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ODE’s
If ODE in the form:

Directly solve

If ODE in the form:

If ODE in the form:

ODE is exact if:

)y = P(x)

QL = P(x)

Jewydy = | P(x)dx

y' = P(x), directly integrate

P, 1)+ Qx, yygE =

Integrate Q with respect to x and then differentiate with respect to y and equate with P to find

integration constant.

If ODE in the form:

Integrating factor:

If ODE in the form:

y + P(x)y + Q(x)=0

y + Py + Q()y = R(x)

If R(x) = 0, ODE is homogeneous, if R(x) != 0, ODE is nonhomogeneous.
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If homogeneous:
1. Find characteristic polynomial:
(A + ar + b)=0,a = P()andb = Q)
Three possible solutions:
1. 2 real and distinct roots, ?\1 and ?\2:

Alx }‘z
Yy = Ae  + Be

X
2. 2 realindistinct roots, A:
Ax Ax
Y, = Ae  + Bxe
3. 2real complex roots, 7\1 and ?\2
Y, = Acos(x) + Bsin(x)

If R(X) doesn’t equal O:
Two possible methods:
1. Undetermined coefficients:
Ifr(x) = e + cos cos %), y,= gl(x) + ..+ gn(x)

e.g forcos cos (x), g(x) = (x) + bcos(x)orifr(x)= 2, g(x)= ax
Differentiate and double differentiate g(x) and substitute into original ODE and solve and
substitute IVP if present

1. (10 marks) Solve the initial-value problem

Y -y=2 y(0) =0 y(0) =1

For i L=\ =o =3 Ny Arfe”
-
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2. Variation of parameters:

—2x

. . - -2 -
Given the general solution, e.g. Y, = Ae” " + Be ', set y,=e *and y,=e

W= VY, =YY,

Yyp=uwy, vy,

() ()
ux)= - yz;/x dx and v(x) = f%

Thus,y = Yyt Yy solve IVP if needed

dx

X



MATH2001 Cheat Sheet

(MATH000 QLY

|. (8 marks) Find the general solution of the ODE

¥ +3y + 2=

1+ex”
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Linear Algebra

Basis: Let B be a set of vectors in the vector space V. B is a basis for V if B is linearly independent and
B spans V (every vector in V can be expressed as a linear combination of basis vectors).

If an element of the span is linearly dependant on the others, it can be removed from span.

al

Transition Matrix: In general, PB_)B- = ([vl]B.

)
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P= $Lad , B= 1, 22 3
et , vix)= AL10Y + B L)
(= A1) + plrse) 2= K ltx) +B(2rx)
A=, B= /4,“."-0) A= 1
=

L] = [2]

-l
z

\

pl= —

Chy= (1)
!

Inner product space: A vector space with an associated inner product is called an inner product
space. As we are assuming all vectors are real, we look at real inner product spaces.

Orthogonality:
The norm of a vector is defined as:
vl = kv, v)
The distance between two vectors is defined as:
d(u, v) = [lu — v
Two vectors are orthogonal if:
(u, v) =0

Angle between two vectors:

0 = arccos arccos( () ), 0€[0, m]
[lelllivll

. L,
Let U be a subset of the real inner product space of V. The orthogonal complement of U, U, is the
set of all vectors in V that are orthogonal to every vector in U. That is:

U= {veV | (v, u) = 0V ueV

Let V be a real inner product space. A non-empty set of vectors in V is orthogonal if each vector in
the set is orthogonal to all the other vectors in the set. That is, the set {vl, ey vn}QV is orthogonal if

(vi, vj) = 0, i #j. If Vis orthogonal, V is linearly independent.

An orthogonal set of vectors in V is called orthonormal if all the vectors in the set are unit vectors.

That is, the set {el, . en}CVis orthonormal if (ei, ej) =0, i#jor (ei, ej) =11i=j.An

orthonormal basis for V is a basis for V that is also an orthonormal set.
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Orthogonal Projection:
Let U be a finite-dimensional subspace of the real inner product space V. Then, each vEV can be
written in a unique way as:

v =u+ w, uel, WEUl
The vector u€U is called the orthogonal projection of v onto U and is given by:

Proj (v)= (v, e)e + .. + (v, e )e,

o L, N L L
Likewise, the vector u€U" is called the orthogonal projection of v onto U and is given by:

Prole(v) =v - ProjU(v)
One can show that:

dimV = dimU + dimU"

Suppose you have found dimV — dimU linearly independent vectors that are all orthogonal to U.

