
MATH2001 Cheat Sheet 

 

Contents 

ODE’s​ 2 

Linear Algebra​ 5 

Orthogonal Projection:​ 6 

Construction of an Orthonormal Basis:​ 7 

Least squares approximation:​ 8 

The Determinant​ 11 

Eigenvalues and Eigenvector​ 11 

Diagonalisation​ 12 

Orthogonalization​ 13 

Orthogonal Diagonalisation​ 13 

Quadratic Forms​ 14 

Complex Matrices​ 15 

Multivariable Taylor Series​ 17 

Critical Points in n-dimensions​ 17 

Calculus​ 19 

Double Integrals​ 19 

Double integrals in polar coordinates​ 19 

Mass, centre of mass and moments​ 20 

Triple Integrals​ 20 

Cylindrical Coordinates​ 20 

Spherical Coordinates​ 20 

Moments of Inertia (second moments)​ 20 

Vector Fields​ 21 

Conservative Vector Fields​ 21 

Gradient of a scalar field, conservative vector fields​ 21 

The fundamental theorem for line integrals​ 22 

Test for conservative fields​ 22 

Green’s Theorem​ 22 

Flux of a vector field​ 23 

Outward flux across a closed curve in the plane​ 25 

Divergence of a vector field​ 25 

Parameterisation in R3​ 25 

Tangent planes​ 25 

Surface Integrals​ 26 

Variable transformations in double integrals​ 26 

Flux integrals and Gauss’ divergence theorem​ 27 

Curl of a vector field​ 27 

Curl of a conservative vector field​ 27 

Stokes’ Theorem​ 27 

 



MATH2001 Cheat Sheet 

 

ODE’s 
If ODE in the form: 

 𝑄 𝑦( )𝑦' = 𝑃(𝑥)

 𝑄 𝑦( ) 𝑑𝑦
𝑑𝑥 = 𝑃(𝑥)

Directly solve 

 ∫ 𝑄 𝑦( )𝑑𝑦 = ∫ 𝑃 𝑥( )𝑑𝑥

 

If ODE in the form: 

   𝑦' = 𝑃 𝑥( ),  𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒

 

If ODE in the form: 

 𝑃 𝑥,  𝑦( ) + 𝑄 𝑥,  𝑦( ) 𝑑𝑦
𝑑𝑥 = 0

ODE is exact if: 

 ∂𝑃
∂𝑦 = ∂𝑄

∂𝑥

Integrate Q with respect to x and then differentiate with respect to y and equate with P to find 

integration constant. 

 

If ODE in the form: 

 𝑦' + 𝑃 𝑥( )𝑦 + 𝑄 𝑥( ) = 0

Integrating factor: 

 𝐼 = 𝑒
∫𝑃 𝑥( )𝑑𝑥

 ∴𝐼𝑦 = ∫ 𝐼𝑄𝑑𝑥

If ODE in the form: 

 𝑦'' + 𝑃 𝑥( )𝑦' + 𝑄 𝑥( )𝑦 = 𝑅 𝑥( )

If R(x) = 0, ODE is homogeneous, if R(x) != 0, ODE is nonhomogeneous. 
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If homogeneous: 

1.​ Find characteristic polynomial: 

 λ2 + 𝑎λ + 𝑏( ) = 0,  𝑎 = 𝑃 𝑥( ) 𝑎𝑛𝑑 𝑏 = 𝑄(𝑥)

Three possible solutions: 

1.​ 2 real and distinct roots, : λ
1
 𝑎𝑛𝑑 λ

2

 𝑦
𝐻

= 𝐴𝑒
λ

1
𝑥

+ 𝐵𝑒
λ

2
𝑥

2.​ 2 real indistinct roots, : λ

 𝑦
𝐻

= 𝐴𝑒λ𝑥 + 𝐵𝑥𝑒λ𝑥

3.​ 2 real complex roots,  λ
1
 𝑎𝑛𝑑 λ

2

 𝑦
𝐻

= 𝐴𝑐𝑜𝑠 𝑥( ) + 𝐵𝑠𝑖𝑛(𝑥)

If R(X) doesn’t equal 0: 

Two possible methods: 

1.​ Undetermined coefficients: 

If  𝑟 𝑥( ) =  𝑒𝑥 + cos 𝑐𝑜𝑠 𝑥( ) ,  𝑦
𝑝

= 𝑔
1

𝑥( ) + … + 𝑔
𝑛
(𝑥)

e.g for  cos 𝑐𝑜𝑠 𝑥( ) ,  𝑔 𝑥( ) = 𝑥( ) + 𝑏𝑐𝑜𝑠 𝑥( ) 𝑜𝑟 𝑖𝑓 𝑟 𝑥( ) = 2,  𝑔 𝑥( ) = 𝑎𝑥
Differentiate and double differentiate g(x) and substitute into original ODE and solve and 

substitute IVP if present 
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2.​ Variation of parameters: 

Given the general solution, e.g. , set  𝑦
𝐻

= 𝐴𝑒−2𝑥 + 𝐵𝑒−𝑥 𝑦
1

= 𝑒−2𝑥 𝑎𝑛𝑑 𝑦
2

= 𝑒−𝑥

 𝑊 =  𝑦
1
𝑦

2
' − 𝑦

1
' 𝑦

2

 𝑦
𝑃

= 𝑢𝑦
1

+ 𝑣𝑦
2

 𝑢 𝑥( ) =  − ∫
𝑦

2
𝑟 𝑥( )

𝑊 𝑑𝑥 𝑎𝑛𝑑 𝑣 𝑥( ) = ∫
𝑦

1
𝑟(𝑥)

𝑊 𝑑𝑥

Thus,  𝑦 =  𝑦
𝐻

+ 𝑦
𝑃
,   𝑠𝑜𝑙𝑣𝑒 𝐼𝑉𝑃 𝑖𝑓 𝑛𝑒𝑒𝑑𝑒𝑑
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Linear Algebra 
Basis: Let B be a set of vectors in the vector space V. B is a basis for V if B is linearly independent and 

B spans V (every vector in V can be expressed as a linear combination of basis vectors).  

