Summary: Lido Oracle contract is trustful and relies on trusted third-parties and quorum
mechanism to maintain its state. It is possible to make the contract trustless, allowing any
third party to adjust the contract state, while mathematically securing the correctness and
validity of the change via Zero Knowledge proofs.

Main idea at a glance

Lido oracle contract is trustful - it relies on external oracle(s) to honestly calculate the total
ethereum value committed by Lido validators (aka TLV), and uses quorum mechanism and a
list of trusted members to protect from malicious actors.

This leads to three consequences:

e Security: A dedicated and resourceful attacker can work towards acquiring control of
the majority of oracle members - and compromising the oracle contract when it is
achieved[*].

e Cost: Contract requires a considerable amount of expensive storage read/write
operations to manage members, check if reports are coming from a trusted source,
and keep track of reports while quorum is being accumulated.

e Scalability: With the network growing. the cost of quorum calculation grows linearly
(O(N)) with the number of trusted oracle members

[*]: Technically this is a 51% attack that even PoW blockchains do not try to address;
however, at the moment there are only 5 trusted oracles (getOracleMembers()), so 51%
attack essentially boils down to overtaking 3 entities.

A trustless, ZK-proof secured approach can address these shortcomings in the following
way:

e Security: With proper construction, zk-proof can ensure that only honest calculations
produce input that would pass validation. This will make quorum and membership
management unnecessary - any input that passes validation can be trusted to be
coming from an accurate and honest calculation.

e Cost: As it will be shown in the “Implementation” section, input validation can be
limited to a small number (3-4) checks against keccak hashes (stored in the contract
or provided by the Execution Layer) + Execution Layer contract invocation to confirm
ZK-proof validity.

e Scalability: since all honest and accurate calculations should produce the same
outcome (there’s only way to sum all staked balances), the contract can reject
“duplicate” reports from multiple parties (e.g. based on eth epoch), essentially making
it a constant (O(1)) and not grow with the network size/oracle operators.

Proof Construction

Lido Oracle contract essentially manages a single number - the TLV committed by Lido
validators. The “smallest” payload we can pass to the contract to update the state is similarly
a single number - new TLV value. However, with only this, the contract cannot verify the
validity of the calculation in any way, except trusting the source (msg.sender). So we need to


https://etherscan.io/address/0x1430194905301504e8830ce4b0b0df7187e84abd#code
https://etherscan.io/address/0x442af784a788a5bd6f42a01ebe9f287a871243fb#readProxyContract

extend the payload to include data that the contract can independently validate and compare
against something it already knows or trusts.

Essentially, computing Lido validators’ TLV involves three pieces that can be independently
checked by the contract:
e All Consensus Layer validators addresses and balances, as reported by
BeaconState
Lido validator addresses, as seen on the Lido Node Operators Registry
A computation “program” itself: take the two above as an input, find balances of all
Lido validators, sum the balances.

As such, an honest trustless oracle should perform the following operations:

e Obtain validators and balances from Consensus Layer BeaconState (or other means
with identical result)

e Obtain Lido validators from a Lido Node Operators Registry (or other means with
identical result - e.g. lido-sdk)
Correctly compute the TLV according to the “program”.
Produce a ZK-proof of the computation, and pass TLV value and ZK-proof to the
oracle contract

This opens the following attack vectors for a malicious actor:
1. Using an arbitrary/purposefully constructed list of public keys as list of Lido validators

keys.

2. Using an arbitrary/purposefully constructed list of Consensus Layer validators and
balances.

3. Using a different “program code” (e.g. using any arbitrary number, “fair random”,
etc.).

4. Honestly performing a calculation, and then replacing the result with an arbitrary
value in a call to the contract, while still passing ZK-proof for the original result of the
computation.

To protect from such attacks, the payload to “Modify TLV” contract call should contain proofs
that the valid inputs were passed to a correct “computation program”, and that the TLV value
passed to the contract indeed comes from the output of that “computation program”.

