
SVG Text NG
Author: Kent Tamura <tkent@chromium.org>
Date: 2021-09-29
Visibility: Public
Tracking Bug: crbug.com/1179585

Background

Understanding text in SVG

Legacy text processing
Layout

Text scaling
Paint
Hit-Testing

Proposed LayoutNG text processing
Layout
Paint and HitTesting
Estimated workload
Known differences from the legacy SVG text

Background

As of February 2021, text rendering code for SVG in Blink depends on the legacy layout classes
such as LayoutBlockFlow, RootInlineBox, InlineFlowBox, and InlineTextBox. We
should stop using them and should switch to LayoutNG in order to remove the legacy layout.

The current SVG text rendering has many issues. We'd like to resolve them by rewriting the text
handling algorithm while switching to LayoutNG

Summary of the benefit by LayoutNG SVG text:

●​ We can remove the legacy layout in the future
●​ Reduce memory consumption by avoiding the legacy text shaping
●​ Improve the correctness of BiDi resolving by using LayoutNG BiDi resolver

mailto:tkent@chromium.org
http://crbug.com/1179585

Understanding text in SVG

Text in SVG must be in <svg:text>. <svg:text> can contain the following rendered nodes:

-​ Text

-​ <svg:tspan>

-​ <svg:textPath>

-​ <svg:a>

<svg:text> can contain only inline boxes.

We can specify absolute/relative positions and angles of each character by x/y/dx/dy/rotate
attributes. e.g. <svg:text rotate="0, 90, 180, 270, 0">Hello</svg:text>

We can put text on an <svg:path> by <svg:textPath>.

We can specify the length in which text should be drawn, by textLength attribute.

In SVG 1.1, SVG text doesn't have line wrapping. SVG 2.0 defines that inline-size property
triggers line wrapping though no browsers implement it yet.

Legacy text processing

Layout
<svg:text> is represented by LayoutSVGText, which is a subclass of LayoutBlockFlow. It
can have only inline children. LayoutSVGText lays out children as a normal inline formatting
context except for CreateLineBoxesFromBidiRuns(), which calls
SVGRootInlineBox::ComputePerCharacterLayoutInformation() instead of
LayoutBlockFlow::ComputeInlineDirectionPositionsForLine().

SVGTextLayoutEngine is called by
SVGRootInlineBox::ComputePerCharacterLayoutInformation(), and it creates
SVGTextFragment instances, and pass them to SVGInlineTextBox.

SVGTextFragment represents a group of characters that can be positioned together. It is owned
by an SVGInlineTextBox.

Text scaling
FontDescription::ComputedSize() returns the computed size based on font-size content
attribute or font-size CSS property. In SVG text layout, LayoutBlockFlow lays out with the

https://svgwg.org/svg2-draft/text.html#TextElement
https://dom.spec.whatwg.org/#text
https://svgwg.org/svg2-draft/text.html#TextElement
https://svgwg.org/svg2-draft/text.html#TextPathElement
https://svgwg.org/svg2-draft/text.html#TextElementTextLengthAttribute

ComputedSize(), however geometries in inline boxes are not used by SVGTextLayoutEngine.
It recomputes text geometries with scaled font, then stores unscaled values to
SVGTextFragment's data members as float, not LayoutUnit. On the paint stage, we draw
text with scaled fonts.
For example, for <svg:svg width="480" height="360" viewBox="0 0 160 120">
<svg:text font-size="0.4" transform="scale(20)">, ComputedSize() is 0.4px, but we
draw text with a font of which size is 0.4 * 20 * 3 == 24 screen pixels. 'Scale factor' is 60, and
scaled font size is 24.

Paint
SVGInlineTextBoxPainter is the core part. It paints SVGTextFragment instances in an
SVGInlineTextBox. It supports the paint server feature, paint-order attribute, and has its own
text-decoration painting code.

Hit-Testing
SVGInlineTextBox::NodeAtPoint() ⇨ SVGInlineTextBox::HitTestFragments()

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/layout/api/line_layout_svg_inline_text.h;l=41?q=LayoutSVGInlineText::ScaledFont&ss=chromium

Proposed LayoutNG text processing

Layout
CollectInlinesInternal() in ng_inline_node.cc and/or NGInlineItemsBuilder should take
care of text chunks. We should add BiDi control characters so that each of the text chunks are
handled as unicode-bidi:isolate before running SegmentBidiRuns(). It will fix
crbug.com/341932 and crbug.com/1034464.

●​ Making text chunks at this timing would be the best because text chunks affect font
shaping results. We do ShapeText() just after SegmentText(), which includes
SegmentBidiRuns().