If an element of the span is linearly dependant on the others, it can be removed from span. 

Transition Matrix: In general,  𝑃
𝐵→𝐵' = ( 𝑣

1[ ]
𝐵'

𝑣
2[ ]

𝐵'

|
|
|

|
|
|
…| 𝑣

𝑛[ ]
𝐵'

)
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Inner product space: A vector space with an associated inner product is called an inner product 

space. As we are assuming all vectors are real, we look at real inner product spaces.  

Orthogonality: 

The norm of a vector is defined as: 

 ‖𝑣‖ = 〈𝑣,  𝑣〉

The distance between two vectors is defined as: 

 𝑑 𝑢,  𝑣( ) = ‖𝑢 − 𝑣‖

Two vectors are orthogonal if: 

 〈𝑢,  𝑣〉 = 0

Angle between two vectors: 

 θ = arccos 𝑎𝑟𝑐𝑐𝑜𝑠 〈𝑢, 𝑣〉
‖𝑢‖‖𝑣‖( ) ,  θ∈ 0,  π[ ]

Let U be a subset of the real inner product space of V. The orthogonal complement of U, , is the 𝑈⊥

set of all vectors in V that are orthogonal to every vector in U. That is: 

 𝑈⊥ = {𝑣∈𝑉 | 〈𝑣,  𝑢〉 = 0 ∀ 𝑢∈𝑉

Let V be a real inner product space. A non-empty set of vectors in V is orthogonal if each vector in 

the set is orthogonal to all the other vectors in the set. That is, the set  is orthogonal if 𝑣
1
, …, 𝑣

𝑛{ }⊆𝑉

. If V is orthogonal, V is linearly independent. 〈𝑣
𝑖
,  𝑣

𝑗
〉 = 0,  𝑖 ≠𝑗

 

An orthogonal set of vectors in V is called orthonormal if all the vectors in the set are unit vectors. 

That is, the set  is orthonormal if . An 𝑒
1
, …, 𝑒

𝑛{ }⊂𝑉 〈𝑒
𝑖
,  𝑒

𝑗
〉 = 0,  𝑖 ≠𝑗 𝑜𝑟 〈𝑒

𝑖
,  𝑒

𝑗
〉 = 1,  𝑖 = 𝑗

orthonormal basis for V is a basis for V that is also an orthonormal set. 
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Orthogonal Projection: 
Let U be a finite-dimensional subspace of the real inner product space V. Then, each  can be 𝑣∈𝑉
written in a unique way as: 

 𝑣 = 𝑢 + 𝑤,  𝑢∈𝑉,  𝑤∈𝑈⊥

The vector  is called the orthogonal projection of v onto U and is given by: 𝑢∈𝑈

 𝑃𝑟𝑜𝑗
𝑈

𝑣( ) = 〈𝑣,  𝑒
1
〉𝑒

1
+ … + 〈𝑣,  𝑒

𝑘
〉𝑒

𝑘
 

Likewise, the vector  is called the orthogonal projection of v onto  and is given by: 𝑢∈𝑈⊥ 𝑈⊥

 𝑃𝑟𝑜𝑗
𝑈⊥ 𝑣( ) = 𝑣 − 𝑃𝑟𝑜𝑗

𝑈
𝑣( )

One can show that: 

 𝑑𝑖𝑚𝑉 = 𝑑𝑖𝑚𝑈 + 𝑑𝑖𝑚𝑈⊥

Suppose you have found dimV – dimU linearly independent vectors that are all orthogonal to U. 

Then, these vectors will, in fact, form a basis for  𝑈⊥.

 

Construction of an Orthonormal Basis: 
My method: 

1.​ Identify if anything thing in span is a linear combination of the other, if so, remove from set. 

2.​ Set a new vector, matrix etc to be in orthonormal basis with variables. Solve inner product 

with every element in set to find the values of the variables (inner product = 0 when solving) 

3.​ Verify that new elements are orthogonal 

4.​ Normalise by taking 1/sqrt(inner product). 

Let {v1, …, vn} be a linearly independent set of vectors in the real inner product space V. The 

corresponding Gram-Schmidt process is the following algorithm. 

1.​ Set  𝑒
1

=
𝑣

1

‖𝑣
1
‖

i + 1: Let  𝑈
𝑖

= 𝑠𝑝𝑎𝑛 𝑒
1
, …, 𝑒

𝑖{ }
set  𝑤

𝑖+1
= 𝑣

𝑖+1
− 𝑃𝑟𝑜𝑗

𝑈
𝑖

𝑣
𝑖+1( ) = 𝑃𝑟𝑜𝑗

𝑈⊥ 𝑣
𝑖+1( )

 ⇒ 𝑤
𝑖+1

∈ 𝑈
𝑖
⊥ & 𝑤

𝑖+1
≠0

 𝑠𝑒𝑡 𝑒
𝑖+1

=
𝑤

𝑖+1

‖𝑤
𝑖+1

‖

Result: 

 𝑒
1

=
𝑣

1

‖𝑣
1
‖

 𝑤
2

= 𝑣
2

− 〈𝑣
2
,  𝑒

1
〉𝑒

1
 & 𝑒

2
=

𝑤
2

‖𝑤
2
‖
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 𝑤
3

= 𝑣
3

− 〈𝑣
3
,  𝑒

1
〉𝑒

1
+ 〈𝑣

3
,  𝑒

2
〉𝑒

2( ) & 𝑒
3

=
𝑤

3

‖𝑤
3
‖

 

 

Example: 

 

Least squares approximation: 
From the best approximation theorem,  is the best approximation to in a 𝑢 =  𝑃𝑟𝑜𝑗

𝑈
(𝑣) 𝑣∈𝑉 

finite-dimensional subspace U of V.  