Trustless oracle contract should perform the following checks:
e “Program code” used to calculate the value corresponds to a valid TLV computation.
o Atthis stage, the contract ensures that a third party performs the correct
computation, but not necessarily on the correct inputs - prevents attack vector
3.
e Check that the input to the “program” is correct: actual Lido validators’ keys and
balances are used
o At this stage, the contract ensures that the correct inputs were passed to a
correct computation, so the output of the computation is trustworthy -
prevents attack vectors 1 and 2.
e Check that the output of the “program” was used as the contract payload


https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
https://etherscan.io/address/0x55032650b14df07b85bF18A3a3eC8E0Af2e028d5
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
https://etherscan.io/address/0x55032650b14df07b85bF18A3a3eC8E0Af2e028d5
https://github.com/lidofinance/lido-python-sdk
https://xkcd.com/221/

o Through this check, the contract defends from malicious attackers to perform
a trustworthy computation, and then replacing the output with arbitrary value -
prevents attack vector 4.
e Verify validity of the ZK-proof produced by the “program”:
o This ensures that the computation was indeed performed using the “program
code” and inputs above, and can be cryptographically confirmed to be correct
- secures the above checks via verifiable Zero Knowledge proof.

Solution Architecture

Until this point I've intentionally put “program” in quotes - to emphasize that the argument
above does not imply any particular implementation mechanism; as long as that mechanism
can perform the necessary computation and generate a computation’s ZK-proof, any
mechanism will do. In this section, I'll focus on one particular implementation mechanism
that supports both; however, other mechanisms could exist.

TL;DR:

e Trustless oracle obtain BeaconChain (or at least validator keys and balances) and
Lido validators’ keys, pass both to a Cairo program to compute 3 items: (1) Merkle
tree root of BeaconChain, (2) Merkle tree root of Lido Validators and (3) total value
locked; sends the program and input to SHARP; passes program output (Merkle Tree
roots and TLV) to the contract.

e Trustless oracle contract compares Merkle trees to stored/independently computed
values, generates a Fact ID from previously stored trusted program hash and
program output, verifies the fact ID via STARK Fact Reqistry contract (Execution
Layer contract), and if all checks pass updates the TLV value stored on the contract.

e The trust relationships are not completely removed, but shifted - instead of trusting
the oracle(s), the contract should trust the StarkWare prover, verifier and fact registry
contract. There is no trust between the contract and oracles though.

Overview

The first challenge is to make the oracle produce a verifiable ZK proof of the computation. At
the moment, one option to do so is to utilize StarkWare's Cairo programming language and
verifier (SHARP).

The best explanation of how it works is this quote from Cairo for Blockchain Developers
post:

> [With Cairo] you write your complex logic in Cairo, get it proved off-chain, and once that
proof is validated on-chain, your smart contract application can use the result trustlessly — as
if it executed that complex logic onchain, because that’s what the proof asserts.

Generating ZK proof

Cairo ZK proof involves four parties: “computer”, prover, verifier, and “user”:
e Computer - performs a computation.


https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
https://www.cairo-lang.org/
https://www.cairo-lang.org/docs/sharp.html
https://www.cairo-lang.org/playground-sharp-alpha/
https://goerli.etherscan.io/address/0xAB43bA48c9edF4C2C4bB01237348D1D7B28ef168
https://goerli.etherscan.io/address/0xAB43bA48c9edF4C2C4bB01237348D1D7B28ef168
https://www.cairo-lang.org/
https://docs.starkware.co/starkex/how-cairo-is-used-in-starkex.html#sharp
https://www.cairo-lang.org/cairo-for-blockchain-developers/

e Prover - proves that a computation was performed (produces a provable computation
trace).
Verifier - verifies the correctness of the proof.
User - uses the result of the computation, but only if it is verified and trustworthy.

Computer and prover live off-chain, while verifier and user are on-chain. In our case, a
trustless oracle becomes a “computer” and prover, and a trustless contract is a user; verifier
role is fulfilled by the SHARP and other StarkWare infrastructure.

