
FLIP: Flink/Pinot Connector

Background and Motivation

A brief introduction to Apache Pinot and the ecosystem
Apache Pinot is a real-time distributed OLAP datastore, built to deliver scalable real time
analytics with low latency. As Figure 1 shows, Pinot has an inbuilt lambda architecture as the
following components:

Figure 1. A typical Pinot ecosystem architecture

●​ Services/Applications produce the source events to the message queue (e.g. Kafka).

The message queue typically buffers the messages for some retention period (e.g. a few
days).

●​ The messages are ingested into the Data Lake (e.g. Hadoop) for historical data
persistence.

●​ A streaming pipeline (e.g. Flink) transforms and processes the messages into another
Kafka topic, which is used for ingestion by Pinot into a real-time table.

https://docs.pinot.apache.org/

●​ A batch pipeline (e.g. Spark) does a similar transformation on the corresponding Hive
dataset, creates Pinot segments, and pushes them to Pinot offline table.

●​ Both the real-time table and offline table are used for serving user queries, and Pinot
creates a federated view from the real-time and offline results.

The problem
A common problem for this architecture is the duplication of the transformation logic in the
streaming and batch ingestion pipelines. Because the batch data source (e.g. Hive datasets)
are ingested from the Kafka topic, they typically share the same schema. Similarly, the real-time
table and offline table in Pinot are different parts of the same table, and therefore share the
same schema. That means users need to describe the same logic twice in Flink and Spark ETL
jobs, making the jobs hard to maintain and sync. Ideally, we want to consolidate the
streaming/batch ingestion logic, and use Flink for both pipelines.

Proposal
We propose a Flink Sink to Pinot on top of the TableSink interfaces (FLIP-95) for storing BATCH
processing results in Pinot and also integrate the sink with the Unified Sink API (FLIP-143). The
streaming sink is less useful to Pinot, because Pinot does not provide a record write API.
Instead, Pinot ingests from the streams and buffers on the server, so that it can directly serve
the latest events.

Design
The record writes in the Flink work in the following way, as shown in Figure 2:

Figure 2. Pinot Sink workflow

1.​ PinotSink contains (1) a SegmentWriter, which can receive the records to write and
generate the segment files, (2) a segmentUploader for uploading segments. The Sink
converts the Flink data type to Pinot data type to feed the writer.

https://cwiki.apache.org/confluence/display/FLINK/FLIP-95%3A+New+TableSource+and+TableSink+interfaces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-143%3A+Unified+Sink+API

2.​ The sink initiates a segment write request to the PinotController, which will
a.​ Initiate a transaction if it has not started, and send the Flink job id to indicate the

transaction id.
b.​ Send the segment write configs like “overwrite” or “append” to the time range of

the segments.
3.​ The SegmentWriter has an internal buffer with a configured threshold for flushing
4.​ Upon flushing, SegmentWriter creates a segment file including the metadata files and

index files.
5.​ The SegmentUploader then packages the files into a tar
6.​ The SegmentUploader uploads the segment tar to the Pinot controller
7.​ After all segments are uploaded, the sink sends a signal to Pinot controller to commit the

transaction.

In order to support the at-least-once semantics, the segments encode the identifier in the
segment name and therefore can be replaced if the job reruns. Also, because we aim to support
the batch mode only in this proposal, we don’t plan to support the intermediate checkpoints.

Note that there is an ongoing effort on the SegmentWriter in the Pinot community, which
implements step #2 - #5. To avoid duplicated efforts and simplify the connector implementation,
the Pinot connector in this proposal will depend on the SegmentWriter, which is expected to
release in 0.8.0. In particular, the SegmentWriter has the following methods:

interface SegmentWriter {
 init(Configuration configs);
 write(PinotRow row);
 write(PinotRow[] rows);
 flush();
 close();
}

And the Pinot sink will be implemented like the following:

public class PinotSinkFunction<T> extends RichSinkFunction<T> {
 public void open(Configuration parameters) throws Exception {
 SegmentWriter writer = new ...
 }

 public void invoke(T value, Context context) throws Exception {
 GenericRow row = pinotRowConverter.concert(value);
 writer.write(row) ;
 if(checkThreshod()) {
 writer.flush();
 }
 }

 public void close() throws Exception {
 writer.flush();
 writer.close();
 }

https://docs.google.com/document/d/1f_JlegCkH_Zysm80maLnv7iqgWtD9uPiBLkeLmMUoNg/edit?ts=6036ced5#

}

Connector Options

Option​ Required
​

Default Type Description

connector Y none string The connector to use, here shall be
‘pinot’

table-name Y none string name of the pinot table

url Y none string URL of the Pinot controller

sink.buffer-flush.m
ax-size

N 5mb string maximum size in memory of buffered
rows for creating a segment.

sink.buffer-flush.m
ax-rows

N 1000 int maximum number of rows to buffer for
each segment creation

sink.parallelism N none int Defines the parallelism of the Pinot sink
operator. By default, the parallelism is
determined by the framework using the
same parallelism of the upstream
chained operator.

segment-name.typ
e

N simple string
the type of name generator to use.
Following values are supported -

●​ simple - this is the default spec.
●​ normalizedDate - use this type

when the time column in your
data is in the String format
instead of epoch time.

segment.name.po
stfix

N none string For simple SegmentNameGenerator.
Postfix will be appended to all the
segment names.

segment.name.pre
fix

N none string For normalizedDate
SegmentNameGenerator.
The Prefix will be prepended to all the
segment names.

Schema and Data Type Mapping
The Sink connector can fetch the schema as well as table configurations via the Pinot controller
API. The schema and table configs are used for index creation.

The data type needs to be converted during the write operation.

Note by default, Pinot transforms null values coming from the data source to a default value
determined by the type of the corresponding column (or as specified in the schema), per the
Pinot guide.

Flink SQL type Pinot type Default value for null

TINYINT Integer 0

SMALLINT Integer 0

INT Integer 0

BIGINT Long 0

DECIMAL Not supported Not supported

FLOAT Float 0.0

BOOLEAN Integer 0

DATE Stores the number of days
since epoch as an Integer
value

0

TIME Stores the milliseconds since
epoch as Long value.

0

Timestamp Stores the milliseconds since
epoch as Long value.

0

STRING String “null”

BYTES Bytes byte[0]

ARRAY Array default value of array type

https://docs.pinot.apache.org/developers/advanced/null-value-support#need-for-special-null-value-handling

Rejected Alternatives
An alternative to the Pinot sink could be to use Hive as a data source and Kafka batch as a sink,
and then have Pinot ingests from the Kafka topic. However, this does not work for the following
reasons:

●​ The segments are managed differently in Pinot’s realtime table and offline table. The
realtime segments are grouped using Kafka offsets, whereas the offline segments are
split based on the time range. As a result, The realtime segments cannot be replaced if
the job reruns.

●​ Also, it’s less efficient to use Kafka the intermediate storage for the batch processing,
comparing to the direct segment creation and uploads.

	FLIP: Flink/Pinot Connector
	Background and Motivation
	A brief introduction to Apache Pinot and the ecosystem
	The problem

	Proposal
	Design
	Connector Options
	Schema and Data Type Mapping

	Rejected Alternatives