Solution 1: Use gram-schmidt to construct an orthonormal basis {e1,…,en}. Then: 

 𝑃𝑟𝑜𝑗
𝑈

𝑣( ) = 〈𝑣,  𝑒
1
〉𝑒

1
+ … + 〈𝑣,  𝑒

𝑛
〉𝑒

𝑛
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Solution 2:  

Let  be a basis of the subspace U. Then any  can be written as γ = {𝑢
1
,  𝑢

2
,  …,  𝑢

𝑛
} 𝑢∈𝑈

. We seek coefficients  that minimise , or 𝑢 =  α
1
𝑢

1
+ α

2
𝑢

2
+ … + α

𝑛
𝑢

𝑛
α

1
,  α

2
,  …,  α

𝑛
‖𝑣 − 𝑢‖

equivalently, minimise  (same outcome, avoid ‖𝑣 − 𝑢‖2 = ‖𝑣 − α
1
𝑢

1
+ α

2
𝑢

2
+ … + α

𝑛
𝑢

𝑛( )‖2

square root).  

 ‖𝑣 − α
1
𝑢

1
+ α

2
𝑢

2
+ … + α

𝑛
𝑢

𝑛( )‖2 =  〈𝑣 − α
1
𝑢

1
+ α

2
𝑢

2
+ … + α

𝑛
𝑢

𝑛( ),  𝑣 − (α
1
𝑢

1
+ α

2
𝑢

2
+ … + α

𝑛
𝑢

𝑛
)〉

 = 〈𝑣,  𝑣〉 − 2α
1
〈𝑣,  𝑢

1
〉 − 2α

2
〈𝑣,  𝑢

2
〉 − … − 2α

𝑛
〈𝑣,  𝑢

𝑛
〉 +  

𝑖=1

𝑛

∑
𝑗=1

𝑛

∑ α
𝑖
α

𝑗
〈𝑢

𝑖
,  𝑢

𝑗
〉 

 = 𝐸(α
1
,  α

2
, …,  α

𝑛
)

Set  ∇𝐸 = 0

 ∂𝐸
∂α

𝑘
=− 2〈𝑣,  𝑢

𝑘
〉 + 2

𝑙=1

𝑛

∑ 𝑎
𝑙
〈𝑢

𝑘
,  𝑢

𝑙
〉 = 0,  𝑘 = 1,  2,  …,  𝑛

This is a system of n equations with n unknowns, which may be expressed in the matrix form:  

 

Solve this system for  to obtain: α
1
, α

2
, …,  α

𝑛

 𝑃𝑟𝑜𝑗
𝑈

𝑣( ) = α
1
𝑢

1
+ α

2
𝑢

2
+ … + α

𝑛
𝑢

𝑛
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Solution 3: 

For least squares solutions of linear systems, we have a more direct (and simpler) method. Shown 

below (quadratic fit): 

4 Data Points in the form (t, p(t)): 

(1, 5) 

(2, 2) 

(4, 7) 

(5, 10) 

 𝑙𝑒𝑡 𝑝 𝑡( ) = 𝑎
0

+ 𝑎
1
𝑡 + 𝑎

2
𝑡2

Linear System: 

 

 𝑎
0

+ 𝑎
1

+ 𝑎
2

= 5

 𝑎
0

+ 2𝑎
1

+ 4𝑎
2

= 2

 𝑎
0

+ 4𝑎
1

+ 16𝑎
2

= 7

 𝑎
0

+ 5𝑎
1

+ 25𝑎
2

= 10

 ∴𝐴 = 1 1 1 1 2 4 1 4 16 1 5 25 ( ),  𝐵 = 5 2 7 10 ( )

Overdetermined (equations outnumber the unknowns) and inconsistent but the columns of a are 

linearly independent and thus, there exist a least squares solution. 

 𝑥
^

= 𝐴𝑇𝐴( )
−1

𝐴𝑇𝐵 = 8 − 9
2  1 ( )
 ∴𝑝 𝑡( ) = 8 − 9

2 𝑡 + 𝑡2

If  𝐴𝑇𝐴 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒,  𝑥
^

= 𝐴𝑇𝐴( )
−1

𝐴𝑇𝐵

 𝐴𝑇𝐴 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝐴 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡.
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Another Example: 

Find the least squares approximation for sin(x) in the subspace of  spanned by . 𝐶 0, π[ ] β = {1,  𝑥,  𝑥2}
Use the following inner product: 

 〈𝑝,  𝑞〉 =
0

π

∫ 𝑝 𝑥( )𝑞 𝑥( )𝑑𝑥

Using “Solution 2” from above: 

 𝑙𝑒𝑡 𝑦 = α
1
1 + α

2
𝑥 + α

3
𝑥2

Solve: 

〈1,  1〉 〈1,  𝑥〉 〈1,  𝑥2〉 〈𝑥,  1〉 〈𝑥,  𝑥〉 〈𝑥,  𝑥2〉 〈𝑥2,  1〉 〈𝑥2,  𝑥〉 〈𝑥2,  𝑥2〉 ( ) α
1
 α

2
 α

3
 ( ) = 〈𝑠𝑖𝑛⁡(𝑥),  1〉 〈𝑠𝑖𝑛⁡(𝑥),  𝑥〉 〈 sin 𝑠𝑖𝑛 𝑥( ) (

 𝑁𝑜𝑡𝑒:  
0

π

∫ 𝑥𝑛𝑑𝑥 = π𝑛+1

𝑛+1

 π π2

2  π3

3  π2

2  π3

3  π4

4  π3

3  π4

4  π4

5  ( ) α
1
 α

2
 α

3
 ( ) = 2 π π2 − 4 ( )

Solving: 

 α
1

= 12(π2−10)

π3 ,  α
2

= −60(π2−12)

π4 ,  α
3

= 60(π2−12)

π5

 

The Determinant 
Under a linear transformation A, the area of any region in the x-y plane scales by the same amount. 