. . . 1
Then, these vectors will, in fact, form a basis for U

Construction of an Orthonormal Basis:
My method:

1. lIdentify if anything thing in span is a linear combination of the other, if so, remove from set.

2. Set a new vector, matrix etc to be in orthonormal basis with variables. Solve inner product
with every element in set to find the values of the variables (inner product = 0 when solving)

3. Verify that new elements are orthogonal

4. Normalise by taking 1/sqrt(inner product).

Let {v, ..., v,} be a linearly independent set of vectors in the real inner product space V. The
corresponding Gram-Schmidt process is the following algorithm.

v
1

Al

1. Sete1 =

i+1:Let Uz = span{el, . ei}

Wy T Vi ~ Pm]ui(viﬂ) - PTOJUl(le)

1
>w €U &w. #0
i+1 i i+1

Result:

w
2

lw

w,=v, = (vZ, el)el&e2 =
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w
3

Wy =V~ ((v3, e1>e1 + (v3, ez)ez) & €3~ lw, Il

The Gram—Schmidt process [edi]
We define the projection operatar by
(u, v}

(u,u)

proju(v) = u,

where {u, v} denotes the inner product of the vectors u and v. This operator projects the vector v orthagonally onto the line spanned by vector u. If u = 0, we define projg (v) := 0, ie, the
projection map projg is the zero map, sending every vector to the zero vector.

The Gram—Schmidt process then works as follows:

u
u; = vy, € = T
[y |
: u2
Uz = Vi — projy, (va),
[l
. . ug
ug = vy — projy, (vVs) — projy, (vs), e = T—
¢ [las]|
. ) . uy
wy = vy — projy, (v4) — projy, (v4) — projy, (va), ey = m
4
B -
W = Vi — ) projy, (Vi) & = .
=1 ’ [l
Example:

Euclidean space |[=dit]

Consider the following set of vectors in R? (with the conventional inner product)

s= o= =2}

MNow, perform Gram-Schmidt, 1o obtain an orthogonal set of vectors:

on-]
oo ] ][] 11 32

We check that the vectors u; and u, are indeed orthogonal:

( . 3] [—2/5 6.8 _,
u uz ) — - — -_——
W, Ha/ 1] 6/5 5 5 ’

noting that if the dot product of two vectors is 0 then they are orthogonal.

For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above:

1 [3
“ :ﬁm
o= Jglus] = 7wls]

25

Least squares approximation:
From the best approximation theorem, u = ProjU(v) is the best approximation to vEV in a

finite-dimensional subspace U of V.
Solution 1: Use gram-schmidt to construct an orthonormal basis {e,...,e.}. Then:

Proj,(v)= (v, e)e, + .. + (v, e )e_
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Solution 2:

Lety = {ul, Uy von un} be a basis of the subspace U. Then any u€U can be written as

u=oau tou t+ . +tau. We seek coefficients L S that minimise [|[v — u]||, or

. S 2 2 ,
equivalently, minimise |[|[v — u|| = [|lv — (oclu1 tou, + ..+ anun)” (same outcome, avoid

square root).

U+ o+ P - U+ o+ = U+ o+
||v—(a1u1 U, + .. anun)” = (v ((J(lu1 U, + .. anun),v (oclu1 U, + .. anun))

n n
= (v, v) — 20(1(17, ul) - 20(2(17, uz) - = Zan(v, un) + 51151 aiocj(ui, uj)
= E(ocl, 0y s an)
SetVE =0
oE z
9] =— 2(v, uk) + 251 al(uk, ul) =0,k=12 .,n

This is a system of n equations with n unknowns, which may be expressed in the matrix form:

g, uy) g, W) ... i, Uy, ¥ (V.
fug,uy)  (ug,ug) ... {(usu,) 0¥ (v, uy)
(U, uy) (W, ug) ... (0, u,) a, {v.u,)

Solve this system for o, 0, . a to obtain:

ProjU(v) =ou tou + . tau
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Solution 3:

For least squares solutions of linear systems, we have a more direct (and simpler) method. Shown
below (quadratic fit):

4 Data Points in the form (t, p(t)):
(1,5)
(2,2)
(4,7)

(5, 10)
let p(t) = a,+at+ a2t2

Linear System:

a0+a1+a2=5
a0+2a1+4a2=2
a0+4a1+ 16a2=7
a, + 5a1+ 25a2= 10

2A=(11112414161525), B =(52710)

Overdetermined (equations outnumber the unknowns) and inconsistent but the columns of a are
linearly independent and thus, there exist a least squares solution.

x= (ATA)_lATB =(8 -%1)

p()=8 — 2t + ¢
T A T N7
If A Ais invertible, x = (A A) A B

A" A is invertible if the columns of A are linearly independant.
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Another Example:

Find the least squares approximation for sin(x) in the subspace of C[0, t] spanned by § = {1, x, xz}.
Use the following inner product:

v, @) = Z p(x)q(x)dx
Using “Solution 2” from above:
lety = a1 +ax + a3x2
Solve:
(@ (L 1)L 6 D 1) x) (1, D', 0, 1) )0 @, ) = ((sin@), 1) (sin(x), x) ( sinsin (x)

n+1

T
Note: fxndx = 2+1

Solving:

_12(°—10) _ —60(n°—12) _60(’—12)
1= 3 ) aZ - 4 ) 0(3 == 5
T T T

The Determinant

Under a linear transformation A, the area of any region in the x-y plane scales by the same amount.
This amount (up to a sign) is called the determinant of A. If det(A) < 0, this implies the region has
undergone a “flip” or change in orientation.

Eigenvalues and Eigenvector
To get eigenvalues, solve detdet (A — AI) = 0.

To then get the eigenvectors, substitute an eigenvalue into (A + A)v = 0.
Where vis the matrix (abc) if a3x3 matrixor (abcd) if a 4x4 matrix etc and solve for v.

Repeat for all eigenvalues. See example below:
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Now find the eigenvectors. Solve (A — AI)x = 0 separately for A} = 0and A, = 5:

(A-0DN)x = [é i] [i:] = [g] yields an eigenvector [;]: [_ﬂ forA; =0

(A—5Dx = [_g _?] [f; ] = [g] yields an eigenvector [};] = B] for A, = 5.

Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Diagonalisation
Steps to diagonalising an n x n matrix, A:

1. Find eigenvalues and eigenvectors

2. Check if A has n linearly independent eigenvectors

3. Ifno, Ais not diagonalisable. If yes, A is diagonalisable. In this case, form matrix P =
(v1]V,]...|v,) where v are the eigenvectors. Then, the diagonalised matrix D = P*AP

Two matrices A and B are similar if there is a non-singular matrix P such that B = P'AP

The two statements “A is diagonalisable” and “A is similar to a diagonal matrix” are equivalent.

P_lAP =(7\10 007\2 e 00 w200 - An), Aare the eigenvalues

The question remains, if A has fower than n distinet cigenvalues, how do we know

if A is diagonalisable?

16.3.1 Example B; >‘i_ P o J [3 Z\~ (S)
o o = o=l WF

21 3 213
Let A= 010 |andB=|011|. \
001 001 ' v, = Q
Easy to see the characteristic equation of both A and B is (2 — AM1=XA)2=0, so P\ &3 "‘_5 s=c T S - 3
A=I2.1.l. Salve. (A-AX\v =g i
& % \ =

CABE | [ L2\

_(a\=y!
Pz‘ R3 ) b = O; ch.{a ‘-':\\:" (\g\ (L] Q‘_"'li C_LO ,iall_:“ a+b =0
A= ft o 3\ [y _fo - L\ - b/
— “lo = = 9 - |- =
(2 2 3)(0) s e (1 (1))
= R o Q+biieoambI £ ©
bo3e |

- v Cf-3 (r)-th !/\M,-( J(-\,vo h»\{ul\_? ‘:““c'e(PUur.»{;._f‘\
J ( B ‘Qt%&u\\ichkﬂ_;\
C_::S E iy Nc‘_fﬁ o{[q}chqli.sc.tsll{. .
fwo L‘Lr\ewlj rﬂ.néfmd_g_;f ?_ o
Qigon vic boars Gor A= (.

