المعايرة المباشرة – Dosage direct

ا- المعايرة: dosage

1- هدف المعايرة

تهدف المعايرة إلى البحث عن كمية مادة أو تركيز نوع كيميائي في محلول ، يسمى : المحلول المُعَايَر و ذلك بجعله يتفاعل مع نوع كيميائي آخر ، في محلول تركيزه معروف يسمى: المحلول الْمُعَاير .

2- مميزات تفاعل المعايرة:

ينبغي أن يكون تفاعل المعايرة ، تلقائيا و سريعا و كليا.

11- المعايرة الملوانية Dosage colorimétrique

نُمَعْلِمُ نقطة التكافؤ عند تغير لون الخليط من لون المحلول المُعَايَر (في الكأس) إلى لون المحلول المُعَايِر (في السحاحة).

2- علاقة التكافق

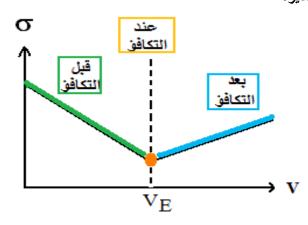
عند التكافؤ يستهلك كميتة مادة كل من المعاير (B) و المعاير (A) معا داخل الكأس أي يشكل المعاير (B) و المعاير (A) خليطا تناسبيا :

a.A+b.B
ightarrow c.C+d.D : نقرن تحول المعايرة بمعادلة التفاعل التالي *

	المعادلة		$a.A + b.B \rightarrow c.C + d.D$			
	الحالة	التقدم	كمية المادة بـ mol			
	البدئية	0	$C_A.V_A$	$C_B.V_B$	0	0
ſ	عند التكافؤ	X _m	$C_A.V_A$ -a. x_m	$C_B \cdot V_B - b \cdot x_m$	C.X _m	d.x _m

$$\begin{cases} n_i(A)-a.x_m=0\\ n_i(B)-b.x_m=0 \end{cases}$$
 عند التكافؤ : * عند الت

$$x_m = \frac{n_i(A)}{a} = \frac{n_i(B)}{b}$$


نستنتج

 $\frac{C_A.V_A}{a} = \frac{C_B.V_B}{b}$ و هي علاقة التكافؤ التكافؤ [] المعايرة بقياس المواصلة:

محاول بتترع مواصلة الخابط خلال التفاعل

	ع مواصله العليط حارل التعاص	" يمكن تعديد تركير توع كيمياني في معتول بنتج
بعد التكافؤ	عند التكافؤ	قبل التكافؤ
يتوقف تحول المعايرة فصب المُعَايِر داخل الكأس يؤذي	الايونات تستهلك كليا بعد تفاعلها	خلال تحول المعايرة فإن الايونات تستهلك بعد
الى زيادة عدد الايونات أي زيادة المواصلة من جديد .		تفاعلها و هذا يؤذي الى انخفاض المواصلة
	دنیا .	-

^{*} يمثل الشكل المنحنى المحصل عليه بعد المعايرة

 $m V_{E}$ عند التكافؤ تتقاطع قطعتي المستقيمين المقومين للمنحني المنحني ؛ فنحدد حجم التكافؤ

$$x_{\scriptscriptstyle m}=rac{n_{\scriptscriptstyle i}(A)}{a}=rac{n_{\scriptscriptstyle i}(B)}{b}$$
 عند التكافؤ نكتب : عند التكافؤ نكتب $a.A+b.B
ightarrow c.C+d.D$ باعتبار معادلة تفاعل المعايرة

C V C V	
$\frac{C_A.V_A}{C_B.V_B} = \frac{C_B.V_B}{C_B.V_B}$	
a b	أي أن
	بي _ا ن .

انتهى

Www.AdrarPhysic.Com