This amount (up to a sign) is called the determinant of A. If det(A) < 0, this implies the region has 

undergone a “flip” or change in orientation. 

 

Eigenvalues and Eigenvector 
To get eigenvalues, solve . det 𝑑𝑒𝑡 𝐴 − λ𝐼( ) = 0

To then get the eigenvectors, substitute an eigenvalue into  𝐴 + λ𝐼( )𝑣 = 0.

 𝑊ℎ𝑒𝑟𝑒 𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎 𝑏 𝑐 ( ) 𝑖𝑓 𝑎 3𝑥3 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑟 𝑎 𝑏 𝑐 𝑑 ( ) 𝑖𝑓 𝑎 4𝑥4 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑡𝑐 𝑎𝑛𝑑 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑣.

Repeat for all eigenvalues. See example below: 
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Eigenvectors corresponding to distinct eigenvalues are linearly independent. 

Diagonalisation 
Steps to diagonalising an n x n matrix, A: 

1.​ Find eigenvalues and eigenvectors 

2.​ Check if A has n linearly independent eigenvectors 

3.​ If no, A is not diagonalisable. If yes, A is diagonalisable. In this case, form matrix P = 

(v1|v2|…|vn) where v are the eigenvectors. Then, the diagonalised matrix D = P-1AP 

 

Two matrices A and B are similar if there is a non-singular matrix P such that B = P-1AP 

The two statements “A is diagonalisable” and “A is similar to a diagonal matrix” are equivalent. 

 𝑃−1𝐴𝑃 = λ
1
 0 ···  0 0 λ

2
 ···  0 ⋮  ⋮  ⋱ ⋮  0 0 ···  λ

𝑛
 ( ),  λ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠
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-​ The geometric multiplicity of the eigenvalue  is the dimension of the eigenspace (number λ

𝑖

of eigenvectors for this eigenvalue) corresponding to  λ
𝑖

-​ The algebraic multiplicity of the eigenvalue  is the number of times  appears as a λ
𝑖

λ − λ
𝑖( )

factor in the characteristic polynomial. 

A square matric is diagonalisable if and only if the geometric and algebraic multiplicities are equal for 

every eigenvalue. 

If A is diagonalisable and the result is D, then  where D is the diagonalised matrix of A. 𝐴𝑛 = 𝑃𝐷𝑛𝑃−1

 

Orthogonalization 

A square matrix, Q, is orthogonal if it is invertible and . 𝑄−1 = 𝑄𝑇

If  is orthogonal  is an orthonormal set. (𝑣
1
|…|𝑣

𝑛
) ⇔{𝑣

1
,  …,  𝑣

𝑛
}

 

Orthogonal Diagonalisation 
Given an n x n matrix A, we call A orthogonally diagonalisable if there exists an orthogonal matrix, P 

such that  is diagonal.  𝑃−1𝐴𝑃 = 𝑃𝑇𝐴𝑃

An orthogonal matrix is a real square matrix Q such that the columns of Q are mutually orthogonal 

unit vectors with respect to the Euclidian inner product (i.e. ). 𝑣
𝑖

• 𝑣
𝑗

= 0 𝑖𝑓 𝑖≠𝑗,  𝑎𝑛𝑑 𝑣
𝑖| || | = 1

An immediate consequence of an orthogonal matrix is that det(Q) =  ±1

A matrix, A, is symmetric if . Easy to identify as they are mirrored across the diagonal. 𝐴 = 𝐴𝑇

 

An n x n matric is orthogonally diagonalisable if and only if it is symmetric. 

If A is symmetric: 

1.​ All the eigenvalues of A are real 

2.​ A has n linearly independent eigenvectors 
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Quadratic Forms 
Two variable equation: 

 𝑄 𝑥,  𝑦( ) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦

 𝑄 𝑥,  𝑦( ) =  𝑥 𝑦 ( ) 𝑎 𝑐
2  𝑐

2  𝑏 ( ) 𝑥 𝑦 ( )

 

Three variable equation: 

 𝑄 𝑥,  𝑦,  𝑧( ) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 𝑑𝑥𝑦 + 𝑒𝑥𝑧 + 𝑓𝑦𝑧

 𝑄 𝑥,  𝑦,  𝑧( ) = 𝑥 𝑦 𝑧 ( ) 𝑎 𝑑
2  𝑒

2  𝑑
2  𝑏 𝑓

2  𝑒
2  𝑓

2  𝑐 ( ) 𝑥 𝑦 𝑧 ( )

 

 

To identify a quadratic equation as a conic section: 
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1.​ Write the quadratic equation:  in the matrix form 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0
 where . 𝑥𝑇𝐴𝑥 + 𝐾𝑥 + 𝑓 = 0 𝑥 = 𝑥 𝑦 ( ),  𝐾 = 𝑑 𝑒 ( )

2.​ Find a matrix P that orthogonally diagonalises A, so . You may need to swap 𝐴 = 𝑃𝐷𝑃𝑇

columns of P to ensure det(P) = 1 (and hence corresponds to a rotation, -1 corresponds to a 

reflection). 

3.​ Define new variables u, v such that  𝑣 = 𝑢 𝑣 ( ) = 𝑃𝑇𝑥⇒𝑥 = 𝑃𝑣
4.​ Substitute v into the matrix form of the equation giving  𝑣𝑇𝐷𝑣 + 𝐾𝑃𝑣 + 𝑓 = 0
5.​ Complete the square if required. This is necessary if  and  are both present (or  and ). 𝑢2 𝑢 𝑣2 𝑣

This defines a new set of variables s, t by translating u, v. The translations will be in the form 

 and  𝑠 = α𝑢 + β 𝑡 = γ𝑢 + δ
6.​ If it is a non-degenerate conic, the final equation in s and t should be in a conic section 

standard form. 

