

VIRTUAL PIANO

CZ4079: Final Year Project

Submitted in partial fulfilment of the requirements

for the degree of Bachelor of Computer Engineering

of Nanyang Technological University

Name: Tan Lai Chian Alan

Supervisor: Mr Ravi Suppiah

Examiner: Dr Vivek Chaturvedi

Project Code: SCE15-0421

School: Computer Engineering

Matric No.: U1321110K

School of Computer Engineering

AY 2015/2016

ABSTRACT

Smartphones are small but powerful devices, providing humans with countless uses, from

making phone calls and taking photos, to accessing the Internet from almost anywhere. The late

twentieth-century saw an explosion of computer applications. Through the installation of apps,

the list of possible smartphone uses multiplies by tens of thousands and grows longer everyday.

With smarter phone cameras coming to the market, there has been great interest in computer

vision applications using real-time image processing in mobile devices.

This project develops an Android mobile application that uses real-time image processing

techniques to provide a close simulation of playing the piano on a piece of paper with piano

keys drawn or printed on it. The mobile device is placed on an elevated platform and at an angle

for optimum view of the paper piano. When the application is started, the user switches on the

piano and fingertip detection, fix the detected keys, and can then start playing on the paper

piano. The application tracks fingertips for finger presses on the prefixed piano keys and then

plays the corresponding sounds. The application is developed using OpenCV, a library for

real-time image processing with over 2500 optimized algorithms. The application is tested on a

Samsung Galaxy Note 4 under a single light condition in a small room. The empirical results

showed that the proposed set of methodologies worked well for single fingertip keystrokes but

failed partially for multiple fingertip keystrokes and more research is needed to implement a

robust algorithm to accurately detect multiple keystrokes.

1

ACKNOWLEDGEMENTS

The author would like to express his heartfelt gratitude to all those people who contributed their

time, energy, and effort into making this project possible.

The author would like to thank his supervisor, Mr Ravi Suppiah, for his guidance and for giving

the author the opportunity to showcase his mobile application at NTU Open House 2016.

The author is also very grateful to his friends and family: Bryan Loy for lending his camera

tripod, Tan Lai Hui for his Samsung Note 2, and Calvin Tan for his moral support at the

beginning stage of the project.

