
File format and engine object model
transformation performance

Abstract
Current Iceberg readers rely on direct conversion between the file format object model and
the internal engine object model. This approach offers performance benefits by minimizing
transformation overhead. However, it reduces maintainability: for 2 engines (or 3 object
models, including vectorized paths) and 3 file formats, 9 separate transformations must be
implemented.

During the discussion of the File Format API proposal [1] and its implementation [2], we
decided to evaluate the implications of introducing an intermediate transformation layer to
reduce the number of required conversion implementations.

Goals
●​ Collect data to inform the decision on the best path forward.

Non-goals
●​ We do not aim to define the future interface details at this stage.

Test scenarios
We identified typical scenarios and simulated them using existing transformation paths. Our
focus was on two main approaches:

●​ Direct Readers: Direct transformation from the file format object model to the
engine-specific object model.

●​ Arrow-Based Readers: An intermediate Arrow-based layer is used for vectorized
reading, followed by transformation to the engine-specific model.

Note: In many cases, readers are implemented as functions, and transformation costs are
only incurred when columns are accessed. This was considered during testing.

Environment
Tests were executed on a local development machine:

●​ Apple M4 Pro
●​ 48 GB RAM
●​ SSD
●​ macOS 15.5
●​ Openjdk 21.0.7 2025-04-15

Test code is available on this branch [3].

Direct readers
In most cases, engines use their own object models, requiring a single transformation layer
from the file format model. In some edge cases, engines operate directly on the file format
model. For example:

●​ Hive uses ORC’s VectorizedRowBatch directly in its vectorized object model,
eliminating transformation costs. This is further optimized in Hive LLAP, where ORC
ColumnVectors are cached in memory and on SSD in uncompressed form.

●​ Trino, StarRocks, and others also implement direct readers.

Test case description
The tests are implemented in SparkORCReadersFlatDataBenchmark

1.​ Double Transformation: readVectorized
○​ ORC read using VectorizedSparkOrcReaders → Spark ColumnarBatch (1st

conversion)
○​ Accessing Spark objects via accessors (2nd conversion)

2.​ No Transformation: readVectorizedWithNoTransform
○​ ORC read using NoopBatchReader, returning VectorizedRowBatch directly
○​ Data fields accessed to ensure evaluation

Results

Benchmark Mode Cnt Score Error Units

SparkORCReadersFlatDataBenchmark
.readVectorized

ss 20 2.606

± 0.032 s/op

SparkORCReadersFlatDataBenchmark
.readVectorizedWithNoTransform

ss 20 2.040 ± 0.113

s/op

Conclusion: Double conversion introduces ~20% performance overhead.

Intermediate arrow reader
We evaluated whether current single-line readers could be replaced with vectorized readers,
using Arrow as an intermediate layer, followed by transformation to the engine-specific
model.

Spark arrow reader

Test case description
The tests are implemented in SparkVectorizedParquetReadersBenchmark

1.​ Current Reader: readCurrentReader
○​ Parquet read using SparkParquetReaders → InternalRow

2.​ Vectorized Reader with Transformation: readVectorizedToInternalRow
○​ Parquet read using VectorizedSparkParquetReaders → ArrowBatchReader

(1st conversion)
○​ Conversion to InternalRow (2nd conversion)

Results

Benchmark Mode Cnt Score Error Units

SparkVectorizedParquetReadersBenchmark
.readCurrentReader

ss 20 4.165

± 0.020 s/op

SparkVectorizedParquetReadersBenchmark
.readVectorizedToInternalRow

ss 20 2.616 ± 0.016 s/op

Conclusion: Vectorized reading offers ~40% performance boost over single-line reading.

Flink arrow reader

Test case description
The tests are implemented in FlinkParquetReadersFlatDataBenchmark

1.​ Current Reader: readCurrentReader
○​ Parquet read using FlinkParquetReaders → RowData

2.​ Vectorized Reader with Transformation: readVectorizedToRowData
○​ Parquet read using ArrowBatchReader (1st conversion)
○​ Conversion to RowData (2nd conversion)

Results

Benchmark Mode Cnt Score Error Units

FlinkParquetReadersFlatDataBenchmark
.readCurrentReader

ss 20 3.778 ± 0.031 s/op

FlinkParquetReadersFlatDataBenchmark
.readVectorizedToRowData

ss 20 3.341 ± 0.025 s/op

Conclusion: Vectorized reading offers ~40% performance gain over single-line reading.

Arrow reader limitations
From the ArrowReader Javadoc [4], current limitations include:

●​ Complex types are not supported types
○​ MapType
○​ ListType
○​ StructType
○​ VariantType

●​ Type promotion not supported
●​ Constant values not supported
●​ Some primitive types are not supported:

○​ FixedType
○​ DecimalType

Disclaimer: Some of these might have been solved already, the others need to be fixed if
we would like to use the Arrow readers everywhere.

Summary
If we can close the functionality gap between direct and Arrow-based readers without
significant performance loss, Arrow readers could replace single-line readers and offer a
performance boost.

For Vectorized reading direct conversion remains superior and critical for
performance-sensitive use cases.

Conclusion
Direct Reading is ideal when:

●​ The file format and engine share a compatible object model.
●​ Performance is a critical concern.

Transformation Layers are preferable when:

●​ Supporting multiple file formats and engines.
●​ Prioritizing modularity, maintainability.
●​ The file format and engine have divergent data models.

We should follow a hybrid approach:

●​ Provide an Arrow-based transformation layer for interoperability. This would allow
easy integration of engines and file formats where the performance is not the main
goal.

●​ Allow engines to replace the transformation for tightly integrated formats. This will
allow engines to maximize performance.

References
[1] - File Format API proposal:
https://docs.google.com/document/d/1sF_d4tFxJsZWsZFCyCL9ZE7YuI7-P3VrzMLIrrTIxds
[2] - File Format APi implementation:
https://github.com/apache/iceberg/pull/12774#discussion_r2093626096
[3] - Conversion performance test branch: https://github.com/pvary/iceberg/tree/perf_bench
[4] - ArrowReader javadoc:
https://github.com/apache/iceberg/blob/a69af4985fee4d6be428ba6f60c9e8f0c07da8fb/arrow
/src/main/java/org/apache/iceberg/arrow/vectorized/ArrowReader.java#L85

https://docs.google.com/document/d/1sF_d4tFxJsZWsZFCyCL9ZE7YuI7-P3VrzMLIrrTIxds
https://github.com/apache/iceberg/pull/12774#discussion_r2093626096
https://github.com/pvary/iceberg/tree/perf_bench
https://github.com/apache/iceberg/blob/a69af4985fee4d6be428ba6f60c9e8f0c07da8fb/arrow/src/main/java/org/apache/iceberg/arrow/vectorized/ArrowReader.java#L85
https://github.com/apache/iceberg/blob/a69af4985fee4d6be428ba6f60c9e8f0c07da8fb/arrow/src/main/java/org/apache/iceberg/arrow/vectorized/ArrowReader.java#L85

	File format and engine object model transformation performance
	Abstract
	Goals
	Non-goals
	Test scenarios
	Environment
	Direct readers
	Test case description
	Results

	Intermediate arrow reader
	Spark arrow reader
	Test case description
	Results

	Flink arrow reader
	Test case description
	Results

	Arrow reader limitations
	Summary
	Conclusion
	References