See A2 Question 2 for example. 

 

Complex Matrices 
Let a be a complex matrix (consists of complex numbers). The conjugate transpose of A, A* is given by 

, where  is the matrix whose entries are complex conjugates of the corresponding entries of A. 𝐴( )
𝑇

𝐴
Note, that if A is real, A*= AT. 

 

A complex matrix, A, is said to be unitary if A-1 = A* 

Complex inner product:  where  is the complex conjugate of v. 𝑢∙𝑣 = 𝑢
1
𝑣

1
+ 𝑢

2
𝑣

2
+ … + 𝑢

𝑛
𝑣

𝑛
𝑣

In matrix notation:  𝑢∙𝑣 = 𝑣*𝑢

Hermitian (self-adjoint) matrices: A complex matrix, A, is called Hermitian if A = A*. Can be identified 

similar to symmetric matrices: 

 

All symmetric matrices are Hermitian. All Hermitian matrices have real eigen values. 
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Unitary Diagonalisation: A square matrix, A, with complex entries is said to be unitarily diagonalisable 

if there is a unitary matrix, P, such that  is diagonal. 𝑃*𝐴𝑃

 

Normal matrices: A square, complex matrix is called normal if it commutes with its own conjugate 

transpose, i.e., if . The following matrices are normal: 𝐴𝐴* = 𝐴*𝐴

-​ Unitary 

-​ Hermitian 

-​ Real skew-symmetric ( ) 𝐴𝑇 =− 𝐴
-​ Any diagonal matrix 

Normal 2x2 matrices are either symmetric or of the form  𝑎 𝑏 − 𝑏 𝑎 ( )

An n x n matrix is unitarily diagonalisable if and only if it is normal. 
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Multivariable Taylor Series 
Hessian matrix is defined as: 

 𝐻 = 𝑓
𝑥

1
𝑥

1

 ···  𝑓
𝑥

1
𝑥

𝑛

 ⋮    ⋮  𝑓
𝑥

𝑛
𝑥

1

 ···  𝑓
𝑥

𝑛
𝑥

𝑛

 ( )
 

 

e.g.  𝑓 𝑥,  𝑦( ) = 𝑥3𝑦 + 2𝑦

 𝐻 = 𝑓
𝑥𝑥

 𝑓
𝑥𝑦

 𝑓
𝑥𝑦

 𝑓
𝑦𝑦

 ( ) = 6𝑥𝑦 3𝑥2 3𝑥2 0 ( )
 

Multivariable Taylor series for f(x): 

𝑓 𝑥,  𝑦( )≈𝑓 𝑎,  𝑏( ) + 𝑓
𝑥

𝑎,  𝑏( ) 𝑥 − 𝑎( ) + 𝑓
𝑦

𝑎,  𝑏( ) 𝑦 − 𝑏( ) + 1
2 𝑓

𝑥𝑥
𝑎,  𝑏( ) 𝑥 − 𝑎( )2 + 2𝑓

𝑥𝑦
𝑎,  𝑏( ) 𝑥 − 𝑎( ) 𝑦 − 𝑏( ) + 𝑓⎡⎢⎣

 

 

Critical Points in n-dimensions 
Since H is real symmetric, H is 

orthogonally diagonalisable. There 

exists a matrix P such that,  𝑃𝑇𝐻𝑃 = 𝐷
with some diagonal matrix D. Since H is 

symmetric, all eigen values of H are 

real. 
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Four cases to consider, let  be an eigenvalue of H: λ
𝑖

1.​  then local min. λ
𝑖

> 0 ∀𝑖 = 1,  2,  …,  𝑛

2.​  then local max. λ
𝑖

< 0 ∀𝑖 = 1,  2,  …,  𝑛

3.​ If  have opposite sides, then saddle ∃ 𝑖,  𝑗 𝑖≠𝑗( )𝑠. 𝑡 λ
𝑖
 ,  λ

𝑗

4.​ If all non-zero  have same sign but there are some , we can’t identify critical point. λ
𝑖

λ
𝑘

= 0
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Calculus 
Double Integrals 
Fubini’s Theorem: 

 𝐼𝑓 𝐷 = { 𝑥,  𝑦( )| 𝑎≤𝑥≤𝑏 ,  𝑐≤𝑦≤𝑑}

 ∬ 𝑓 𝑥,  𝑦( )𝑑𝐴 =
𝑐

𝑑

∫
𝑎

𝑏

∫ 𝑓 𝑥,  𝑦( )𝑑𝑥𝑑𝑦

Special Case: 

 ∬ 𝑓 𝑥,  𝑦( )𝑑𝐴 =
𝑐

𝑑

∫
𝑎

𝑏

∫ 𝑔 𝑥( )ℎ 𝑦( )𝑑𝑥𝑑𝑦 =
𝑎

𝑏

∫ 𝑔 𝑥( )𝑑𝑥
𝑐

𝑑

∫ ℎ 𝑦( )𝑑𝑦

 

Type 1 Region – generally bounded by two constant values for x and two functions of x for y. 

 𝐷 = 𝑎≤𝑥≤𝑏,  𝑔 𝑥( )≤𝑦≤ℎ 𝑥( ){ }

 ∬ 𝑓 𝑥,  𝑦( )𝑑𝐴 =
𝑎

𝑏

∫
𝑔(𝑥)

ℎ(𝑥)

∫ 𝑓 𝑥,  𝑦( )𝑑𝑦𝑑𝑥

Type 2 Region – generally bounded by two constant values for y and two functions of y for x. 