2

TABLE OF CONTENTS

​ ​ ​ ​ ​ ​ ​ ​ ​

Abstract​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1

Acknowledgements​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2

Table of Contents​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 3

List of Figures​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4

1​ Introduction​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7

1.1​ Background​ ​ ​ ​ ​ ​ ​ ​ ​ 7

1.2​ Statement of Problem​​ ​ ​ ​ ​ ​ ​ 8

1.3​ Objectives​ ​ ​ ​ ​ ​ ​ ​ ​ 8

1.4​ Organization of Report​ ​ ​ ​ ​ ​ ​ 9

2​ Literature Review​ ​ ​ ​ ​ ​ ​ ​ ​ 10

2.1​ Piano Dynamics​ ​ ​ ​ ​ ​ ​ ​ 10

2.2​ Piano Detection​ ​ ​ ​ ​ ​ ​ ​ 10

2.3​ Hand Detection​ ​ ​ ​ ​ ​ ​ ​ 11

2.4​ Fingertip Detection​ ​ ​ ​ ​ ​ ​ ​ 11

2.5​ Touch Detection​ ​ ​ ​ ​ ​ ​ ​ 12

3​ Material/Equipment Resources and Environment Setup​ ​ ​ ​ 13

​ 3.1​ Equipment​ ​ ​ ​ ​ ​ ​ ​ ​ 13

​ 3.2​ Hardware Requirements​ ​ ​ ​ ​ ​ ​ 14

​ 3.3​ Software Requirements​ ​ ​ ​ ​ ​ ​ 14

​ 3.4​ Set Up​​ ​ ​ ​ ​ ​ ​ ​ ​ 14

​ 3.5​ Piano Layout​ ​ ​ ​ ​ ​ ​ ​ ​ 15

4​ Project Schedule​ ​ ​ ​ ​ ​ ​ ​ ​ 16

3

5​ Design Documentation​ ​ ​ ​ ​ ​ ​ ​ 17

5.1​ Project Lifecycle​ ​ ​ ​ ​ ​ ​ ​ 17

5.2​ Requirements Elicitation​ ​ ​ ​ ​ ​ ​ 17

​ 5.2.1​ Functional Requirements​ ​ ​ ​ ​ ​ 18

​ 5.2.2​ Non Functional Requirements​ ​ ​ ​ ​ ​

19

​ 5.2.3​ Quality Attributes​ ​ ​ ​ ​ ​ ​ 19

​ 5.2.4​ Use Case Diagram​ ​ ​ ​ ​ ​ ​ 20

​ 5.2.5​ Use Case Description​​ ​ ​ ​ ​ ​ 20

5.3​ Class Diagram​ ​ ​ ​ ​ ​ ​ ​ ​

21

5.4​ Implementation​ ​ ​ ​ ​ ​ ​ ​ 22

​ 5.4.1​ Initialization​ ​ ​ ​ ​ ​ ​ ​ 22

​ 5.4.2​ Piano Detection​ ​ ​ ​ ​ ​ ​ 22

​ 5.4.3​ Fingertip Detection​ ​ ​ ​ ​ ​ ​ 23

​ ​ 5.4.3.1 One Hand With Single Finger​​ ​ ​ ​ 30

5.4.3.2 Two Hands With Single Finger​ ​ ​ ​ 30

5.4.3.3 One Hand With Multiple Fingers​ ​ ​ ​ 30

5.4.3.4 Two Hands With Multiple Fingers​ ​ ​ ​ 31

​ 5.4.4​ Touch Detection​ ​ ​ ​ ​ ​ ​ 31

​ 5.4.5​ Mapping Touch to Keystrokes​ ​ ​ ​ ​ ​

31

​ 5.4.6​ Dynamic Touch​ ​ ​ ​ ​ ​ ​ 32

​ 5.4.7​ Sound​ ​ ​ ​ ​ ​ ​ ​ ​ 33

6​ Data and Results​ ​ ​ ​ ​ ​ ​ ​ ​ 34

​ 6.1​ Test Cases​ ​ ​ ​ ​ ​ ​ ​ ​ 34

​ 6.2​ Latency​ ​ ​ ​ ​ ​ ​ ​ ​ 34

​ 6.3​ Playing Objectives with Multiple Fingertips​ ​ ​ ​ ​ 35

7​ Discussion of Results​​ ​ ​ ​ ​ ​ ​ ​ 36

​ 7.1​ Proposed Methodology​ ​ ​ ​ ​ ​ ​ 36

4

​ 7.2​ Accidental Keystrokes​ ​ ​ ​ ​ ​ ​ ​

36

​ 7.3​ Multiple Fingers​ ​ ​ ​ ​ ​ ​ ​ 37

8​ Conclusions​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 38

References​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 39

Appendix 1​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 42​

​ ​ ​ ​ ​ ​ ​ ​ ​

5

LIST OF FIGURES

Page​

Figure 1: Setup for use of Virtual Piano mobile application​ ​ ​ ​ ​ 14

Figure 2: Piano layout​​ ​ ​ ​ ​ ​ ​ ​ ​ 15

Figure 3: Project Schedule​ ​ ​ ​ ​ ​ ​ ​ ​ 16

Figure 4: Use Case Diagram of Virtual Piano System​ ​ ​ ​ ​ 20

Figure 5: Class Diagram of Virtual Piano System​ ​ ​ ​ ​ ​ 21

Figure 6: RGB image of captured frames from video stream​ ​ ​ ​ ​

23

Figure 7: HSV image after color conversion​ ​ ​ ​ ​ ​ ​ 23

Figure 8: Binary image after thresholding in HSV​ ​ ​ ​ ​ ​ 24

Figure 9: Douglas-Peucker algorithm for reduction of contour points​ ​ ​ ​

24

Figure 10: Final contours of white keys​ ​ ​ ​ ​ ​ ​ 25

Figure 11: Merge sort algorithm​ ​ ​ ​ ​ ​ ​ ​ 26

Figure 12: Convex hull of white keys drawn in green outline​​ ​ ​ ​ 26

Figure 13: Dilated image to remove unwanted black line of the piano layout​ ​ ​

27

Figure 14: Inverted and dilation result of Figure 13​ ​ ​ ​ ​ ​ 28

Figure 15: After applying piano mask​​ ​ ​ ​ ​ ​ ​ 28

Figure 16: Image after applying static skin color based thresholding in HSV color space​ 29

Figure 17: Hand contour​ ​ ​ ​ ​ ​ ​ ​ ​ 29

Figure 18: Detection of single fingertip based on lowest point of hand contour​ ​ 30

Figure 19: Convex hull of hand and multiple fingertips detection​ ​ ​ ​ 31

Figure 20: Binary Search Algorithm​ ​ ​ ​ ​ ​ ​ ​ 32

6

1​ INTRODUCTION

1.1​ Background

Piano is a musical instrument that consists of 88 keys (collectively known as the keyboard) of

which produce sounds of different tones and pitches when pressed. The piano was invented in

1700 by a harpsichord maker named Bartolomeo Cristofori, from Padua, in the Republic of

Venice in northern Italy. “Piano” is short for “Pianoforte”, meaning that it can be played softer

(piano) or louder (forte) in response to the player’s touch on the keyboard. Today, the piano is

widely used in all types of music, including classical, popular, and jazz. There are three main

types of pianos: Grand, Upright, and Electronic, with the upright piano being the most common

type due to its cost, compactness and the warmness of its sound.

One of the barriers to playing the piano for recreation is the high cost of the piano itself. Many

people may want to play a piano once in awhile, but are not always ready to spend more than a

hundred dollars for that sake. Furthermore, owning a piano also requires space, regular

maintenance and is not very portable.

Smartphones provide a good alternative to aforementioned problems with a tremendous cut in

cost and convenience. The use of smartphones has become pervasive in our daily lives with a

forecast of 2.08 billion users worldwide in 2016 [1]. Through musical smartphone applications,

users can get a taste of playing the piano at a significantly low or even zero cost with limitations.

One type of piano mobile application lets users play by tapping on piano keys displayed on the

mobile screen. However, such applications typically only cater up to one octave of piano keys.

Moreover, each key has to be shrunk to a size smaller than that of a human’s finger in order to

7

fit all the keys on the mobile screen. As such, there is a lack of realism in playing the piano

using such mobile applications as users are unable to execute correct fingerings as they would

on the real piano.

Several programs exist where image processing techniques are utilised to develop a novel form

of playing the piano, commonly called the “Paper Piano”. A piano is drawn on a piece of paper

for users to play on. By capturing images of the paper piano and the user’s fingers real-time

through a video camera, the program applies image processing techniques to detect the piano

and fingers, and plays sounds according to user’s keystrokes.

OpenCV (Open Source Computer Vision Library) is an open source computer vision software

library that focuses on real-time vision applications. It is built to provide a common infrastructure

for computer vision applications. Today, the library has more than 2500 optimized algorithms

which can be used to detect and identify objects, track moving objects, and many more.

OpenCV is written natively in C++ but also comes with interfaces in C, Python, Java, MATLAB

and supports Windows, Linux, Android and Mac OS [14].

1.2​ Statement of Problem

Little research has been done on piano mobile applications using image processing. Existing

applications today still face problems such as failure to detect piano or fingers accurately,

accidental keystrokes, latency, and more.

In addition, features such as multiple keystrokes, piano dynamics and articulations have yet to

be fully explored.

