a better hierarchy No concept of “default” values

Frontloading permutations can
result in faster static analysis,
and faster tooling

Changing onemode could
rearrange the entire token
manifest

Resolver DRY Token values aren’t
statically-determinable without
a “build” step or “runtime”

Essentially creates a DSL

Possibly wouldn’t work formany
setups (if the “stages” are fixed)

Permutations
@gossi called out in a GitHub comment the problem of permutations. The linear approach
takes theDRY stance ofmodes either having an “override” value; otherwise, use the default.
Thematrix approach enforces all permutations are frontloaded, which can result in undue
repetition.While from a systems point of view, the end result is the same—all permutations of
tokens &modes have to be evaluated at some point. But whether or not that is frontloaded in
the tokensmanifest, or just handled automatically by the tooling, is the question.

https://github.com/design-tokens/community-group/issues/210#issuecomment-1487246421
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


Static Analysis vs Runtime
Implementing any runtime component to the schema (including operations) would change
the current nature of the DTCG tomove from the realm of static analysiswhere it is currently
(akin to JSONSchema orOpenAPI), to effectively becoming aDomain-specific Language
(DSL) (or, at least, a language server). This includes@SorsOps’s resolver proposal, and even
@universse’s applying themes proposal. It’s worth deciding onwhether static analysis is a
core principle of the DTCG spec as it is with other specs (like JSONSchema)

Layering + Scoping
Another problem is “mode scoping,” an issue that’s been talked about frequently in the DTCG
GitHub and elsewhere, but something no proposal addresses. Many design systems
implement some variation of base-> semantic -> component token layers (example). But
because there are no restrictions over whethermodes cross these “layers” or not, it can lead
to confusion and churn.

As a practical example, pretend you have a “base” grayscale from 100 – 1300 (values don’t
matter), and you decide your semantic.text-color token is gray.700. This ends up being
“lightmode,” andwhen you add “darkmode,” you use gray.600 to get roughly the same
contrast. Shortly on, you realize that your darkmode gray.600 needs to be adjusted to
improve contrast—you need a color that doesn’t exist in gray 100 – 1300 at all. So the question
becomes: does semantic.text-color end up being gray.700 for light and darkmodes,
and instead gray.700 gets light and darkmodes?Or does that go against the idea of
“stateless” core tokens, so we create a separate scale of gray-light.XXX and
gray-dark.XXX, so light and darkmodes can exist on the semantic layer)? The former
answer ismore “clever” but blurs the line between the core and semantic layers as the core
takes onmore “awareness.” The latter answer preserves the layer boundaries better, but
introduces the idea that there are “rules“ over when core tokens can/can’t be used in certain
contexts (arguably also blurring the lines, but in a differentmanner). Either answer will “fork”
the design system in 1 of 2 ways that is difficult/impossible to reverse down the line.

A hand-wavy answer to this is “it’s up to every team to decide.” But whenwe consider every
design system implementingmodes faces this same confusion, and it stems directly from
how teams definemodes/theming (i.e. the purpose of this document), thismay not be a
difference of opinion somuch as it a symptom thatmodes/theming are ill-defined in any
token system (and could probably be remedied with amore opinionated solution).

https://github.com/design-tokens/community-group/issues/224
https://en.wikipedia.org/wiki/Static_program_analysis
https://json-schema.org/
https://spec.openapis.org/oas/v3.1.0
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://github.com/Microsoft/language-server-protocol
https://github.com/design-tokens/community-group/issues/210#issuecomment-1553011810
https://github.com/design-tokens/community-group/issues/210#issuecomment-1867795781
https://uxdesign.cc/naming-design-tokens-9454818ed7cb


Appendix

Relevant Community Discussions
● Nativemodes and theming (#210)
● Token operations (#224)

Theming

Definitions
● Tailwind: Themes = colormodes
● Material: Schemes = colormodes (butmultiplemodesmay exist on-page in some

conditions)
● GitHub Primer: Themes = colormodes
● IBMCarbon: Themes = colormodes

Scope
● Tailwind: color, typography
● Material: color
● IBMCarbon: color
● GitHub Primer: color

https://github.com/design-tokens/community-group/issues/210
https://github.com/design-tokens/community-group/issues/224