The trustless oracle essentially becomes a wrapper around a Cairo program: gathering
inputs, invoking the program, submitting it to the SHARP prover, and sending the program
output and ZK proof to the oracle contract. The computation of the TLV, as well as necessary
supporting evidence happens in the Cairo program. Program execution trace (automatically
generated by the Cairo runtime) is then submitted to SHARP, to prove and verify the
computation and generate a Fact - testament that the computation was performed and
verified to be correct.

Verifying ZK proof

In Cairo/StarkNet, ZK proof is represented by a Fact - a testament that a correct and sound
computation was performed on some input. The Fact is stored on-chain, and can be
checked by an on-chain contract by passing a Fact ID to the Fact Reqistry contract.

Verification happens simply via a call to the Eact Reaqistry contract (etherscan)
‘isValid(FactID)" method - if it returns true, the computation is confirmed to be correct and
trustworthy. Due to how the Fact ID is constructed (spoiler: hash of the program code and
output), by verifying a Fact in the contract we can ensure two things:
e That a computation was performed with a correct Cairo program (attack vector 3)
e That the output of the program was passed to the contract without tampering or
modifying (attack vector 4)

The contract would need to store a hash of the correct Cairo program and take the
entire program output as part of the “Modify TLV” method input.

Verifying inputs

As mentioned in the previous section, verifying the fact only confirms that a certain
computation was performed on some input, to produce a certain result. Ensuring that a
correct input was passed to the program requires performing some additional steps.

One way to achieve this is to include some information about the input that can be confirmed
by the prover/verifier and checked by the contract. A straightforward way to do it is to include
the inputs into the output - and let the contract check that the inputs indeed match the
expected values. There’s a challenge though - the inputs consist of public keys of all
Consensus Layer validators, their balances, and Lido validator keys. Passing these data
around would already be prohibitively expensive - there are >150K validators at the time of


https://medium.com/starkware/the-fact-registry-a64aafb598b6
https://medium.com/starkware/the-fact-registry-a64aafb598b6
https://etherscan.io/address/0x47312450b3ac8b5b8e247a6bb6d523e7605bdb60#readProxyContract
https://www.cairo-lang.org/playground-sharp-alpha/
https://www.cairo-lang.org/playground-sharp-alpha/

writing, so listing their keys alone would take 6Mb+ (150K+ validators x 40 bytes per
validator).

However, since we only need to validate that the input was what we expect, it is enough to
compute a cryptographically secure proof that a valid data was used - a widely used
approach to do so is constructing a Merkle tree on the data, and passing around/comparing
Merle tree root(s) (aka MTR, for brevity).

To make this happen, a Cairo program should, in addition to the TLV value, provide two
additional “commitments”:

e MTR of Lido Validator keys (attack vector 1)

e MTR of Consensus Layer validator keys and balances (attack vector 2)

The contract then should obtain/compute MTRs of Consensus Layer validators keys and
balances, and Lido validator keys, and then compare these MTRs with the ones supplied
in the “modify TLV” call.

Note: both operations are likely to be too expensive to implement naively in the contract.
However, MTR of Lido validators can be trivially added to the Lido Node Operators Reqistry
contract (or new contract), and validator keys+balances MTR can be “expanded” to be an
MTR of a BeaconState that will become available to all L1 contracts when/if EIP-4788 is
implemented.

Summary

Trustless Oracle:

Obtain Consensus Layer validator keys and balances

Obtain Lido validator keys

Execute Cairo program to compute MTRs of the above inputs + Lido TLV
Submit the program execution trace to SHARP

Send entire program output to a trustless oracle contract.

