Module 2 Worksheet:

<u>Disclaimer:</u> This is a public Google document in which the answers are filled in by your fellow classmates. This is where any answers that we go through during my sessions will appear. Feel free to add on and reference back to your slides/notes to verify any information.

*Anything denoted in red are important takeaways to understand or are things that I have seen on the exam. -William

Color code:

- -Inhibitors of the cell wall =>*The <u>best</u> class to target bacteria with (most selectively toxic)
- -Protein synthesis inhibitors:
- -Metabolic antagonists
- -Nucleic acid synthesis inhibitors => *The <u>worst</u> class to target bacteria with (least selectively toxic)

<u>Name</u>	Mode of Action	Special Characteristics	<u>Examples</u>	Possibles side effects/Resistance
Penicillins	Cell wall synthesis inhibitors 1. Blocks enzyme (transpeptidase) that catalyzes transpeptidation 2. Acts on growing bacteria 3. Inhibits bridge formation; inhibits peptide bonds 4. May activate bacterial autolysins and murein hydrolases 5. Can bind to PBP's and help inhibit peptidoglycan biosynthesis	6-aminopenicillanic acid derivatives; β-lactam ring structure 1-5% of adults in the U.S are allergic to penicillin *Penicillin is the first true antibiotic (Made by a FUNGUS)	*Naturally occurring penicillin (V and G are OG) are narrow spectrum - Only work on gram-positives *Ampicillin (semisynthetic) has a broader spectrum and works against gram-negatives	*Organisms that produce β-Lactamase (Penicillinase) can be resistant
Cephalosporins	Cell wall synthesis inhibitor (similar to Penicillin) B-lactam ring	*True antibiotic made from the fungus *Acremonium	Broad spectrum and is used on patients who are allergic to Penicillin	N.Gonorrhoeae (causative agent for gonorrhea) and Enterobacteriaceae HAI (found in hospital-acquired infections)
Carbapenem & other β-lactams	Cell wall synthesis inhibitor *β-lactam	(*Semi-synthetic) *modified versions of Penicillin and Cephalosporin	Broad spectrum	

		*B-lactam ring		
		contains a carbon		
		atom (where there		
		would be a sulfur)		
		and a double bond		
		where there would be		
		a single bond		
Vancomycin	Inhibits	*NO B-Lactam ring	Narrow spectrum	Vancomycin-
	transpeptidation	*True antibiotic made	Only works against	resistant
	(similar to	from the bacterium	Gram-positives	enterococcus
	Penicillin) and	<u>Streptomyces</u>	(Staphylococcus,	Lid
	inhibits peptide	orientalis (true	Clostridium Bacillus,	(VRE)
	bonds between	antibiotic)	Streptococcus, and	
	the 3rd and 4th	Important for	go Enterococcus	
	amino acid	treating)	
	*Inhibits the	antibiotic-resistant		
	removal of the	staphylococcal and		
	terminal	enterococcal		
	D-alanine	infections		
		*Was previously		
		known as the "drug of		
		<u>last resort</u> "		
Aminoglycosides	Protein synthesis	True antibiotic - made	Narrow spectrum -	Can be toxic and
	inhibitor	from Bacteriocidal	aerobic	cause renal
	Binds to the 30s	bacteria	gram-negative	damage
	small subunit of	Streptomyces	bacteria	
	the ribosome	(*True antibiotics		
		Streptomycin,		

		kanamycin,		
		neomycin)		
		Structure is		
		cyclohexane ring		
Tetracyclines	Inhibits rRNA from	*4-ringed structure	Broad spectrum	Vibrio Cholerae
, , , , , , , , , , , , , , , , , , ,	binding, inhibits	Bacteriostatic, very	Can be used	Causes *black
	translation	broad spectrum,	against atypical	teeth in
	Binds to the 30S	includes true and	bacteria	adults/children as a
	small subunit	semi-synthetic	Bacteria	side effect
	Small Suburiit	antibiotics		Side Ciledi
		Works against		
		intracellular		
		pathogens		
		(*Atypical bacteria →		
		Rickettsia,		
		Chlamydiae , and		
		Mycoplasma)		
Macrolides	Inhibits alignment	"Massive" 12-22	Erythromycin -	
	with amino acid to	carbon lactone ring	Broad spectrum,	
	prevent	Generally	bacteriostatic, works	
	polypeptide from	bacteriostatic	against	
	forming		Gram-positives,	
	Binds to 23S		<i>Mycoplasma</i> and	
	rRNA (large		some	
	subunit of the		Gram-negatives	
	ribosome)		Broad spectrum	
	<u>ribozyme</u> that		Azithromycin is	
	catalyzes peptide		used to treat	

	bond formation		chlamydia Used for patients allergic to penicillin	
Lincosamides	Prevents polypeptide chain growth Binds to 23s rRNA	Broad spectrum, bacteriostatic *True antibiotic made by Streptomyces lincolnensis	Broad spectrum Used against anaerobic microbes, Gram-negative bacteria in our gut Clindamycin- Can cause C. diff to bloom in gut by destroying competition Clindamycin treats CA-MRSA	
Chloramphenicol	Protein synthesis inhibition Binds to 23S rRNA Can also bind to mitochondrial ribosome	*True antibiotic produced by bacterium Streptomyces venezuelae Very toxic antibiotic	*First broad-spectrum antibiotic Bacteriostatic against domain bacteria Bactericidal to sensitive bacteria	Toxic with numerous side effects Ex. Aplastic anemia, leukemia, neurotoxin reactions
Oxazolidinones	Protein synthesis inhibition Binds to 23S rRNA	Bacteriostatic Synthetic antibiotic	Only used in hospitals *Considered the new "drug of last resort"	Works against many resistant bacteria (VRE, MRSA, penicillin-resistant