●​ A single text chunk should be represented by one or more NGInlineItems.
●​ We need to compute the addressable character index in this step because x/y attribute

values are mapped to addressable characters, and the attribute values produce text
chunks.

●​ Examples:​
<svg:text>foo עִברִית bar</svg:text> ⇨ a single text chunk​
<svg:text>foo <svg:tspan>עִברִית</svg:tspan></svg:text> ⇨ a single text chunk​
<svg:text y="0 -10"><svg:tspan>foo</svg:tspan></svg:text> ⇨ two text
chunks; "f" and "oo"​
<svg:text>foo <svg:tspan y="10 20">bar</svg:tspan> עִברִית</svg:text> ⇨ 3
text chunks; "foo ", "b", and "ar עִברִית"

●​ NGSvgTextLayoutAttributesBuilder is responsible for this step. It maps attributes to
addressable characters, and we store its result to NGInlineNodeData.

Fonts referred to in NGInlineNode::ShapeText() should be scaled fonts. This is necessary to
use text metrics computed by the inline layout in the SVG specific text layout algorithm. Of
course NGFragmentItem::rect_ will have scaled metrics, and we need to adjust it later or stop
using it in SVG. ShapeResult and ShapeResultView referred from <svg:text> are always for
scaled fonts.

NGLineBreaker::HandleText() creates NGInlineItemResult for each of typographic
characters of an input NGInlineItem. splits an input NGInlineItem into multiple segments of
typographic characters. A single segment consists of characters which we can paint together.
x/y/dx/dy attributes create a new segment from the corresponding character, rotate attribute
and <svg:textPath> make a new segment for each of the characters.
Note: The definition of "segment" is the same as SVGTextFragment.
Note: Initially we thought split by characters was simple and enough. However we found that the
split-by-character didn't work well for text selection painting and negative text-shadow.

The inline layout handles alignment-baseline, baseline-shift, and dominant-baseline
properties.

Then, we proceed the inline layout just before creating NGFragmentItems. In
NGFragmentItemsBuilder::ToFragmentItems(), we kick the SVG specific text layout

https://svgwg.org/svg2-draft/text.html#TermTextChunk
http://crbug.com/341932
http://crbug.com/1034464
https://svgwg.org/svg2-draft/text.html#TermAddressableCharacter
https://svgwg.org/svg2-draft/text.html#TermTypographicCharacterUnit
https://svgwg.org/svg2-draft/text.html#TermTypographicCharacterUnit
https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/core/layout/ng/inline/README.md
https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/core/layout/ng/inline/README.md
https://svgwg.org/svg2-draft/text.html#TextLayoutAlgorithm

algorithm starting with "1. Setup". It updates NGFragmentItems stored in
NGFragmentItemsBuilder::item_.

●​ NGSvgTextLayoutAlgorithm implements the algorithm.
●​ The algorithm uses the result of NGSvgTextLayoutAttributesBuilder.
●​ The outcome of the algorithm is an array of per-character information. See 1.3. of the

algorithm in the specification. A new struct SvgPerCharacterInfo represents it.

// Rough idea of what SvgPerCharacterInfo looks like.
struct SvgPerCharacterInfo {
 base::optional<float> x_;
 base::optional<float> y_;
 base::optional<float> rotate_;
 bool hidden_ = false;
 bool addressable_ = false;
 bool middle_ = false;
 bool anchor_chunk_ = false;

 // Should have a pointer to a NGFragmentItem / ShapeResultView?
};

●​ Introduce kSVGText type of NGFragmentItem. It's similar to kText, but it has

SVG-specific data.

struct NGSvgFragmentData {
 scoped_refptr<const ShapeResultView> shape_result;
 NGTextOffset text_offset;
 FloatRect rect;
 AffineTransform transform; // represents 'rotate'.
};

class NGFragmentItem {
 …
 struct SVGTextItem {
 std::unique_ptr<NGSVGFragmentData> data;
 };

kSVGText NGFragmentItem is created from a kText NGFragmentItem and an array of
SvgPerCharacterInfo. A single NGFragmentItem represents a segment of
typographic characters.

As for svgwg:537, we should follow the current specification for compatibility with the current
implementation for now. That is to say, index attributes such as x/y/dx/dy/rotate are mapped to
Unicode code points, not grapheme clusters. We think it's not so hard to adopt grapheme
clusters in the future.

https://svgwg.org/svg2-draft/text.html#TextLayoutAlgorithm
https://github.com/w3c/svgwg/issues/537

Note: As for connected glyphs such as ligatures, the specification defines how to handle an
attribute value pointing to a middle of a connected glyph. Firefox follows it, and the current
Chrome and Safari break connected glyphs.

Note: Firefox supports white-space:pre*. Supporting it would be very easy.
(crbug.com/366558) However, it's not in the scope of the project.