 𝐷 = 𝑎≤𝑦≤𝑏,  𝑔 𝑦( )≤𝑥≤ℎ 𝑦( ){ }

 ∬ 𝑓 𝑥,  𝑦( )𝑑𝐴 =
𝑎

𝑏

∫
𝑔(𝑦)

ℎ(𝑦)

∫ 𝑓 𝑥,  𝑦( )𝑑𝑥𝑑𝑦

 

If a region is made up of multiple type 1 and type 2 regions, split up integral and domain and then 

add together. 

 

Interchanging order of integration: Can’t just swap dx and dy, need to change the limits of integration 

as well. Can do this by graphing in the x-y plane and going from there. 

 

Double integrals in polar coordinates 
 𝑥 = 𝑟𝑐𝑜𝑠 θ( ),  𝑦 = 𝑟𝑠𝑖𝑛(θ)

 ∬ 𝑓 𝑥,  𝑦( )𝑑𝑥𝑑𝑦 = ∬ 𝑓 𝑟𝑐𝑜𝑠 θ( ),  𝑟𝑠𝑖𝑛 θ( )( )𝑟 𝑑𝑟 𝑑θ

In other words: 

 𝑑𝑥𝑑𝑦→𝑟𝑑𝑟𝑑θ
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Polar coordinates are useful when integrating regions of circles or ellipses as hard to parameterise. 

Use whenever x2+y2 is present. 

 Mass, centre of mass and moments 

The centre of mass is located at coordinates , where: 𝑥,  𝑦( )

 𝑥 =
𝑀

𝑦

𝑚 =
∬ 𝑥𝑝 𝑥, 𝑦( )𝑑𝐴

∬ 𝑝 𝑥, 𝑦( )𝑑𝐴

 𝑦 =
𝑀

𝑥

𝑚 =
∬ 𝑦𝑝 𝑥, 𝑦( )𝑑𝐴

∬ 𝑝 𝑥, 𝑦( )𝑑𝐴

Where p(x, y) is the density function. 

 

Triple Integrals 
If  𝐷 = {(𝑥,  𝑦,  𝑧)|𝑎≤𝑥≤𝑏,  𝑐≤𝑦≤𝑑,  𝑒≤𝑧≤𝑓}

 ∭ 𝑓 𝑥,  𝑦,  𝑧( )𝑑𝑉 =
𝑒

𝑓

∫
𝑐

𝑑

∫
𝑎

𝑏

∫ 𝑓 𝑥,  𝑦,  𝑧( ) 𝑑𝑥𝑑𝑦𝑑𝑧

 

Cylindrical Coordinates 
 𝑥 = 𝑟𝑐𝑜𝑠 θ( ),  𝑦 = 𝑟𝑠𝑖𝑛 θ( ),  𝑧 = 𝑧

 ∭ 𝑓 𝑥,  𝑦,  𝑧( ) 𝑑𝑥𝑑𝑦𝑑𝑧 = ∭ 𝑓 𝑟𝑐𝑜𝑠 θ( ),  𝑟𝑠𝑖𝑛 θ( ),  𝑧( )𝑟 𝑑𝑟 𝑑θ 𝑑𝑧

Useful for when working with cylinders 

 

Spherical Coordinates 
 𝑥 = 𝑟𝑐𝑜𝑠 θ( ) sin 𝑠𝑖𝑛 ϕ( ) ,  𝑦 = 𝑟𝑠𝑖𝑛 θ( ) sin 𝑠𝑖𝑛 ϕ( ) ,  𝑧 = 𝑟𝑐𝑜𝑠(ϕ)

 ∭ 𝑓 𝑥,  𝑦,  𝑧( ) 𝑑𝑥𝑑𝑦𝑑𝑧 = ∭ 𝑓 𝑟𝑐𝑜𝑠 θ( )𝑠𝑖𝑛⁡(ϕ),  𝑟𝑠𝑖𝑛 θ( )𝑠𝑖𝑛⁡(ϕ),  𝑟𝑐𝑜𝑠(ϕ)( ) 𝑟2𝑠𝑖𝑛⁡(ϕ) 𝑑𝑟 𝑑θ 𝑑ϕ

Useful when working with spheres 

 

Moments of Inertia (second moments) 
The mass of a solid with a density p(x, y, z) occupying a region R in R3 is given by: 

 𝑚 = ∭ 𝑝 𝑥,  𝑦,  𝑧( ) 𝑑𝑉
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The moments about each of the three coordinate planes are: 

 𝑀
𝑦𝑧

=  ∭ 𝑥𝑝 𝑥,  𝑦,  𝑧( )𝑑𝑉

 𝑀
𝑥𝑧

=  ∭ 𝑦𝑝 𝑥,  𝑦,  𝑧( )𝑑𝑉

 𝑀
𝑥𝑦

=  ∭ 𝑧𝑝 𝑥,  𝑦,  𝑧( )𝑑𝑉

The centre of mass is located at the point  where: (𝑥,  𝑦,  𝑧)

 𝑥 =
𝑀

𝑦𝑧

𝑚 ,  𝑦 =
𝑀

𝑥𝑧

𝑚 ,  𝑧 =
𝑀

𝑥𝑦

𝑚

The moments of inertia about each of the three coordinate axes work out to be: 

 𝐼
𝑥

= ∭ 𝑦2 + 𝑧2( )𝑝 𝑥,  𝑦,  𝑧( )𝑑𝑉

 𝐼
𝑦

= ∭ 𝑥2 + 𝑧2( )𝑝 𝑥,  𝑦,  𝑧( )𝑑𝑉

 𝐼
𝑧

= ∭ 𝑥2 + 𝑦2( )𝑝 𝑥,  𝑦,  𝑧( )𝑑𝑉

 

Vector Fields 

Conservative Vector Fields 
Notation:  𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