				S. pneumoniae) Very few side effects
Sulfonamides/Sulfa	*Inhibits the	Sulfa binds to active	Sulfanilamide	*Bacteria can learn
Drugs	making of folic	site of enzyme	Works against	to absorb folic acid
	acid	instead of PABA,	bacteria and some	from the
	Selectively toxic	prevents folic acid	protozoa	environment to
	due to competitive	production		become resistant
	inhibition	*PABA analog,		Can also change
		Synthetic antibiotic,		enzyme to select for
		Broad spectrum,		PABA
		bacteriostatic		
Trimethoprim	Inhibits binding	*Often given with	Broad spectrum	Works against
	from substrate to	Sulfa drugs (Bactrim)		bacteria resistant to
	product	for a synergistic		sulfa
		outcome		Side effects:
		Synthetic		photosensitivity &
				abdominal pain
Fluoroquinolones	*Inhibits DNA	Synthetic	Norfloxacin,	Many different side
	gyrase and	Bactericidal	nalidixic acid	effects, used
	topoisomerase IV	Enteric (grows in gut)	Broad spectrum	selectively
	from uncoiling the	Commonly prescribe		
	DNA to inhibit	for UTIs		
	access			
Rifamycins	*Inhibits	Semisynthetic	Rifampin	*Red sweat and
	transcription by	Can be given before	Broad spectrum,	urine
	binding to	coming into contact	can work against	
	β-subunit in RNA	with a pathogen	domain bacteria and	

	polymerase	Bacteriostatic	Mycwsdobacterium	
--	------------	----------------	------------------	--

Color code:

- -Antiviral
- -Antifungal
- -Antiprotozoal

<u>Microorganism /</u> <u>Disease</u>	Examples and Treatment
Influenza	Amantadine - Blocks penetration and uncoating of the virus (prevention) *Tamiflu (oseltamivir) - Neuraminidase inhibitor, stops binding and replication NOT a cure for the flu
Herpes	*Acyclovir (Ex. of an Antiviral) - inhibits viral DNA polymerase Adenine arabinoside (vidarabine) - inhibits DNA/RNA synthesis and function
HIV	*5 Drug cocktail = "HAART" (most successful) For preexposure = "PrEP"

Toxoplasma gondii	Combination drug therapy *Anti-protozoan drugs exist!
Entamoeba and Trichomonas	
Entonosticos	Metronidazole
Plasmodium	Chloroquine Mefloquine
	RNA function, toxic • Fluconazole - low side effects, used prophylactically, HIV & immunocompromised patients
	 Amphotericin B - binds ergosterol, highly toxic (from <i>Streptomyces</i> spp.) 5-flucytosine - disrupts/inhibits DNA and
Mycoses	*Systemic mycoses: Deadliest form of mycoses (all throughout the body)
Myggggg	*Antifungals work to identify and attack Ergosterol = or (unique sterol in FUNGAL cell membranes)

However, mechanisms not entirely known

Practice Questions: (Chapter 9) *Answers are highlighted

- 1. All of the following antibiotics are protein synthesis inhiitors except:
 - A. Erythromycin Macrolides
 - B. Rifamycins
 - C. Clindamycin Lincosamides
 - D. Tetracyclines
 - E. Kanamycin Aminoglycoside
- 2. Which of the following antibiotics is/are **not** involved with inhibiting the catalytic center of peptide bond formation?
 - A. Macrolides 23S
 - B. Oxazolidinones 23S
 - C. Lincosamides 23S
 - D. Aminoglycosides 30S and tetracyclines only ones that are 30S
 - E. Both A and C

- 3. Vancomycin: (select all that apply)
 - A. Was previously considered the "drug of last resort"
 - B. Has a narrow spectrum and can only be used on gram-positives
 - C. Can be inhibited by β-lactamase
 - D. Is made by a fungus
 - E. Is considered a true antibiotic that inhibits transpeptidation
- 4. Which of the following is **true**?
 - A. Streptomyces is a gram-positive soil bacterium that produces a majority of antibiotics
 - B. Metabolic antagonists are considered to be the most specific antimicrobial drugs

 Most specific are cell wall inhibitors
 - C. Tetracyclines are broad spectrum antibiotics responsible for black teeth
 - D. Both A and B
 - E. Both A and C
- 5. Which of the following is **false**?
 - A. The larger the therapeutic index, the more toxic the drug is
 - B. Salvarsan is considered to be the first synthetic antibiotic
 - C. Ampicillin is a semisynthetic penicillin that can work against gram-negative bacteria
 - D. Rifamycins are a class of nucleic acid synthesis inhibitors that can cause red sweat and urine
 - E. All of the above are true
- 6. Which of the following is paired **incorrectly**?