1.3​ Objectives

This project builds on current existing paper piano methodologies and encompasses the

following objectives:

1)​ Propose a set of methodologies in piano, fingers, and touch detection, and mapping of

touch to keystrokes for Virtual Piano.

2)​ Develop a functional Android mobile application of the paper piano using the proposed

set of methodologies.

8

3)​ Implement dynamic touch detection through finger motion analysis in order to play piano

dynamics (p, mf, f and ff)

4)​ Implement multiple fingertips detection and keystrokes using convex hull points and

Douglas-Peucker points in order to play melodies, chords and harmonies using up to 5

fingers.

1.4​ Report Organization

This report is organized into the following chapters:

Chapter 1: Introduction

This chapter covers the background information needed to understand the problem, outlines the

statement of problem, and lists the objectives of this report.

Chapter 2: Literature Review

This chapter describes the related work and compares the findings with this project.

Chapter 3: Project Schedule

This chapter shows a chart-form project schedule that illustrates work to be done at various time

intervals throughout the final year project duration.

Chapter 4: Design Documentation / Work Done

This chapter gives a full account of how the project work was carried out using the Incremental

and Iterative software development model including phases of planning, requirement analysis

and implementation.

Chapter 5: Data and Results

This chapter shows the results obtained from the application to verify the functionality of the

application.

Chapter 6: Discussion of Results

9

This chapter discusses the inferences from observations found from Chapter 5.

Chapter 7: Conclusion

This chapter concludes the report and recommends improvement for the application in the

future.

2​ LITERATURE REVIEW

2.1​ Piano Dynamics

In music, dynamics (or relative loudness) are instructions in musical notation to the performer

about hearing the loudness of a note or phrase. More generally, dynamics may also include

other aspects of the execution of a given piece [15].

The two basic dynamic indications in music are p (piano) and f (forte), meaning “soft” and “loud”

respectively. More subtle degrees of loudness or softness are indicated by mp (mezzo-piano),

and mf (mezzo-forte), meaning “moderately soft” and “moderately loud” respectively. Beyond f

and p, there are also pp (pianissimo), ff (fortissimo), ppp (pianississimo) and fff (fortississimo),

standing for very soft, very loud, very very soft, and very very loud respectively.

Playing dynamics on the piano depends on the speed of finger press on the piano keys. A quick

drop of the finger will produce a forte sound while a slow fall will produce a soft piano sound.

2.2​ Piano Detection

Piano detection is concerned with object recognition, which involves the task of finding and

identifying objects such as the paper piano in an image or video sequence. Object recognition

algorithms rely on matching, learning, or pattern recognition algorithms using appearance-based

or feature-based techniques [2]. One effective technique is image segmentation by color, also

known as color segmentation.

10

Several paper piano projects in the past have used color segmentation [3-5] followed by

border-following algorithm to generate contours of the keys on the paper piano [4][5]. This

method is simple and proved to work well under different lighting conditions and camera angles.

Color segmentation using HSV (Hue, Saturation, Value) colour space is generally preferred over

RGB (Red, Green, Blue) colour space as it is more robust to changes in illumination. If the

luminance component of HSV is eliminated, the system can become desensitized to shadows or

illumination effects [6].

2.3​ Hand Detection

Skin detection is possibly the most commonly used form of hand recognition, but it is much

more effective when used together with other forms of recognition to eliminate false positives

such as background objects of a similar color [6]. There are several approaches to build a skin

color detector with the most basic one being a static skin color based thresholding. It has been

observed that skin color lies in a very narrow range in H channel of HSV colorspace. The lower

and upper hue thresholds are selected as (0,33) respectively. The Hue range provided is a

generic threshold that will cover all the possible skin colors [7].

A skin color detector should ideally only detect the skin colored pixels and reject the pixels

belonging to other objects or background. However, using a simple threshold based approach

would also falsely detect some non skin colored pixels belonging to background or objects with

similar hue color as skin like wood etc. Vegar Østhus and Martin Stokkeland (2013) assumed

the largest contour found as the hand in their project as a solution to identify the hand contour

as a whole [8]. This method is feasible under a controlled environment by ensuring that the

hand is the largest skin contour in the image frames.

2.4​ Fingertip detection

In Augmented Piano Reality, Zaqout and others (2015) used the lowest point of the hand

contour as the effective point to play the piano [4]. The lowest point could be quickly found by

iterating through all the points of the hand contour once by comparing the y-coordinate values.

This method used is simple and efficient, but could only be used to track a single fingertip.

11

Thresholds of curvature is another technique used to identify isolated fingertips, but do not

deliver dependable performance when two fingers are merged into a single region or when one

finger occludes another. This technique is prone to assigning false-positives to finger-like

objects, particularly knuckles [9].

A popular fingertip identification method commonly used in gesture detection is to create a

convex hull around the identified hand. The vertices of the convex hull are then identified as

fingertip candidates and further narrowed down to actual fingertips using convexity defects

[6][8]. This technique seems promising for our project as it is able to detect multiple fingers with

higher accuracy as compared to shadow analysis.

2.5​ Touch detection

Muhd (2015) proposed an alternative mechanism of image processing touch detection by

recognizing finger presses using texture characteristics obtained from gray level co-occurrence

values [3]. The application worked well under different lighting conditions and was able to

support multiple key-presses. One advantage of this method was that there was no need for

hand and fingertip detection in every frame which can be computationally costly. However, the

application required texture sampling of a pressed finger for each key region at the initial stage.

Accuracy of key-presses was also heavily affected by the predetermined threshold values.

Furthermore, the key-press regions were also bounded by rectangles which did not cover the

full regions of the actual piano keys. Finally, this method does not seem to allow detection of

dynamic key presses where analysis of fingertip velocity and/or force is required.