G‘-j) A Y cilt.!‘:,,ql.‘ﬁ.l{,-!g,
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- The geometric multiplicity of the eigenvalue )\i is the dimension of the eigenspace (number
of eigenvectors for this eigenvalue) corresponding to ?\i
- The algebraic multiplicity of the eigenvalue Ai is the number of times (7\ - }\i) appears as a

factor in the characteristic polynomial.

A square matric is diagonalisable if and only if the geometric and algebraic multiplicities are equal for
every eigenvalue.

If A is diagonalisable and the result is D, then A" = PDnP_1 where D is the diagonalised matrix of A.

Orthogonalization

. . per . -1 T
A square matrix, Q, is orthogonal if it is invertibleand Q = Q .

If (v1| ...|vn) is orthogonal @{vl, v vn} is an orthonormal set.

Orthogonal Diagonalisation
Given an n x n matrix A, we call A orthogonally diagonalisable if there exists an orthogonal matrix, P

such that P~ AP = P’ AP is diagonal.

An orthogonal matrix is a real square matrix Q such that the columns of Q are mutually orthogonal
unit vectors with respect to the Euclidian inner product (i.e. Ve vj = 0if i#j, and ||vl|| = 1).

An immediate consequence of an orthogonal matrix is that det(Q) = +1

T
A matrix, A, is symmetricif A = A . Easy to identify as they are mirrored across the diagonal.

An n x n matric is orthogonally diagonalisable if and only if it is symmetric.
If A is symmetric:

1. All the eigenvalues of A are real
2. Ahasnlinearly independent eigenvectors
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Quadratic Forms
Two variable equation:

Q(x, y) = otx2 + by2 + cxy

0 )= xy)(ag 5b)xy)

Three variable equation:
Qx, y, z)= ax’ + by2 +cz + dxy + exz + fyz
d e d e
0y, )= (y)ag +5bL +Lc)xyz)

19.2.1 Express —3z? — 2y? — 322 4 20y + 22 exclusively as a sum of square
terms.

L)

( —z= |

—
Q‘(\nﬂlmjf: ('.k 9 N/~32 ' o \/’X T

- Nj
© | 5 -
[ —
A
Trowa f}f{‘:at_.ﬁ lechrres : A= eDPT wih
= Y
£ h k& D= f“i‘ o P
o 'z{,,fz R ( 0 — ©
= & ‘G O ° i
— .-./ iy T L= T
) Qxey = XAy =(¢ P = ¥ D
v 3 2

o ol e LB “ X —_
u=Px=fr O & ~ =
= S ~ | Xylyit

% e &g\ [T%_ | (Y

" I R & Pl bl W

- A
-;—{]&‘:’_LLJL-—V?_‘_ le o

| 2 1
00 Qlansy™ (v (W& -2 (i)

b

To identify a quadratic equation as a conic section:
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1. Write the quadratic equation: ax’ + by2 + cxy + dx + ey + f = 0inthe matrix form
x Ax + Kx + f =0wherex =(xy), K =(de).

T
2. Find a matrix P that orthogonally diagonalises A, so A = PDP . You may need to swap
columns of P to ensure det(P) = 1 (and hence corresponds to a rotation, -1 corresponds to a
reflection).

Define new variables u, vsuch thatv = (uv) = P'x=x = Py
4. Substitute v into the matrix form of the equation giving vTDv + KPv+ =0

Complete the square if required. This is necessary if u2 and u are both present (or vz and v).
This defines a new set of variables s, t by translating u, v. The translations will be in the form
s=oau+ Bandt =yu + §

6. Ifitis a non-degenerate conic, the final equation in s and t should be in a conic section
standard form.

See A2 Question 2 for example.

Complex Matrices
Let a be a complex matrix (consists of complex numbers). The conjugate transpose of A, A" is given by

— T —_
(4) , where A is the matrix whose entries are complex conjugates of the corresponding entries of A.
Note, that if A is real, A'= A.

A complex matrix, A, is said to be unitary if A1= A’

Complex inner product: uv = u11_71 + uZi_J2 + ..+ un1_7n where v is the complex conjugate of v.