 𝐹 𝑟( ) = 𝐹 𝑥,  𝑦,  𝑧( ) = 𝐹
1

𝑥,  𝑦,  𝑧( )𝑖 + 𝐹
2

𝑥,  𝑦,  𝑧( )𝑗 + 𝐹
3
(𝑥,  𝑦,  𝑧)𝑘

 

Gradient of a scalar field, conservative vector fields 
For a differentiable scalar function, f(x, y, z) we define: 

 𝑔𝑟𝑎𝑑𝑓 = ∇𝑓 = ∂𝑓
∂𝑥 𝑖 +   ∂𝑓

∂𝑦 𝑗 + ∂𝑓
∂𝑧 𝑘

Thus 

 ∇ = ∂
∂𝑥 𝑖 +   ∂

∂𝑦 𝑗 + ∂
∂𝑧 𝑘 

If given a vector field, F(x, y) and asked to determine a potential function, integrate i component with 

respect to x and then partially derive with respect to y. Compare the partial derivative with respect to 

y with the j component to determine the integration constant. Do the same if three variables, F(x, y, 

z). 
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The fundamental theorem for line integrals 
 

Work done by F along curve C: 

 𝑊 =  ∫ 𝐹 𝑟( )∙𝑑𝑟 = ∫ 𝐹
1

𝑥,  𝑦( )𝑑𝑥 + 𝐹
2

𝑥,  𝑦( )𝑑𝑦

Steps to evaluate : ∫ 𝐹 𝑟( )∙𝑑𝑟

1.​ Parameterise C by finding a  𝑟 𝑡( ) = 𝑥 𝑡( )𝑖 + 𝑦 𝑡( )𝑗,  𝑡∈[𝑎,  𝑏]
2.​ Write F® restricted to C as F(r(t)) = F(x(t), y(t)) 

3.​ Write  𝑑𝑟 = 𝑟' 𝑡( )𝑑𝑡
4.​ Convert the line integral into an ordinary integral in terms of the parameter, t: 

 ∫ 𝐹 𝑟( )∙𝑑𝑟 =
𝑎

𝑏

∫ 𝐹 𝑟 𝑡( )( ) • 𝑟' 𝑡( ) 𝑑𝑡

If a vector field is conservative,   𝐹 = ∇𝑓∴∫ 𝐹 𝑟( )∙𝑑𝑟 =
𝑎

𝑏

∫ ∇𝑓∙𝑑𝑟 = 𝑓 𝑟 𝑏( )( ) − 𝑓(𝑟 𝑎( ))

If a vector field is conservative,  is path independent ∫ 𝐹∙𝑑𝑟

 

Test for conservative fields 
If  is a conservative vector field, then: 𝐹 = 𝐹

1
𝑖 + 𝐹

2
𝑗

 
∂𝐹

1

∂𝑦 =
∂𝐹

2

∂𝑥

 

Green’s Theorem 
Let D be a region in the xy plane bounded by a piece-wise smooth, simple closed curve C, which is 

traversed with D always on the left (anti-clockwise). Let  be 𝐹
1

𝑥,  𝑦( ),  𝐹
2

𝑥,  𝑦( ),
∂𝐹

1

∂𝑦  𝑎𝑛𝑑
∂𝐹

2

∂𝑥

continuous in D. Then: 

 ∬
𝐷
 ∂𝐹

2

∂𝑥 −
∂𝐹

1

∂𝑦( )𝑑𝑥 𝑑𝑦 =
𝐶

 

∮ 𝐹
1
𝑑𝑥 + 𝐹

2
𝑑𝑦

If ​

 
∂𝐹

1

∂𝑦 =
∂𝐹

2

∂𝑥

Then 
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𝐶

 

∮ 𝐹∙𝑑𝑟 = 0

 

 

 

 

Flux of a vector field 
In three dimensions, the flux of a vector field across a given surface is defined to be the “flow rate” of 

the vector field. Consider the velocity vector of a fluid. In three dimensions, the flux of a fluid across 

a surface is given in units of volume per unit time. In other words, the flux tells us how much fluid 

(volume) passes through a given surface in one second. 

 

Flux integral (in 2D): 

 
𝐶

 

∫ 𝑣∙𝑛 𝑑𝑆
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To evaluate the flux integral: 

1.​ Parameterise C by finding a  that describes C 𝑟 𝑡( ) = 𝑥 𝑡( )𝑖 + 𝑦 𝑡( )𝑗 𝑤𝑖𝑡ℎ 𝑡∈[𝑎,  𝑏]
2.​ Write v(x, y) restricted to C as  𝑣 𝑟 𝑡( )( ) = 𝑣(𝑥 𝑡( ),  𝑦 𝑡( ))

3.​ Compute a unit tangent vector to C by using , where  𝑇 𝑥,  𝑦( ) = 𝑟'(𝑡)

| 𝑟' 𝑡( )| || 𝑟' 𝑡( ) = 𝑥' 𝑡( )𝑖 + 𝑦' 𝑡( )𝑗

is a tangent vector to C 

4.​ Be careful of the direction of n. By the definition of the cross product, and since k is a unit 

vector normal to the x-y plane, we can take n = T x k. We could also take n = k x T depending 

if asking positive or negative flux and the direction of n. 