Adajania and others (2010) proposed a method called shadow analysis for touch detection [9]. If

the percentage of shadow pixels around a fingertip is smaller than a fixed percentage, it is

concluded that the fingertip is in contact with the touch surface. The technique is

computationally inexpensive, does not require any special hardware, and can be applied on a

frame-by-frame basis. However, shadow analysis demands very strong assumptions about the

lighting and hand poses that will appear in images. These demands did not necessarily produce

dependable performance in touch detection.

Adajania and others (2010) suggested using motion analysis technique, such as in [10]. For

example, given the location of a fingertip in several consecutive images, one could calculate the

fingertip’s velocity and identify key-presses as by considering when the fingertip’s velocity

12

reverses direction. A similar method was used in [4], whereby a keystroke was deemed to have

occurred when the effective point of a finger moved down and then up again while staying on

the same key, or if the effective point stayed at the same position (1-2 pixel difference) for two

consecutive frames.

3​ MATERIAL/EQUIPMENT RESOURCES AND COSTING

3.1 Equipment

Table 1 lists the equipment required for the use of Virtual Piano mobile application. Detailed

description and minimum requirement (if exact type of equipment is not available) of each item

are listed under Description column.

Table 1. Equipment

No Name Description Quantity

1 Samsung

Galaxy Note 4

Or any Android device with minimum API 11 1

2 Paper Piano ●​ A4 size paper

●​ Piano layout must be drawn using thick black

lines

●​ White keys must be fully enclosed by black lines

●​ Black keys must be filled with solid black

1

3 Phone

holder/tripod

●​ Phone camera must be placed at an angle of

70-80 degrees with 4-5 cm of elevation from

table when put on tripod

1

4 Book 4-5 cm thick to provide elevation if phone tripod does not 1

13

(Optional) provide any elevation

3.2​ Hardware Requirements

1.​ Notebook PC

3.3​ Software Requirements

1.​ Eclipse (Mars)

2.​ Android SDK

3.​ JDK 6 or 7

4.​ OpenCV 3.0 (Library)

5.​ SourceTree (For source code management) - Optional

6.​ Vysor (Beta) - Optional

7.​ Adobe PhotoShop (Or any photo editing software) - Optional

3.4​ Set up

Figure 1 shows the environment setup for the use of the application. The phone is placed with

70-80 degrees angle tilt in front of the user and the paper piano on an elevated platform of

about 4-5cm.

14

Figure 1. Set up for use of Virtual Piano mobile application.

3.5​ Piano Layout

10 white keys and 7 black piano keys which cover slightly more than one octave of keys were

printed on a paper as shown in Figure 2. This layout was used for development and testing.

15

Figure 2. Piano layout.

4​ PROJECT SCHEDULE

Figure 3 shows the entire schedule for this final year project. The work was planned in this

manner based on the incremental and iterative methodology. Hence, the project was completed

in iterations.

16

Figure 3. Project Schedule.

5​ DESIGN DOCUMENTATION

5.1​ Project Lifecycle

17

The software development lifecycle model chosen for this project was the incremental and

iterative model, where the application was designed, implemented and tested incrementally (a

little more is added each time) until the complete application was finished.

The application was decomposed into several small components, each of which was designed and

built separately. This model of development also helped ease the traumatic effect of building a

complete application from scratch all at once.

Using this model encompassed two major advantages. Firstly, regression testing was conducted

after each iteration. During this testing, faulty elements of the application were quickly identified

because few changes were made within each single iteration. Secondly, it was easier to test and

debug as compared to other methods of software development because relatively smaller changes

were made during each iteration. This allowed for more targeted and rigorous testing of each

component within the overall application.

5.2​ Requirements Elicitation

This section documents the following areas through requirements elicitation:

1)​ Functional Requirements

2)​ Non Functional Requirements

3)​ Quality Attributes

4)​ Use Case Diagram

5)​ Use Case Description

5.2.1​ Functional Requirements

1.​ System shall display the camera image on the screen upon opening of the application

2.​ System shall provide a button for user to toggle between front and rear camera

18

3.​ System shall provide a button for user to toggle piano detection

a.​ System shall display blue solid contours on top of all white keys when piano

detection is turned on

b.​ System shall display red solid contours on top of all black keys when piano

detection is turned on

c.​ System shall stop displaying both red and blue solid contours when piano

detection is turned off

4.​ System shall provide a button for user to set the piano keys upon successful detection of

piano keys

a.​ System shall draw yellow outlines of all white keys when piano layout is set

b.​ System shall draw green outlines of all black keys when piano layout is set

5.​ System shall provide a button for user to toggle hand detection

a.​ System shall display convex hull outline in blue when hand detection is turned on

b.​ System shall stop displaying convex hull outline when hand detection is turned

off

6.​ System shall provide a button for user to toggle between one and two hands mode

a.​ System shall detect and display convex hull outline in blue when second hand is

detected during two-hands mode.

b.​ System shall stop detecting second hand when in one-hand mode.

7.​ System shall provide a button for user to toggle between single and multiple fingers

mode

a.​ System shall draw a red circle on the effective fingertip(s)

8.​ System shall provide a button for user to toggle between detection of piano layout 1 and

piano layout 2

9.​ System shall provide a dropdown menu for user to change camera size

a.​ Size options shall be displayed in ‘(width) x (height)’ format, e.g. ‘640 x 480’.

10.​System shall play a note that corresponds to the key pressed by the user on the paper

piano

5.2.2​ Non-Functional Requirements

19

1.​ System shall not crash if no piano keys are detected when piano detection mode is on.

2.​ System shall not crash if no hand(s) or finger(s) is/are detected when finger detection

mode is on.

3.​ In the event of any other failure, system shall restart the application. Application shall not

close and stop working entirely.

4.​ System shall check for availability of front facing camera and display the option to toggle

between front and rear camera on the menu if so.

5.​ The function of each buttons shall be easily understood by the user intuitively.

6.​ User shall be able to infer the buttons to press in order to play on the paper piano by the

button labels.