Trustless Oracle contract:
e |Initialization:
o store a hash of correct Cairo program, address of a Fact Registry contract,
and current TLV
o sets up additional access control/deployment/management data, as
necessary
o GetTLV method:
o simply return the stored TLV
e Modify TLV(uint256[] programOutput):
o Verify ZK proof:
m Construct FactID: keccak(program_hash, programOutput)
m Verify Fact with a Fact Registry
o Check Consensus Layer validators’ keys+balances:
m reconstruct MTR from program output
m obtain/compute BeaconChain MTR (directly or via separate contract)
o Check Lido validators keys:


https://etherscan.io/address/0x55032650b14df07b85bF18A3a3eC8E0Af2e028d5
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
https://eips.ethereum.org/EIPS/eip-4788

m reconstruct MTR from program output
m obtain/compute Lido validator keys MTR (directly or via separate
contract)
o if all the above checks pass, replace the stored TLV with a new value

Practically, barring the access control, deployment, governance, modification, etc.
machinery, the resulting contract would not be much more complex than a “toy” contract
used in one of the Cairo tutorials - essentially just a few lines of code.

Implementation

A github repo is worth a thousand (or more) words, so check out
https://github.com/e-kolpakov/cairo-balance - it contains Cairo program, example contract
and oracle “wiring” boilerplate (rest of the repo, and oracle.py in particular). Readme
contains instructions on how to set up and interact with it, as well as some implementation
details, assumptions and specifics.

Assumptions

The solution is based on a few assumptions on how the BeaconState hash will be calculated
and exposed to Execution Layer contracts. Full details are listed in the corresponding
readme section, but in short:
1. Assumption 1: BeaconState merkle tree hash will be available on chain (simply put,
eip-4788 is implemented one way or the other)
a. If this assumption does not hold, the workaround would be to maintain the
BeaconState hash separately, via a first-party contract/off-chain solution.
b. In fact this is what the example implementation is doing.
2. Assumption 2: the algorithm to calculate merkle tree root exactly matches the one in
the Beacon Deposit Contract - “progressive merkle tree” with 32 levels.
a. If this assumption does not hold, Cairo program will need to be updated to
use an actual algorithm (merkle_tree.cairo)
3. Assumption 3: Consensus Layer public keys are split into two 32-byte merkle tree
leaves.
a. This is more of a shortcut, rather than an assumption - most likely it won’t
hold in reality and public keys will live in a single 64-byte leaf.
b. This can be supported in Cairo, but adds additional complexity that drives
attention away from the important parts of the solution.

Key challenges

Computing Merkle Tree roots

The most non-trivial part of the oracle is making sure that MTRs computed by the Cairo
program and oracle contract would match. There are two challenges with this:
e Cairo uses Pedersen hash by default, while Ethereum uses keccak. Keccak is
available as a module in Cairo, but requires some non-trivial manipulations to make
sure that the input to keccak calls match between Cairo and Ethereum (spoiler: need


https://github.com/starkware-libs/cairo-lang/blob/master/src/demo/amm_demo/amm_contract.sol#L49
https://www.cairo-lang.org/cairo-for-blockchain-developers/
https://github.com/e-kolpakov/cairo-balance
https://github.com/e-kolpakov/cairo-balance/tree/master/oracle/cairo
https://github.com/e-kolpakov/cairo-balance/blob/master/ethereum/contracts/TVLOracle.sol
https://github.com/e-kolpakov/cairo-balance/blob/master/oracle/oracle.py
https://github.com/e-kolpakov/cairo-balance/blob/master/README.md
https://github.com/e-kolpakov/cairo-balance/blob/master/README.md#implementation-assumptions
https://eips.ethereum.org/EIPS/eip-4788
https://github.com/e-kolpakov/cairo-balance/blob/master/ethereum/scripts/end_to_end_example.py#L175
https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa
https://github.com/e-kolpakov/cairo-balance/blob/master/oracle/cairo/merkle_tree.cairo

to align padding and breaking down into merkle tree leaves: Consensus Layer public
keys being 40 bytes and keccak operating on 32 byte chunks)

e Calculating MTR on large inputs on the fly is expensive, so most solutions involving
MTR (such as DepositContract) employ some optimizations allowing to “spread out”
the calculation (aka “progressive merkle tree”). The optimizations might introduce
non-trivial changes to the structure of the Merkle tree - e.g. DepositContract always
computes an MTR of a 32-layer deep Merkle Tree, with actual values being leafs on
the last layer (+ zeroes to fill the last layer to full).