A.	Chloramphenicol - first broad spectrum antibiotic
B.	Rifamycin - may cause red sweat and urine
C.	Tamiflu - cure for the flu
D.	Acyclovir - antiviral
E.	Oxazolidinones - "new drug of last resort"

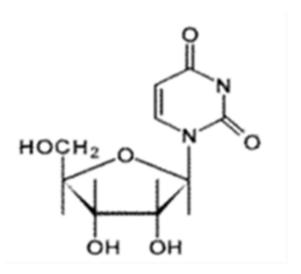
- 7. An antibiotic that only works on a small subset of bacteria is known as:
 - A. A broad-spectrum antibiotic
 - B. A narrow spectrum antibiotic
 - C. Strain-specific antibiotic
 - D. A selective toxicity antibiotic
- 8. It is difficult to identify antivirals because:
 - A. Viruses use our cellular machinery to replicate
 - B. They are also eukaryotes
 - C. They have an impermeable capsid
 - D. Viruses can only replicate inside bacterial cells
 - E. It is very easy to identify antivirals

- 9. Which category of antibiotics is the least selectively toxic?
 - A. Protein synthesis inhibitors
 - B. Cell wall synthesis inhibitors
 - C. Nucleic acid synthesis inhibitors

- D. Metabolic antagonists
- E. All of the above have similar selective toxicity
- 10. An antibiotic that is produced by a microorganism:
 - A. Is known as a synthetic antibiotic
 - B. Includes penicillin
 - C. Is often more broad spectrum than their semi-synthetic counterparts
 - D. All of the above
 - E. Both B and C

(Chapter 13,16)

- 1. According to the central dogma of biology, which of the following represents the flow of genetic information in cells?
 - A. DNA to protein to RNA
 - B. RNA to protein to DNA
 - C. DNA to RNA to protein
 - D. RNA to DNA to protein
 - E. None of the above
- 2. The following is the antisense strand sequence. What is the mRNA sequence?


3' - TAC AGT TCC GGA CTA - 5'

- A. 3' ATG TCA AGG CCT GAT 5'
- B. 5' ATG TCA AGG CCT GAT 3'
- C. 5' AUG UCA AGG CCU GAU 3'
- D. 3' AUG UCA AGG CCU GAU 5'

3. The following picture is an example of what?

- A. A pyrimidine
- B. A purine
- C. A nucleotide
- D. A nucleoside
- E. Uracil
- 4. What are key differences between DNA and RNA (select all that apply)
 - A. RNA lacks a hydroxyl group at the 2' carbon, while DNA has it It has it whereas DNA doesnt "Deoxy"
 - B. DNA contains a deoxyribose sugar while RNA has a ribose sugar
 - C. Uracil is only present in RNA, not DNA
 - D. DNA is double stranded while RNA is typically single stranded in living organisms
 - E. DNA contains a 6 carbon sugar while RNA has a 5 carbon sugar Both have 5 carbon sugars
- 5. Which of the following is true?
 - A. 23s rRNA is a ribozyme that catalyzes peptide bond formation

- B. T4SS (Type IV Secretion System) utilizes ATP and can be found in gram-positives and gram-negatives Yes uses HGT in gram + & -
- C. Mutations in the bacterial genome can only be spontaneous Can be induced
- D. Both A and B
- E. Both B and C
- 6. The following picture is an example of a what?

- A. DNA nucleoside
- B. DNA nucleotide
- C. RNA nucleotide
- D. RNA nucleoside OH group means RNA, no group means DNA. Its not a nucleotide bc there is no phosphate group.
- 7. Which of the following is **true** regarding the Hershey-Chase experiment?
 - A. Used a "smooth" and "rough" bacteria
 - B. They labeled the DNA with ³⁵S and the protein coat ³²P (switched abbreviations)

- C. Both the labeled DNA and the protein coat entered the cell (no protein coat didnt which is how to tell them apart)
- D. It used phages and bacteria to identify what the genetic material was
- E. All of the above are true
- 8. DNA replication: (select all that apply)
 - A. Happens once per cell cycle
 - B. Is conservative (It is semi-conservative)
 - C. Replicates the whole genome
 - D. Is semi-conservative
 - E. Starts at the oriC site and ends at the ter site in bacteria
- 9. Which of the following is true?
 - A. Bacteria can transcribe polycistronic mRNA (Yes eukaryotes do monocistronic mRNA)
 - B. The *lac* operon contains information for the *lac* permease
 - C. Transcription and translation are coupled in eukaryotes (No bc eukaryotes have nucleus)
 - D. All of the above
 - E. Both A and B
- 10. Which of the following is a **false** statement?
 - A. All living organisms contain both DNA and RNA
 - B. Both DNA and RNA have cytosine
 - C. In living organisms RNA is single stranded (In viruses they can be double stranded)

- D. RNA uses thymine instead of uracil
- E. None of the above is false