5.2.3​ Quality Attributes

Two quality attributes were identified for Virtual Piano mobile application as follow, which were

fulfilled through the functional and nonfunctional requirements listed above:

1.​ Usability

2.​ Correctness

5.2.4​ Use Case Diagram

20

Figure 4. Use Case Diagram of Virtual Piano System

5.2.5​ Use Case Description

All use case descriptions can be found under Appendix 1 at the end of this report.

5.3 Class Diagram

21

Figure 5. Class Diagram of Virtual Piano System

5.4 Implementation

22

The implementation of this project was categorized into 5 major steps as follow:

1.​ Initialization (CameraActivity.java)

2.​ Piano Detection (PianoDetector.java)

3.​ Finger Detection (HandDetector.java)

4.​ Touch Detection (KeyPressDetector.java)

5.​ Play Sound (SoundPoolPlayer.java)

5.4.1​ Initialization

The camera was set up by creating an instance of OpenCV’s abstract class called

CameraBridgeViewBase, which represents a live camera feed. The default camera size was set

to 640 x 480.

Captured frames from the video stream were converted to RGB color format (Figure 6) for use

in the subsequent major steps.

5.4.2​ Piano Detection

The 3 main steps taken for this section were detection of white keys, computation of piano mask

around white keys, and detection of black keys.

First, the RGB frames were converted to HSV color space. Figure 6 and 7 shows the images

before and after RGB to HSV color conversion.

23

Figure 6. RGB image of captured frames from video stream.

Figure 7. HSV image after color conversion.

White-colored objects were then extracted by applying HSV thresholding. It was observed that

the Value of white-colored objects tended to fall in the range of 100 to 255. Hence, the lower

and upper HSV threshold values used were (0, 0, 100) and (179, 255, 255) respectively.

The function inRange in opencv’s core library is a thresholding method that reduces the given

image to a binary image. It converts any pixels within the lower and upper threshold to white

24

and the rest of the pixels to black. Using this thresholding method, we were left with a binary

image to work with (Figure 8).

Figure 8. Binary image after thresholding in HSV.

From the binary image, contour detection on the white regions was applied using

border-following algorithm. The points of each contour were then reduced using

Douglas-Peucker algorithm (Figure 9).

Figure 9. Pseudo code for Douglas-Peucker algorithm [11].

25

The area of each contour was calculated and eliminated if it did not fall within a specified area

threshold. The lower and upper area thresholds for white keys were 1000 and 12500

respectively. This threshold range was found to be effective for detecting piano keys correctly

while maximizing placement of the paper piano within the camera frame. It was also effective in

eliminating small or large non piano key objects in the background. Figure 10 below displays the

final contours of the white keys on the paper piano.

Figure 10. Final contours of white keys.

The remaining contours were sorted from left to right using merge sort algorithm (Figure 11).

Merge sort is a fast and efficient sorting method which always runs in Θ(n lgn) time. The sorting

was done with respect to the top left points of each contour’s bounding rectangle.

26

Figure 11. Merge sort algorithm [12].

The convex hull of the white keys was then computed and used as a piano mask for detecting

the black piano keys subsequently (Figure 12).

Figure 12. Convex hull of white keys drawn in green outline.

27

For detection of black keys, the same algorithm used to detect white keys could be applied by

simply inverting the binary image previously found. However, there was a need to remove

unwanted lines in the piano layout that were also black in color.

Morphological dilation was applied to the binary image. Through dilation, we were able to

remove the unwanted piano lines by shrinking the size of black regions while expanding the size

of white regions as shown in Figure 13. The image was then inverted and dilated to get the

resultant image shown in Figure 14.

Piano mask was then applied to get the final image in Figure 15 which was suitable for detecting

black keys by following the same contour detection steps used for the white keys.

Figure 13. Dilated image to remove unwanted black line of the piano layout.

28

Figure 14. Inverted and dilation result of Figure 13.

Figure 15. After applying piano mask.

29

5.4.3​ Fingertip Detection

The steps taken in this section were skin detection, hand detection, and fingertip detection.

Skin-colored pixels fell in the lower and upper HSV threshold range of (3, 50, 50) and (30, 255,

255) respectively [7]. Figure 16 shows the result of HSV thresholding using the aforementioned

threshold range. Using the same steps taken for piano keys detection, skin-colored contours

were computed using border-following algorithm and refined using Douglas-Peucker algorithm.

The contour with the largest area amongst all was then assumed to be the hand contour (Figure

17).

Figure 16. Image after applying static skin color based thresholding in HSV color space.

Figure 17. Hand contour

30

Four different methods of fingertip tracking were explored as follows:

1)​ One hand, single finger

2)​ Two hands, single finger each

3)​ One hand, multiple fingers

4)​ Two hands, multiple fingers

5.4.3.1​One hand with single finger

The lowest point of the hand contour was taken to be the effective fingertip point used for

playing the piano. This algorithm was sufficient for playing the piano using one finger.

Figure 18. Detection of single fingertip based on lowest point of hand contour.

5.4.3.2​Two hands with single finger each

The second largest contour found during skin detection was taken to be the second

hand contour. The lowest point of the hand contour was then taken to be the effective fingertip

point as well.

5.4.3.3​One hand with multiple fingers

31

The convex hull of the hand contour was found in order to locate the finger tips. As seen

in Figure 19, the fingertip points fell in the piano mask region. Therefore, the remaining points

were taken to be fingertip points after eliminating points that were outside the piano region.

As the app was a real-time application and speed was of concern, the amount of computation

was best kept minimum. Hence, further computations to label finger indexes or finding hand

centroid were unnecessary.

Figure 19. Convex hull of hand and multiple fingertips detection

5.4.3.4​Two hands with multiple fingers

Similar to the two hands with single finger methodology, two hands with multiple fingers

mode was developed by duplicating the steps taken for single hand with multiple finger and

applying to the second largest hand contour detected.

