AB Calculus Free Response 5.2

1. Let f be the function given by $f(x) = 3xe^{3x}$.

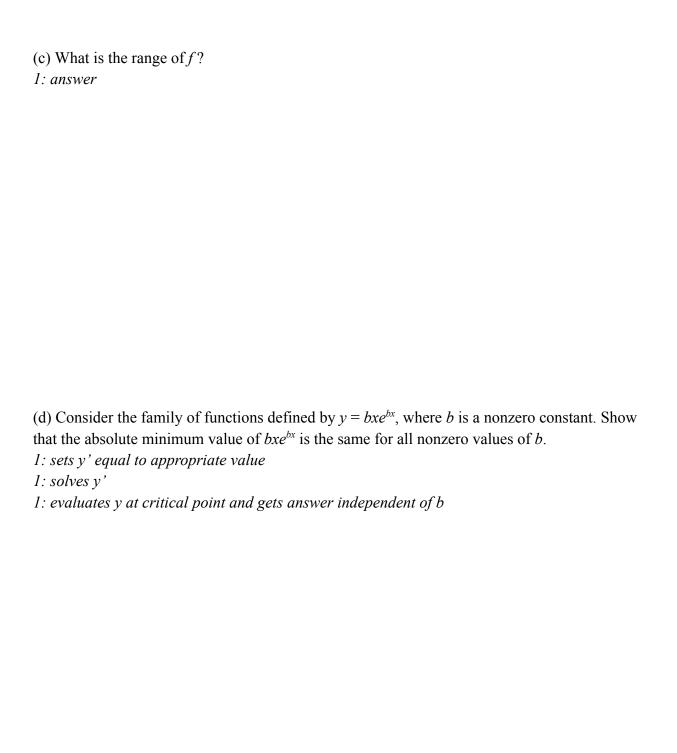
- (a) Find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$.
- $1: \lim_{x \to -\infty} f(x)$
- $1: \lim_{x \to \infty} f(x)$

(b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.

1: solves f'(x) = 0

1: evaluates max/min at critical point

1: justification



Solutions 1

(a)
$$\lim_{x \to -\infty} f(x) \ 3xe^{3x} = 0$$

1: 0 as
$$x \to -\infty$$

$$\lim_{x \to \infty} f(x) \ 3xe^{3x} = \infty$$

1:
$$\infty$$
 as $x \to \infty$

(b)
$$f'(x) = 3e^{3x} + 9xe^{3x} = 3e^{3x}(1+3x) = 0$$

 $x = -\frac{1}{3}$

1: solves
$$f'(x) = 0$$

$$f(-\frac{1}{3}) = -\frac{1}{e}$$

1: evaluates f at critical point

 $-\frac{1}{e}$ is an absolute minimum because:

1: justification

$$f'(x) < 0$$
 for all $x < -\frac{1}{3}$

$$f'(x) > 0$$
 for all $x > -\frac{1}{3}$

and $x = -\frac{1}{3}$ is the only critical number

(c) Range of $f = \left[-\frac{1}{e}, \infty \right)$

1: answer

or
$$-\frac{1}{e} < f(x) < \infty$$

(d)
$$y' = be^{bx} + b^2xe^{bx} = be^{bx}(1 + bx) = 0$$

1: sets
$$y' = 0$$

$$x = -\frac{1}{b}$$

1: solves for
$$x$$

at
$$x = -\frac{1}{h}$$
, $y = -\frac{1}{e}$

y has an absolute minimum value of $-\frac{1}{e}$ for all nonzero b.

- 2. Let f be the function defined by $f(x) = e^x \sin x$.
- (a) Find the average rate of change of f on the interval $0 \le x \le \frac{3\pi}{2}$.

1: answer

(b) What is the slope of the line tangent to the graph of f at $x = \pi$?

1:f'(x)

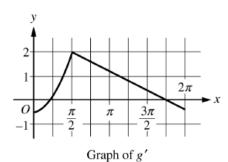
1: slope

- (c) Find the absolute minimum value of f on the interval $0 \le x \le 2\pi$. Justify your answer.
- 1: sets f'(x) to appropriate value
- 1: identifies interior candidates
- 1: answer with justification

(d) Let g be a differentiable function such that $g\left(\frac{\pi}{2}\right) = 0$ and let $h(x) = e^x \cos x$. The graph of g, the derivative of g, is shown below. Find the value of $\lim_{x \to \pi/2} \frac{h(x)}{g(x)}$ or state that it does not exist.

Justify your answer.

- 1: identifies limits situation
- 1: applies correct rule
- 1: answer



Solutions 2

(a) The average rate of change on the interval $0 \le x \le \frac{3\pi}{2}$ is

$$\frac{f(\frac{3\pi}{2}) - f(0)}{\frac{3\pi}{2} - 0} = \frac{-e^{3\pi/2} - 0}{\frac{3\pi}{2}} = -\frac{2}{3\pi}e^{3\pi/2}$$

1: answer

(b)
$$f'(x) = e^x \sin(x) + e^x \cos(x)$$

 $f'(\pi) = e^{\pi}(0) + e^{\pi}(-1) = -e^{\pi}$

1: f'(x)1: slope

(c)
$$f'(x) = 0$$

 $e^x \sin(x) + e^x \cos(x) = 0$
 $e^x (\sin(x) + \cos(x)) = 0$
 $\sin(x) + \cos(x) = 0$
 $x = \frac{3\pi}{4}, \frac{7\pi}{4}$

1: sets f'(x) = 0

$$\sin(x) + \cos(x) = 0$$

$$x = \frac{3\pi}{4}, \frac{7\pi}{4}$$

$$f(0) = 0$$

1: identifies $x = \frac{3\pi}{4}, \frac{7\pi}{4}$

$$f(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}e^{3\pi/4}$$

as candidates

$$f(\frac{7\pi}{4}) = -\frac{\sqrt{2}}{2}e^{7\pi/4}$$
$$f(2\pi) = 0$$

The absolute minimum value of f on $0 \le x \le 2\pi$ is $-\frac{\sqrt{2}}{2}e^{7\pi/4}$

1: answer with justification

(d)
$$\lim_{x \to \pi/2} h(x) = 0$$

Because *g* is differentiable, *g* is continuous.

$$\lim_{x \to \pi/2} g(x) = g(\frac{\pi}{2}) = 0$$

1: g is continuous at $x = \frac{\pi}{2}$ and limits equal 0

By L'Hôspital's Rule,

$$\lim_{x \to \pi/2} \frac{h(x)}{g(x)} = \lim_{x \to \pi/2} \frac{h'(x)}{g'(x)} = \frac{-e^{\pi/2}}{2}$$

1: applies L'Hôspital's Rule