In matrix notation: u'v = v u
Hermitian (self-adjoint) matrices: A complex matrix, A, is called Hermitian if A= A". Can be identified
similar to symmetric matrices:

5 1] a2 +ibp  ayz + by

i1 12 n'l!ll|.:- 0
L . e — e - v = 1fion
ayz — by s J 12 — 12 22 gy + ibag

013 — ibs  fay — ibog I3y

g ayz + by agg+iby ay + thyy
i1z - .flrJ_: “'..'.:’ Aoy T n'.-‘l.i':;:; oy + .':Il.l-nj
apy — bz ag — 1hag gy @34 + ibag

i A b i

14 - n"-'l.r“ oy — flr.'j.; 234 — .l;lr.l_:_] iy

All symmetric matrices are Hermitian. All Hermitian matrices have real eigen values.
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Unitary Diagonalisation: A square matrix, A, with complex entries is said to be unitarily diagonalisable

if there is a unitary matrix, P, such that P*AP is diagonal.

Normal matrices: A square, complex matrix is called normal if it commutes with its own conjugate

transpose, i.e., if AA = A A. The following matrices are normal:

- Unitary

- Hermitian

- Real skew-symmetric (AT =—A)
- Any diagonal matrix

Normal 2x2 matrices are either symmetric or of the form (ab — ba)

An n x n matrix is unitarily diagonalisable if and only if it is normal.

3 " . G
If possible, diagonalise the matrix .
; 22—

S A

":J A Y« W\Q-’Mﬂ-\l = A A ‘-"‘\\'Yﬁhkj_fﬁ;w“{f“

w(

-2

242 _—
) =A
= A F)A -lt-, L{sz\-}\‘n—.

2428
i

2 . L
e\ o U —toX ty — 8

RN
= (\-8) (- 2) DN=82]

-6

Sfas (1|

\=8

—_—

g3 Pl

(2 ~ U

R = e s (2420k =2

[ S kot v
=\ V.= /9\ = /(iR = (o
- (\q) ( b/ K \
Q =b=y a .\t =b
=} (e (179
=5 f;?([-i\’[c’
Z.
w\r\LL\ LY M'-‘L “‘-ju&i\'c\. liadalo. ™ RL '

a-=((+ 'ij =

) é___,._

\Jttq i. \
g e

-g-[t"l'\..hllaftm? -}r_':_:‘_‘ :

bLile

1S

Nole .t Y"*l“" = (=) () s

(g;'f. b=1) - H{v—"ﬁ _ ulv—}'—
3

& “\{ER = m‘l = dJ

F-ura.-m Kl e L..f""\-lfo'""? VIR V.
*_ -
P/ % Pl TP =
5
\ g -
e i

TP
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Multivariable Taylor Series
Hessian matrix is defined as:

3
eg f(x, y)=xy + 2y

H=(f_f f_f )=(6xy3x"3x0)

XX~ xy  xy-yy

Multivariable Taylor series for f(x):

FGo Y~f(a, b + (@ b)x — )+ £ (@ Dy — b)+ 4|7 (@ D - o) + 2f, (@ B ~ O ~ D)+

Critical Points in n-dimensions
Recall Taylor series of a multivariable function in n variables abont a point 0 H i i i
gvenby; . metion i vanabl PRpEIE X Since H is real symmetric, H is
orthogonally diagonalisable. There

. . 1 .
J(x) =F(x0) + (V[ (x0))T(x — xg) + 5% = xa)" H{xo)(x — xq)

T
& Eiees oo ) exists a matrix P such that, P HP = D

. TP with some diagonal matrix D. Since H is
wherex = | | Hixg) = | T symmetric, all eigen values of H are
o 5k x0) g (%) - real.

i.e. H(xq) is a real symmetric matrix.