5.4.4​ Touch Detection

Effective touches were deemed as movement of fingertips in a downward motion. This was

tracked by checking the y-coordinate difference of fingertip points between 2 consecutive

frames (frame A and frame B). When the y-coordinate difference was higher than a certain

integer value, a touch was considered to have happened.

5.4.5​ Mapping of Touch to Keystrokes

32

The fingertip point in frame B was then checked to see if it fell within any piano key contour

region using Point-In-Polygon algorithm and if so, the piano key index was returned. A simple

binary search algorithm was applied to reduce the number of Point-In-Polygon tests which

effectively reduced the search complexity by O(lg n).

Binary search (Figure 20) is an efficient algorithm for searching through an ordered list of

elements. It works by recursively dividing the list into halves, keeping only the half that could

contain the item, until the wanted element is narrowed down to just one possible location.

Figure 20. Binary Search Algorithm [13].

After narrowing down the index of the pressed key in frame B, the index was compared with the

pressed key index of the previous frame. If the indexes were the same, the app would abort

playing of the note. It was discovered that when such a situation occurred, a touch could not

have happened as the fingertip had not yet been lifted up to execute another touch on the same

note. Hence, it was concluded that two successive touches could only happen within 3

consecutive frames due to the fluctuation of fingertip points caused by factors such as noise and

shadows and were false positives of touches.

5.4.6​ Dynamic Touch Detection

The relative loudness of each keystroke was determined by the y-coordinate difference between

two consecutive frames as follow:

piano: 3 -10

mezzo-piano: 11 - 20

forte:​ 21 - 30

fortissimo : > 30

33

5.4.7​ Sound

Android provides three classes that allow the app to play sounds; Media Player, Audio Track,

and SoundPool. SoundPool class is suited for short sound clips and can play multiple sound

clips simultaneously and hence was used in our application.

34

6​ DATA AND RESULTS

The application is designed with Android 5.1 (Lollipop) being the intended target, and Android

3.0 (Honeycomb) being the minimum supported version. It was tested on a Samsung Galaxy

Note 4 with Android 5.1.1 in a single room lighting condition as shown in Figure 1.

6.1​ Test Cases

Successful piano detection was defined as correct detection of all piano keys. 1-Note

Verification was defined as correct detection of a single fingertip and playing of the correct

sound when a key was pressed. Table 2 shows the results for the test cases executed on our

application.

Table 2. Application test result using Samsung Galaxy Note 4

Test Case Result

Piano Detection Passed

1-Note Verification Passed

Dynamic touch Passed

Playable Song Passed

Accidental Keystrokes Failed

6.2​ Latency

Table 3 shows the results for latency of key presses in various finger detection modes. Latency

is rated on a scale of 0 to 3:

​ A rating of 0 indicates lack of any perceivable lag.

​ A rating of 1 indicates low lag (0.5 to 1 second); playable

A rating of 2 indicates high lag (1 to 2 seconds); only functional

A rating of 3 indicates extreme lag; impossible to use the application

35

Table 3. Latency of key presses in various finger detection modes

Finger Mode Latency

Single Finger 0

Multiple Fingers 0

6.3​ Playing objectives in multiple fingers mode

Table 4 shows the results of the playing objectives when multiple fingertips were derived using

Douglas-Peucker (DP) points and Convex Hull points of the hand contour.

Table 4. Results of playing objectives using DP and Convex Hull points to derive multiple

fingertips

Objective Result

DP Convex Hull

Playing of harmonies Failed Passed

Playing of chords Failed Passed

Playing of melodies Failed Failed

36

7​ DISCUSSION OF RESULTS

7.1​ Proposed Methodology and Dynamic Touch

The proposed set of methodologies successfully detected all piano keys and single fingertip

modes correctly. We were able to play a complete song in the single finger modes. The dynamic

touch methodology picked up the correct loudness in response to our finger movements as well.

7.2​ Accidental Keystrokes

The suggested keystroke methodology used in our application worked but with 2 types of

accidental key press observed. First type of accidental key press was dual sound when playing

a note. This was caused by fluctuation of fingertip position between three consecutive video

frames due to false detection of shadow as the effective fingertip point. The convergence of a

fingertip and its shadow during a finger press caused the effective fingertip point to jump down

to the shadow and then back up in 3 consecutive frames. The small fluctuation was registered

as a finger press by the KeyPress Detector module.

A new variable, keyPressedIndex, was introduced to solve this dual sound problem. The role of

keyPressedIndex was to check for playing of the same piano key within 3 consecutive frames. It

was analyzed that it was impossible to execute two key presses of the same note in 3

consecutive frames. Hence, such scenarios were declared as single keypresses instead of two.

With the introduction of this new variable, the dual sound problem was solved.

The second type of accidental keystroke occurred during the movement of the fingertip from a

white key to a black key. The movement of fingertip from a white key to a black key produced a

significant y-coordinate difference which met the condition of a finger press.

Nonetheless, the new suggested keystroke methodology provided a more realistic simulation of

key press on a real piano.

37

7.3​ Multiple Fingers

The multiple fingertips detection algorithm using DP points of the hand contour failed the

objectives of playing harmonies, chords and melodies. Using of Convex Hull points also failed in

playing of a melody too but passed in playing of chords and harmonies.

For DP method, there were too many accidental convex points within the hand contour which

caused the fingertip reduction algorithm to fail. The accidental convex points were caused by

shadow of the hand which was mistaken as part of the hand during skin filtering.

For Convex Hull method, fingertip reduction algorithm correctly approximated the fingertip points

and hence was able to play chords. However, since each fingertip need to be part of the convex

hull to be detected, some fingertips would disappear during playing of melody when they do not

form part of the convex hull. This algorithm does not adapt well to piano fingering techniques

such as the ‘Thumb Under’.

