

MCQs on Arrays

Question Code Snippet Answers Correct
Answer Explanation

1 int numbers[5] = {10, 20, 30};
printf("%d\n", numbers[1]);

a) Prints 10
b) Prints 20
c) Prints garbage value
d) Compile time error

b)

The array numbers is
initialized with values.
numbers[1] accesses the
second element (index 1)
based on zero-based
indexing.

2
char name[20];
scanf("%s", name);
printf("Hello, %s!\n", name);

a) Prints "Hello, world!\n" b)
Prompts user for a name
and greets them
c) Infinite loop
d) Compile time error

b)

scanf reads a string from
the user, storing it in the
name array until a
whitespace character is
encountered.

3

int arr[10];
for (int i = 0; i < 10; i++)
{
arr[i] = i * i;
}
printf("arr[5] = %d\n", arr[5]);

a) Prints arr[5] = 0
b) Prints arr[5] = 5
c) Prints arr[5] = 25
d) Compile time error

c)

The loop assigns
squares of i (0 to 9) to
each element. arr[5]
holds the square of 5
(25).

4
int values[3] = {5, 10, 15};
printf("Sum of first two elements:
%d\n", values[0] + values[1]);

a) Prints Sum of first two
elements: 10
b) Prints Sum of first two
elements: 15
c) Prints Sum of first two
elements: 25
d) Compile time error

c)
The expression values[0]
+ values[1] adds the first
two elements (5 + 10).

5

float temperatures[7];
 for (int i = 0; i < 7; i++)
{
scanf("%f", &temperatures[i]);
}

a) Prints all temperatures
b) Assigns random values
to temperatures
c)Prompts user to enter 7
temperatures
d) Compile time error

c)

The loop uses scanf to
read 7 floating-point
values from the user,
storing them in the
temperatures array. The
address-of operator (&)
is used to pass the
memory address of each
element to scanf.

6 char message[] = "Hello";
printf("%s\n", message);

a) Prints garbage value
b) Prints Hello
c) Infinite loop
d) Compile time error

b)

The message array is a
string literal directly
initialized with "Hello".
printf prints the entire
string using the %s
format specifier for
strings.

7

int arrSize = 8;
int numbers[arrSize];
for (int i = 0; i < arrSize; i++)
{
numbers[i] = 0;
}

a) Fills the array with
random numbers
b) Fills the array with 1s
c) Fills the array with 0s
d) Compile time error

c)

The loop iterates through
the array, assigning 0 to
each element. This is a
common initialization
technique for numerical
arrays.

MCQs on Pointers and Strings

Code Snippet Answers Correct
Answer Explanation

1
char name[] = "Alice";
char *ptr = name;
printf("%c\n", *ptr);

a) Prints garbage value
b) Prints A
c) Compile time error
d) Unexpected output

b)

ptr is a character pointer initialized
with the address of the first
character in name ("Alice"). *ptr
dereferences the pointer to access
the value at that address (which is
'A').

2
int num = 10;
int *p = #
printf("Value of num: %d\n", *p);

a) Prints Value of num: 10
b) Prints address of num
c) Compile time error
d) Unexpected output

a)

p is an integer pointer that stores
the memory address of num. *p
dereferences p to access the value
stored at that address (which is
10).

3

char str1[] = "Hello";
char str2[20];
strcpy(str2, str1);
printf("%s\n", str2);

a) Prints Hello (garbage after
it)
b) Prints Hello
c) Compile time error
d) Unexpected output

b
strcpy copies the string from str1
to str2. Since str2 has enough
space, the entire "Hello" is copied.

4

int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr;
printf("Second element: %d\n",
*(ptr + 1));

a) Prints Second element: 1
b) Prints Second element: 2
c) Prints Second element: 3
d) Compile time error

b)

ptr points to the first element of arr.
ptr + 1 adds the size of an integer
(usually 4 bytes) to ptr, effectively
pointing to the second element.
Dereferencing it with * prints the
value (2).