5.​ Write  𝑑𝑆 = | 𝑟' 𝑡( )| ||𝑑𝑡
6.​ Evaluate the 2D flux integral as a definite integral in terms of the parameter t: 

 
𝐶

 

∫ 𝑣∙𝑛 𝑑𝑆 =
𝑎

𝑏

∫ 𝑣 𝑟 𝑡( )( ) • 𝑟' 𝑡( )×𝑘( )𝑑𝑡 𝑜𝑟 
𝑎

𝑏

∫ 𝑣 𝑟 𝑡( )( ) • 𝑘×𝑟' 𝑡( )( )𝑑𝑡 

Depending on the direction of n. 
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Outward flux across a closed curve in the plane 

Net outward flux =  
𝐶

 

∮ 𝑣∙𝑛𝑑𝑆

See 38.2.1, page 273 

 

Divergence of a vector field 
Divergence of a vector field is the “outward flux density” 

Let  

 𝑣 𝑥,  𝑦,  𝑧( ) = 𝑣
1

𝑥,  𝑦,  𝑧( )𝑖 + 𝑣
2

𝑥,  𝑦,  𝑧( )𝑗 + 𝑣
3

𝑥,  𝑦,  𝑧( )𝑘

Be a differentiable function. Then the function: 
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 𝑑𝑖𝑣 𝑣 =
∂𝑣

1

∂𝑥 +
∂𝑣

2

∂𝑦 +
∂𝑣

3

∂𝑧 = ∇∙𝑣

Is called the divergence of v. Note that div v is a scalar quantity. 

 

Outward flux across a closed curve in the plane using divergence (flux form of greens theorem): 

 
𝐶

 

∮ 𝑣(𝑥,  𝑦)∙𝑛𝑑𝑆 = ∬
𝐷
 𝑑𝑖𝑣 𝑣 𝑥,  𝑦( )( )𝑑𝐴

Parameterisation in R3 

See chapter 40 (page 285) for parameterisation. 

 

Tangent planes 
Let S be a surface parameterised by  𝑟 𝑢,  𝑣( ) = 𝑥 𝑢,  𝑣( )𝑖 + 𝑦 𝑢,  𝑣( )𝑗 + 𝑧 𝑢,  𝑣( )𝑘

The equation of the tangent plane is given by: 

 𝑟
𝑢

𝑎,  𝑏( ) × 𝑟
𝑣

𝑎,  𝑏( )( ) • 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘( ) − 𝑟 𝑎,  𝑏( )( ) = 0

 

Surface Integrals 
Let S be a smooth parametric surface given by  𝑟 𝑢,  𝑣( ) = 𝑥 𝑢,  𝑣( )𝑖 + 𝑦 𝑢,  𝑣( )𝑗 + 𝑧 𝑢,  𝑣( )𝑘

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 =  ∬
𝑆
 𝑑𝑆 = ∬

𝐷
 𝑟

𝑢
× 𝑟

𝑣| || | 𝑑𝑢 𝑑𝑣
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See page 298 for applications. MAKE SURE DIRECTION IS CORRECT 

 

Variable transformations in double integrals 

 ∬
𝑅
 𝑓 𝑥,  𝑦( )𝑑𝑥 𝑑𝑦 = ∬

𝑆
 𝑓(𝑥 𝑢,  𝑣( ),  𝑦 𝑢,  𝑣( )) ∂(𝑥, 𝑦)

∂(𝑢, 𝑣)
|| ||𝑑𝑢𝑑𝑣

Where  

 ∂(𝑥, 𝑦)
∂(𝑢, 𝑣) = det 𝑑𝑒𝑡 ∂𝑥

∂𝑢  ∂𝑦
∂𝑢  ∂𝑥

∂𝑣  ∂𝑦
∂𝑣  ( ) = ∂𝑥

∂𝑢
∂𝑦
∂𝑣 − ∂𝑥

∂𝑣
∂𝑦
∂𝑢

Is called the Jacobian of the transformation T. 

A good example is 2020 S2 Q9 

 

 

 

 

Flux integrals and Gauss’ divergence theorem 

Flux across S =  ∬
𝑆
 𝑣∙𝑛 𝑑𝑠 = ∬

𝐷
 𝑣∙(𝑟

𝑢
× 𝑟

𝑣
)𝑑𝑢𝑑𝑣

Gauss’ Divergence Theorem: 

Let S be a piecewise smooth, orientable, closed surface enclosing a region in V in R3. Let F(x, y, z) be a 

vector field whose component functions are continuous partial derivatives in V. Then: 

 ∯
𝑆
 𝐹∙𝑛𝑑𝑆 = ∭

𝑉
 𝑑𝑖𝑣 𝐹( )𝑑𝑉

 

Where n is the outwardly directed unit normal to S. MAKE SURE DIRECTION IS CORRECT 

 

Curl of a vector field 

 𝑐𝑢𝑟𝑙 𝑣( ) = ∇×𝑣 = 𝑖 𝑗 𝑘 ∂
∂𝑥  ∂

∂𝑦  ∂
∂𝑧  𝑣

1
 𝑣

2
 𝑣

3
 |||
||| =

∂𝑣
3

∂𝑦 −
∂𝑣

2

∂𝑧( )𝑖 +
∂𝑣

1

∂𝑧 −
∂𝑣

3

∂𝑥( )𝑗 +
∂𝑣

2

∂𝑥 −
∂𝑣

1

∂𝑦( )𝑘

Note that curl(v) is a vector field. 

 

Curl of a conservative vector field 
If F is conservative, curf(F) = 0 
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Stokes’ Theorem 
Let S be a piecewise smooth, orientable surface in R3 and let the boundary of S be a piecewise 

smooth, simple, closed curve C. Let F(x, y, z) be a continuous vector function with continuous first 

partial derivatives in some domain containing S. Then: 

 
𝐶

 

∮ 𝐹∙𝑑𝑟 = ∬
𝑆
 𝑐𝑢𝑟𝑙𝐹( )∙𝑛 𝑑𝑆

Where n is a unit normal vector of S, and the integration around C is taken in the direction using the 

right hand rule with n.  

If normal vector is pointing up, param C anti-clockwise. If normal vector is pointing down, param C 

clockwise. 

 

To calculate n  if param is : 𝑆(𝑟,  θ)

 𝑛 = 𝑆
𝑟

× 𝑆
θ

If normal is in the wrong direction: 

  𝑛 = 𝑆
θ

× 𝑆
𝑟

 

Example: 
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