38

8​ CONCLUSIONS

In this research we proposed a set of methodologies to develop an Android mobile application

of the paper piano using image processing techniques with OpenCV library. After analysing

related work, we proposed to use HSV thresholding followed by border-following algorithm to

detect piano keys and hand contours, and motion analysis techniques for touch detection.

We successfully developed a functional paper piano mobile application, detecting 10 white and

7 black keys with new features to detect multiple keystrokes and dynamic touch. Our application

was tested on a Samsung Galaxy Note 4 smartphone in a single room lighting condition with

varying performance depending on the number of hands and fingers used. The application

displayed acceptable performance for single finger keystrokes with no perceivable lags and

allowed users to play simple melodies on the paper piano. The application failed to detect

multiple keystrokes efficiently to play melodies but was able to play harmony and chords using 2

and 3 fingers respectively. Our application fulfilled our first 3 objectives well and partially for the

4th objective. In conclusion, there is still room for further improvement and possible future work

may focus on:

●​ Developing a more robust algorithm for multiple fingertips and touch detection for 5

fingers.

●​ More features to achieve a closer simulation of playing a real piano such as piano

articulations for users to play staccato, accent, tenuto, etc.

●​ Improving the detection algorithms to better detect piano keys and hand in all lighting

and background conditions.

39

REFERENCES
[1] Number of smartphone users* worldwide from 2014 to 2019 (in millions). (August 2015). Statista, The

Statistics Portal. Retrieved 02:12, March 21, 2016,

http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[2] Object recognition methods in computer vision. (19 May 2012). In MathWorks. Retrieved 02:12, March

21, 2016,

http://www.mathworks.com/discovery/object-recognition.html?requestedDomain=www.mathworks.com

[3] Muhd N. (2015). Virtual Piano. Nanyang Technological University.

[4] Zaqout, I., Elhissi, S., Jarour, A., & Elowini, H. (2015). Augmented Piano Reality.

IJHIT, 8(10), 141-152. http://dx.doi.org/10.14257/ijhit.2015.8.10.13

[5] F. Huang, Y. Zhou, Y. Yu, Z. Wang and S. Du, “Piano AR: A Markerless Augmented Reality Based

Piano Teaching System”, Third International Conference on Intelligent Human-Machine Systems and

Cybernetics (IHMSC), IEEE, Washington, DC, USA, vol. 2, (2011) August 28, pp. 47 – 52.

[6] X. Zabulist, H. Baltzakist and A. Argyrost, “Vision-based Hand Gesture Recognition for

Human-COmputer Interaction,” Crete.

[7] Farhad Dadgostar and Abdolhossein Sarrafzadeh. An Adaptive Real-time Skin Detector Based on Hue

Thresholding: A Comparison on Two Motion Tracking Methods . In: Pattern Recogn. Lett. 27.12 (Sept.

2006), pp. 1342 1352. issn:0167-8655. doi: 10.1016/j.patrec.2006.01.007. url: http://dx.doi.

org/10.1016/j.patrec.2006.01.007.

[8] Hand Tracking And Recognition with OpenCV (in millions). (12 August 2013). Retrieved 02:12, March

21, 2016,

http://sa-cybernetics.github.io/blog/2013/08/12/hand-tracking-and-recognition-with-opencv/

40

http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.mathworks.com/discovery/object-recognition.html?requestedDomain=www.mathworks.com
http://dx.doi.org/10.14257/ijhit.2015.8.10.13
http://sa-cybernetics.github.io/blog/2013/08/12/hand-tracking-and-recognition-with-opencv/

[9] Y. Adajania, J. Gosalia, A. Kanade, H. Mehta, and N. Shekokar. Virtual keyboard using shadow

analysis. In Emerging Trends in Engineering and Technology (ICETET), 2010 3rd International

Conference on, page 163 to 165, 2010.

[10] Sumit Srivastava and Ramesh Chandra Tripathi. Real time mono-vision based customizable virtual

keyboard using finger tip speed analysis. In Masaaki Kurosu, editor, Human-Computer Interaction.

Interaction Modal- ities and Techniques, volume 8007 of Lecture Notes in Computer Science, page 497 to

505. Springer Berlin Heidelberg, 2013.

[11] Ramer–Douglas–Peucker algorithm. (2016, January 29). In Wikipedia, The Free Encyclopedia.

Retrieved 08:22, December 19, 2015, from

https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&

oldid=702273359

[12] Merge sort. (19 May 2012). In The Algorithmist. Retrieved 05:02, January 9, 2016, from

http://www.algorithmist.com/index.php/Merge_sort#Pseudo-code

[13] Binary search. (10 April 2011). Code Codex, The Free Code Wiki. Retrieved 04:18, February 21,

2016, from http://www.codecodex.com/wiki/Binary_search#Pseudocode

[14] “OpenCV Documentation”, [Online] (2014) November 15, Available from:

http://docs.opencv.org/modules/core/doc/intro.html.

[15] Dynamics (music). (2016, March 2). In Wikipedia, The Free Encyclopedia. Retrieved 02:52, March

21, 2016, from https://en.wikipedia.org/w/index.php?title=Dynamics_(music)&oldid=707837336

41

https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&oldid=702273359
https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm&oldid=702273359
http://www.algorithmist.com/index.php/Merge_sort#Pseudo-code
http://www.codecodex.com/wiki/Binary_search#Pseudocode
http://docs.opencv.org/modules/core/doc/intro.html
https://en.wikipedia.org/w/index.php?title=Dynamics_(music)&oldid=707837336

Appendix 1

Use Case ID: 1

Use Case Name: Toggle Piano Detection

Actors: User

Description: User toggles on/off piano detection mode

Trigger: User presses on ‘Detect Piano’ button

Preconditions: Camera is directed at the paper piano

Postconditions: 1 Off to On: Blue solid polygons are drawn over detected white

keys and red solid polygons are drawn over detected black keys.