22.1 Classification of critical points in n dimensions
Definition 1. Critical points (extrema and saddle points) occur when 0 e
- rat
Qp' (3_ J%-;Z i )

Vi) =0 e Tk,

or is undefined.
In this lecture, we will only be considering the first kind of critical point

Definition 2. A critical point xq is a loeal mazimum {local minimum) if there exists
some € > 0 such that

J{x0) 2 J(x) (J{x0) < f(x)) for all x such that |[x — xo|| < «
Definition 3. A critical point xp is a saddle point if it is neither a maximum or a
minimum, Le. for all € > 0, there exists x;, X9 such that

[lxr = %oll <€, ||xa = xof| < ¢

and f(x;) < f(xg) < f(x2)
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It follows that
x"Hx = (x"P)D(P"x) = y" Dy.
(i.e. diagonalisation suggests set PTx = v,
The critical point is still at y = 0, because PT0 = 0.
Let F denote the function f expressed in this new coordinate system ie. Fly) =

f(x(y)).
. 1 =
= F(y) =f(0) + Eyj Dy + { higher order terms )
1 ;
=f(0) + 5 (Myf + oy + - + Ausl)
+ { higher order terms },
in
where y = o
Hn

Four cases to consider, let Al, be an eigenvalue of H:

1 Ai > 0Vi =1, 2, .., nthen local min.

2 Ai < 0Vi=1, 2, .. nthenlocal max.

3. f34 j(i#))s.t AL, , 7Lj have opposite sides, then saddle
4

If all non-zero )\i have same sign but there are some Ak = 0, we can’t identify critical point.

Semester Two Final Examination, 2019 MATH2001 Advanced Calculus and Linear Algebra 11

6. (10 marks) Find all critical points of the function f(z,y,z) = 2 + 2? — 2y and classify them as
local maxima, local minima or saddle points.

> ) = 4
“Zf ‘“( _5‘5*; = U\ = O-ij o Ren| {.sc-l\«{ 8 (0,9,%)
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Calculus

Double Integrals
Fubini’s Theorem:

If D = {(x, y)| a<x<b, c<y<d}

db
Il fex, yyda = [ [ f(x, y)dxdy

Special Case:

db b d
I fGx, wyda = [ [ gCOr()dxdy = [ g(x)dx [ h(y)dy

ca

Type 1 Region — generally bounded by two constant values for x and two functions of x fory.

D = {a<x<b, g(x)<y<h(x)}

b h(x)

I fe wyda =] | flx, y)dydx

ag()
Type 2 Region — generally bounded by two constant values for y and two functions of y for x.

D = {a<y=<b, g(y)<x<h(y)}

b h(y)

Il feo yydA = [ | f(x, y)dxdy

ag®y)

If a region is made up of multiple type 1 and type 2 regions, split up integral and domain and then
add together.

Interchanging order of integration: Can’t just swap dx and dy, need to change the limits of integration
as well. Can do this by graphing in the x-y plane and going from there.

Double integrals in polar coordinates
x = rcos(0), y = rsin(6)

I f(x, y)dxdy = [[ f(rcos(®), rsin(8))r dr do

In other words:

dxdy-rdrd6
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Polar coordinates are useful when integrating regions of circles or ellipses as hard to parameterise.
Use whenever x*+y” is present.

Mass, centre of mass and moments

The centre of mass is located at coordinates (;c, 3_/), where:

i M, _ I xp(x, y)dA
m I p(x, y)dA

- M ([ ypxy)da

Y= JI p(x, y)dA
Where p(x, y) is the density function.
Triple Integrals
If D = {(x, y, z)|asx<b, c<y<d, e<z<f}

fdb
N fx y, 2dv =[] f(x v, 2) dxdydz

Cylindrical Coordinates
x = rcos(0), y = rsin(0), z = z

[l f(x, vy, z) dxdydz = [[[ f(rcos(8), rsin(0), z)r dr d6 dz

Useful for when working with cylinders

Spherical Coordinates
x = rcos(0) sinsin (b)), y = rsin(0) sinsin (¢), z = rcos(d)

[ f(x, y, 2) dxdydz = [[[ f(rcos(0)sin(d), rsin(0)sin(Pp), rcos(Pp)) rzsin(cb) dr do d¢

Useful when working with spheres

Moments of Inertia (second moments)
The mass of a solid with a density p(x, y, z) occupying a region R in R? is given by:

m = [ p(x, y, 2) av
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The moments about each of the three coordinate planes are:

M
vz

M_= [[[ yp(x y, z)av

XZ

JII xp(x, y, z)av

M= [l zp(x, y, 2)dv

The centre of mass is located at the point (x, y, z) where:

- - xz xy
X = = 7 =
m’y m "’ m

The moments of inertia about each of the three coordinate axes work out to be:
2 2
L= (v +2 )y, Dav
2 2
Iy =[ff (x +z )p(x, y, z)dV

I =[] (" + 5 )@, v, Dav

Vector Fields

Conservative Vector Fields
Notation:r = xi + yj + zk

Fr)=Flx, y, 2)=F (x, 3, 2)i + F,(x, ¥, 2)] + F (x, y, 2)k

Gradient of a scalar field, conservative vector fields
For a differentiable scalar function, f(x, y, z) we define:

of . af . a
gradf = Vf =a—£l + %j +a—£
Thus
_0, L 0,0
v _6xl+ 6yj+azk

If given a vector field, F(x, y) and asked to determine a potential function, integrate i component with
respect to x and then partially derive with respect to y. Compare the partial derivative with respect to
y with the j component to determine the integration constant. Do the same if three variables, F(x, y,

z).
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The fundamental theorem for line integrals

Work done by F along curve C:

W = [F(r)dr=[F (x y)dx + F(x, y)dy

Steps to evaluate [ F(r)-dr:

Parameterise C by finding a r(t) = x(t)i + y(t)j, t€[a, b]

Write F® restricted to C as F(r(t)) = F(x(t), y(t))

Write dr = r (t)dt

Convert the line integral into an ordinary integral in terms of the parameter, t:

W Ne

b r
[F@)dr = [F@r(t)) e r(t)dt
b
If a vector field is conservative, F = Vf. [ F(r)-dr = [Vf-dr = f(r(b)) — f(r(a))

If a vector field is conservative, f F-dr is path independent

Test for conservative fields
If F = F1i + sz is a conservative vector field, then:

Z)F1 6FZ

dy 0x

Green’s Theorem
Let D be a region in the xy plane bounded by a piece-wise smooth, simple closed curve C, which is

oF F
traversed with D always on the left (anti-clockwise). Let Fl(x, ), Fz(x, ), 6_)/1 omala—xZ be

continuous in D. Then:

oF, oF,
ffD( prai W)dxdy = fFldx + dey

If
oF oF,

dy ox

Then
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$Fdr =0

— F conservative

_

F OF.

F dr path independent g _ 0t

- dy dr
T

~ — — //’
“"x._x‘ T - ///
— ~— P
~_ — -

% F -dr =10, ¥V closed '
Jo

In particular, we now have a test to determine whether or not a given two dimen-
sional vector field 1s conservative:
OF,  0F

The vector field F' is conservative if and only if T =5
1 or

7. (10 marks) Let C be the closed square path in the z-y plane connecting the points (0,0), (1,0),(1,1)
and (0, 1) traversed anti-clockwise, viewed from above. Evaluate the line integral

f sin(z®)dzx + (zy® + 27)dy.
2

" ﬂ‘td-"‘w
(W %‘3 kimts

(o9

o R (28 -2 \0\?“){‘3
cY D g £ ok 5 g( We. -
(o‘s,r 7 (r\m )

g Caindiae

§ (ayey =3+ 1= %%

Flux of a vector field

In three dimensions, the flux of a vector field across a given surface is defined to be the “flow rate” of
the vector field. Consider the velocity vector of a fluid. In three dimensions, the flux of a fluid across
a surface is given in units of volume per unit time. In other words, the flux tells us how much fluid
(volume) passes through a given surface in one second.

Flux integral (in 2D):

[vndsS
c
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To evaluate the flux integral:

1. Parameterise C by finding a r(t) = x(t)i + y(t)j with t€[a, b] that describes C
2. Write v(x, y) restricted to Cas v(r(t)) = v(x(t), y(t))

3. Compute a unit tangent vector to C by using T(x, y) = ﬁ, where r (t) = x (t)i + y (t)j
r(t

is a tangent vector to C

4. Be careful of the direction of n. By the definition of the cross product, and since k is a unit
vector normal to the x-y plane, we can take n =T x k. We could also take n = k x T depending
if asking positive or negative flux and the direction of n.