5
char *message = "Welcome";
message[0] = 'G';
printf("%s\n", message);

a) Prints Garbage value
b) Prints Gelcome
c) Compile time error
d) Unexpected output

b)

String literals are typically
read-only. However, in some
implementations, modifying the
first character might work, resulting
in "Gelcome". Note: This behavior
is not guaranteed and can vary
depending on the compiler.

6

char name[15];
printf("Enter your name: ");
scanf("%s", name);
printf("Hello, %s!\n", name);

a) Prompts user for a single
character
b) Prompts user for a name
and greets them
c) Prints garbage value
d) Compile time error

b)

scanf with %s reads a string from
the user until a whitespace
character. The entire string is
stored in the name array.

7 char *ptr; ptr = "Hi there!";
printf("%s\n", ptr);

a) Prints Hi there!
b) Compile time error
c) Unexpected output
d) Segmentation fault

a)

Assigning a string literal to a
pointer directly initializes it with the
address of the string in memory
(which is constant). Dereferencing
ptr with printf prints the entire
string. Note: This might not be
allowed in all compilers. Check for
specific compiler behavior.

8

int numbers[] = {10, 20, 30};
for (int i = 0; i < 3; i++)
{
printf("%d ", *(numbers + i));
}

a) Prints garbage values
b) Prints 10 20 30
c) Prints addresses of
elements
d) Compile time error

b)

MCQs on Structures & Unions

Code Snippet Answers Correct
Answer Explanation

1

struct Point
{ int x;
 int y;
};
struct Point pt = {5, 3};
printf("Point coordinates: (%d,
%d)\n", pt.x, pt.y);

a) Prints Point coordinates: (0,
0)
b) Prints Point coordinates: (5,
3)
c) Compile time error
d) Unexpected output

b)

This defines a Point structure with x
and y coordinates. The pt variable is
initialized with values (5, 3). Member
access is done using the dot (.)
operator.

2

union Data
{
int num;
float value;
};
union Data data;
data.num = 10;
printf("Value in float: %f\n",
data.value);

a) Prints Value in float:
0.000000
b) Prints Value in float:
10.000000
c) Compile time error
d) Unexpected output

c)

Unions share the same memory
location. Assigning to data.num
overwrites the value previously
stored in data.value. The output on
accessing data.value is undefined.

3

struct Student
{
char name[20];
int age;
 };
struct Student std1;
strcpy(std1.name, "Alice");
std1.age = 22;
printf("Student name: %s\n",
std1.name);

a) Prints Student name:
(garbage value)
b) Prints Student name: Alice
c) Compile time error
d) Unexpected output

b)

A Student structure is defined. std1
is a variable of this type. strcpy is
used to copy "Alice" to the name
member of std1.

4

typedef struct
{
float length;
float width;
}
Rectangle;
Rectangle rect = {5.0, 3.0};
printf("Rectangle area: %.2f\n",
rect.length * rect.width);

a) Prints Rectangle area: 0.00
b) Prints Rectangle area:
15.00
c) Compile time error
d) Unexpected output

b)

typedef creates an alias Rectangle
for the structure. rect is initialized
with length (5.0) and width (3.0).
The area is calculated using
member access.

5

struct Book { char title[50];
char author[30]; };
struct Book book1;
scanf("%s %s", book1.title,
book1.author);
printf("Book: %s by %s\n",
book1.title, book1.author);

a) Prints Book: (garbage
value) by (garbage value)
b) Prompts user for book
details and prints them
c) Compile time error
d) Unexpected output

b)

scanf reads two strings (title and
author) and stores them in the
respective members of book1.
Member access is used for printing.

6

union Color
{ int red; char green; };
union Color col; col.red = 255;
printf("Green value: %d\n",
col.green);

a) Prints Green value: 0
b) Prints Green value: 255
c) Compile time error
d) Unexpected output

b)

Assigning to col.red modifies the
same memory location used by
col.green. The output depends on
the character encoding used (might
not be exactly 255).