Paint and HitTesting
We should handle kSVGText NGFragmentItem in addition to kText NGFragmentItem in the
paint phase and the hittesting phase. We need to take care of scaled fonts, the paint server
feature, paint-order, and per-character transform.

Estimated workload
Probably we can't reuse existing SVG text code such as SVGTextLayoutEngine.
We guess this would need 2 quarters * engineers. We can proceed the first paragraph in the
Layout section and the remaining part in parallel though the former is much easier than the
latter.

Known differences from the legacy SVG text

●​ Bidi reordering is scoped within text chunks split by x/y attributes.
●​ dx/dy/textLength attributes and <textPath> don't break a single glyph consisted of

multiple code points, such as ligatures and Emoji ZWJ sequences
●​ Text without positioning just after <textPath> starts on the end of the path, not the end of

the text in the <textPath>.
●​ Underlines and overlines are thicker than the legacy SVG text, but same as HTML.
●​ textLength attribute doesn't affect getComputedTextLength() result.
●​ The list of bugs fixed by the project

○​ Issue 245618: SVG bidi rtl behaves incorrectly when there are multiple spans
○​ Issue 341932: tspan with x/y attributes should create text chunks
○​ Issue 347126: SVGTextElement.getStartPositionOfChar and

getCharNumAtPosition disagree
○​ Issue 360314: [SVG] Incorrect alignment of the first tspan in text element when

RTL direction is set
○​ Issue 360315: [SVG] Incorrect alignment of incrementally shifted tspan elements

when RTL direction is set
○​ Issue 374526: Complex text is broken on text path
○​ Issue 375258: textLength not handled correctly for tspan elements

https://svgwg.org/svg2-draft/text.html#TextLayoutPreMultiline
https://bugs.chromium.org/p/chromium/issues/detail?id=366558
https://bugs.chromium.org/p/chromium/issues/detail?id=245618
https://bugs.chromium.org/p/chromium/issues/detail?id=341932
https://bugs.chromium.org/p/chromium/issues/detail?id=347126
https://bugs.chromium.org/p/chromium/issues/detail?id=360314
https://bugs.chromium.org/p/chromium/issues/detail?id=360315
https://bugs.chromium.org/p/chromium/issues/detail?id=374526
https://bugs.chromium.org/p/chromium/issues/detail?id=375258

○​ Issue 597055: Vertical SVG text lays out rtl text backwards
○​ Issue 622336: SVGTextContentElement.getSubStringLength() returns non-zero

width for zero-width non-joiner character
○​ Issue 631903: SVG text appearing in wrong location
○​ Issue 917770: svg tspan: diagonal-fractions and letter-spacing do not work

together
○​ Issue 927214: Thai vowel character placement incorrect on SVG Text Path.
○​ Issue 936382: SVG textlength not properly inherited from text element to textPath
○​ Issue 967655: text svg elements with high letter-spacing are not underlined

properly
○​ Issue 973581: letter-spacing CSS property breaks bidi in SVG
○​ Issue 1034464: SVG file formatting affects rendering
○​ Issue 1083726: SVG text element with writing-mode="tb" text-anchor="middle"

not positioned correctly
○​ Issue 1132249: Devanagari combining characters become unjoined when using

dx attribute on SVG text (wrong appearance)
○​ Issue 1155114: SVGTextContentElement.getComputedTextLength() doesn't

account for letter spacing.
○​ Issue 1180484: Text does not render correctly in SVG file

[EOF]

https://bugs.chromium.org/p/chromium/issues/detail?id=597055
https://bugs.chromium.org/p/chromium/issues/detail?id=622336
https://bugs.chromium.org/p/chromium/issues/detail?id=631903
https://bugs.chromium.org/p/chromium/issues/detail?id=917770
https://bugs.chromium.org/p/chromium/issues/detail?id=927214
https://bugs.chromium.org/p/chromium/issues/detail?id=936382
https://bugs.chromium.org/p/chromium/issues/detail?id=967655
https://bugs.chromium.org/p/chromium/issues/detail?id=973581
https://bugs.chromium.org/p/chromium/issues/detail?id=1034464
https://bugs.chromium.org/p/chromium/issues/detail?id=1083726
https://bugs.chromium.org/p/chromium/issues/detail?id=1132249
https://bugs.chromium.org/p/chromium/issues/detail?id=1155114
https://bugs.chromium.org/p/chromium/issues/detail?id=1180484

	SVG Text NG
	Background
	Understanding text in SVG
	Legacy text processing
	Layout
	Text scaling

	Paint
	Hit-Testing

	Proposed LayoutNG text processing
	Layout
	Paint and HitTesting
	Estimated workload
	Known differences from the legacy SVG text