2 On to Off: System stops detecting piano keys

Normal Flow: 1.1 User presses on ‘Detect Piano’ button

1.2 System executes postconditions

Alternative Flows:

Exceptions: 1.0.E.1 System does not detect any piano keys

 1.0.E.1.1 System does not draw any polygons

Includes: -

Priority: High

Frequency of Use: High

Use Case ID: 2

42

Use Case Name: Set Piano

Actors: User

Description: User instructs the system to register the detected contours as piano

keys

Trigger: User presses on ‘Set Piano’ button

Preconditions: Piano detection mode is on

Postconditions: System converts detected contours into piano keys and stores in

the system

Normal Flow: 1.1 User presses on Set Piano’ button

1.2 System executes postconditions

Alternative Flows: -

Exceptions: 1.0.E.1 System did not detect any piano keys

 1.0.E.1.1 System does nothing

Includes: Piano Detection

Priority: High

Frequency of Use: High

Use Case ID: 3

Use Case Name: Toggle Finger Detection

Actors: User

Description: User toggles on/off finger detection mode

Trigger: User presses on ‘Detect Finger’ button

43

Preconditions: User’s hand(s) is inside camera’s view

Postconditions: 1 Off to On: Red outline is drawn around detected hand(s) and blue

dot is drawn on detected fingertip point(s).

2 On to Off: System stops detecting hand(s) and finger(s)

Normal Flow: 1.1 User presses on ‘Detect Finger’ button

1.2 System executes postconditions

Alternative Flows: -

Exceptions: 1.0.E.1 System does not detect any hand

 1.0.E.1.1 System does not draw anything

Includes: -

Priority: High

Frequency of Use: High

Use Case ID: 4

Use Case Name: Toggle One/Two Hands

Actors: User

Description: User switches between one or two hands detection mode

Trigger: User presses on ‘Hands’ button

Preconditions: User’s hand(s) is inside camera’s view

Postconditions: 1 One to Two Hands : Red outline is drawn around second

detected hand(s) and blue dot is drawn on detected fingertip

point(s).

2 Two to One Hand: System stops detecting second hand

44

Normal Flow: 1.1 User presses on ‘Hands’ button

1.2 System executes postconditions

Alternative Flows: -

Exceptions: 1.0.E.1 System does not detect first hand

 1.0.E.1.1 System does not draw anything

1.0.E.2 System does not detect any second hand

 1.0.E.2.1 System does not draw anything

Includes: -

Priority: High

Frequency of Use: High

Use Case ID: 5

Use Case Name: Toggle Single/Multiple Fingers

Actors: User

Description: User switches between single or multiple fingers detection mode

Trigger: User presses on ‘Fingers’ button

Preconditions: User’s hand(s) is inside camera’s view

Postconditions: 1 Single to Multiple : System draw blue dots over all fingertip points

detected

2 Multiple to Single: System detects only single fingertip

Normal Flow: 1.1 User presses on Fingers button

1.2 System executes postconditions

Alternative Flows: -

45

Exceptions: 1.0.E.1 System does not detect any hand

 1.0.E.1.1 System does not draw anything

1.0.E.2 System does not detect more than one fingertip

 1.0.E.2.1 System continues to detect single fingertip until more

fingertips are detected.

Includes: -

Priority: High

Frequency of Use: High

Use Case ID: 6

Use Case Name: Toggle Dynamic Touch

Actors: User

Description: User toggles on/off dynamic touch mode

Trigger: User presses on ‘Dynamic Touch’ button

Preconditions: -

Postconditions: Dynamic Touch detection is on

Normal Flow: 1.1 User presses on ‘Dynamic Touch’ button

1.2 System executes postconditions

Alternative Flows: -

Exceptions: -

Includes: -

Priority: High

Frequency of Use: High

46

Use Case ID: 7

Use Case Name: Toggle Piano Layout

Actors: User

Description: User toggles between Piano layout 1 and 2

Trigger: User presses on ‘Layout’ button

Preconditions: -

Postconditions: System keeps track of layout to be used

Normal Flow: 1.1 User presses on ‘Layout’ button

1.2 System executes postconditions

Alternative Flows: -

Exceptions: -

Includes: -

Priority: High

Frequency of Use: High

Use Case ID: 8

Use Case Name: Toggle Camera

Actors: User

Description: User toggles between front-facing and rear-facing camera

Trigger: User presses on Camera button

Preconditions: -

47

Postconditions: System displays live feed from the next camera

Normal Flow: 1.1 User presses on ‘Camera’ button

1.2 System executes postconditions

Alternative Flows: -

Exceptions: 1.0.E.1 Phone only has one camera

 1.0.E.1.1 System reloads but uses back the only camera

available

Includes: -

Priority: Low

Frequency of Use: Low

Use Case ID: 9

Use Case Name: Change Camera Size

Actors: User

Description: User changes camera resolution

Trigger: User presses on ‘Size’ button

Preconditions: Phone allows different camera resolutions

Postconditions: System switches camera resolution

Normal Flow: 1.1 User presses on Size button

1.2 System displays available camera sizes

1.3 User presses on desired camera size

1.4 System reloads and displayed capture frames in the desired

resolution

48

Alternative Flows: -

Exceptions: -

Includes: -

Priority: Low

Frequency of Use: Low

Use Case ID: 10

Use Case Name: Press Note

Actors: User

Description: User plays the piano

Trigger: User presses a piano key

Preconditions: Piano keys has been set

Finger detection mode is on

User executes a ‘touch’ motion

Postconditions: System responds by playing the corresponding sound of the key

pressed.

Normal Flow: 1.1 User presses on a piano key

1.2 System detects a touch

1.3 System processes touch and plays the corresponding sound

Alternative Flows: -

Exceptions: 1.0.E.1 User executed a touch motion outside all piano key

regions

 1.0.E.1.1 System does nothing

49

Includes: -

Priority: High

Frequency of Use: High

50