5. Write dS = [|r (8)|]dt

6. Evaluate the 2D flux integral as a definite integral in terms of the parameter t:

b , b ,
[vnds = [v@r®) e (r@®xk)dtor [v(r(®)« (kxr(t))dt
C a a

Depending on the direction of n.
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38.1.2 Calculate the Aux of v = —yi+zj (in the positive r direction) across
the line = = 2 (for 2 < y < 6).
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Outward flux across a closed curve in the plane

Net outward flux = § v'ndS
c

See 38.2.1, page 273

Divergence of a vector field
Divergence of a vector field is the “outward flux density”

Let
v(x, y, z)= vl(x, y, Z2)i + vz(x, Y, 2)j + vs(x, y, 2)k

Be a differentiable function. Then the function:
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v v v

. _ 1 2 3 _ .
d””]__ax +_ay + = Vv

Is called the divergence of v. Note that div v is a scalar quantity.

Outward flux across a closed curve in the plane using divergence (flux form of greens theorem):
$v(x, y)ndS = ffDdiv(v(x, y))dA
c

Parameterisation in R?
See chapter 40 (page 285) for parameterisation.

Tangent planes
Let S be a surface parameterised by r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

The equation of the tangent plane is given by:

(v (a b)x 7 (a, b))« ((xi + yj + zk) = (a, b)) = 0

40.3.1 Find the tangent plane to the surface parametrised by r(u,v) =
u?i + v’ + (u + 2v)k at the point (1,1,3).

—————

ro= 2l +0y ik
lju‘ = \'_( I\’ ‘leJ + L “'
-
Vo r i S - ‘I'
- |
| T [ \ ||
| 1
¢ Zv |
)
= 7 ' E
L Lyt v &

poat (o, w pod {
2 ( ﬁ:’.‘ (
\):L L,‘ —( tm =\ T
W=
s v =3 \)
== L&‘ Le L:.
o A } B - ‘.J
Wy
l&L_ W" rwh—ﬂ [/\“‘: ‘.’15:‘

Ceawed) » (Risgyeeb = (103 192)79

=3 —2 (x~) ~l(q- ) tH(-D TO

Surface Integrals
Let S be a smooth parametric surface given by r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

Surface Area = fdeS = ffD”ru X rU” du dv
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See page 298 for applications. MAKE SURE DIRECTION IS CORRECT

Variable transformations in double integrals

IS f(x, yydxdy = [ f (e, v), y(u, v))|5E2|dudv

Where

Ay _ Ox 0y ox 0y \ _ 9x 0y _ 0x Oy
W) detdet(au u ov ov ) = u av  ov ou
Is called the Jacobian of the transformation T.

A good example is 2020 S2 Q9

Flux integrals and Gauss’ divergence theorem

Flux across S = ffsv-n ds = fva-(ru X rv)dudv

Gauss’ Divergence Theorem:

Let S be a piecewise smooth, orientable, closed surface enclosing a region in V in R®. Let F(x, y, z) be a
vector field whose component functions are continuous partial derivatives in V. Then:

i JFndS = {ff Ldiv(F)av
Where n is the outwardly directed unit normal to S. MAKE SURE DIRECTION IS CORRECT

Curl of a vector field
. P 3 3 6173 61;2 . 6171 3173 . 6172 6171
Curl(y)=ny=l]k§——vvv|=( — )l+( _6x)]+(0x_ )k

Note that curl(v) is a vector field.

Curl of a conservative vector field
If F is conservative, curf(F) =0
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Stokes’ Theorem

Let S be a piecewise smooth, orientable surface in R® and let the boundary of S be a piecewise
smooth, simple, closed curve C. Let F(x, y, z) be a continuous vector function with continuous first
partial derivatives in some domain containing S. Then:

¢ F-dr = ffs(curlF)-n ds
c

Where n is a unit normal vector of S, and the integration around C is taken in the direction using the
right hand rule with n.

If normal vector is pointing up, param C anti-clockwise. If normal vector is pointing down, param C
clockwise.

To calculate n if paramis S(r, 6):

n=S xS
r 6
If normal is in the wrong direction:

n:SexSr

Example:
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12. (10 marks) Let C be a simple, closed, smooth curve that lies in the plane £ + y + z = 1. Show
that the line integral

fzdr—2xdy+3ydz
L

can be expressed as a scalar multiple of the area of the region in the plane enclosed by C.
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