Cairo specifics

Cairo language itself posed some unique challenges - in short, it feels a lot more like
“assembly with syntactic sugar” rather than a high-level programming language (this is even
stated in one of the official tutorials/docs). I'll omit excessive details (PM me if you're
interested in more details), but at a high level the language features that left the most visible
marks on the result are:

e No loop syntax - the loops can be achieved via recursion, or via explicit jumps.

e Peculiar memory model (non-deterministic read-only), references and erasure

o all “variables” are essentially address “offsets” from the memory pointer (aka
‘ap’), and calling into a function (or builtin) moves the “ap’, but not the offsets,
revoking the references.

o writes are also assertions - if the “variable” was already written to, an equality
check is performed instead.

e DictAccess - this library class “quacks like a dict”, but is actually an append-only list,
very similar to compacted topics in Kafka.

e Non-deterministic execution (aka “hints”) and soundness - comprehensive
explanation would require a deeper dive into the computation model, but in short, this
feature allows computations “out-of-band” from the perspective of the Cairo program,
magically arriving at a result:

o Example: find an element by key in a list in O(1) - the element index can be
found in the hint and assigned to a Cairo variable (this is actually used in the
oracle Cairo code))

o This might provide an opening for a malicious party to compromise
soundness of the proof, so additional steps need to be made to ensure
soundness (e.g. check if the found element is indeed in the list, and has the

correct key)

It is worth noting that Cairo evolves rapidly, and some of the challenges above are already
“marked for improvement” in the recently announced Cairo 1.0 release.

Conclusion

Summary: TVL oracle contract can be made a lot simpler and cheaper - complete contract
example is ~100 lines long - by moving the computations off-chain, and securing them via
ZK-based solution. Cairo and StarkWare provide one feasible solution to achieve it with
production quality and reliability, but other solutions can exist. Cairo allows building arbitrary
logic, and transparently (to the developer) converting it to a STARK proof. Biggest challenge



https://github.com/e-kolpakov/cairo-balance/blob/master/oracle/cairo/tlv_prover.cairo#L103
https://github.com/e-kolpakov/cairo-balance/blob/master/oracle/cairo/tlv_prover.cairo#L108
https://github.com/e-kolpakov/cairo-balance/blob/master/oracle/cairo/tlv_prover.cairo#L108
https://medium.com/starkware/open-sourcing-cairo-1-0-b3100a664bb0
https://github.com/e-kolpakov/cairo-balance/blob/master/ethereum/contracts/TVLOracle.sol

is implementing and invoking merkle tree calculation in Cairo in the exact same way as it is
done in Ethereum/oracle.

The most challenging part of the solution was to make merkle trees calculated in Cairo and
in Ethereum/Oracle match - this can only happen if merkle tree algorithm and inputs are
exactly the same between Cairo and Ethereum, including byteorder, padding, splitting (or
not) values into multiple leaves, order of the values, etc.

In addition, it is worth mentioning that in this case, the “knowledge” verified by the ZK-proof
is actually publicly available. However, accessing and manipulating that data in the
Execution Layer contract is almost prohibitively expensive. Essentially, we only need to
ensure that the “correct” computation was performed over the “correct” data (aka
computational integrity) - without disclosing the data to the Execution Layer contract, but
proving to it that we have it.

Cairo and StarkWare infrastructure provide a secure and (relatively) convenient way to do it,
however similar results should be achievable using other solutions (e.g. a smart
contract on a different chain). Cairo has one additional advantage - the ability to implement
almost arbitrary logic (it is turing complete) and transparently turn it into a STARK proof to
the developer.



	Main idea at a glance 
	Proof Construction 
	Solution Architecture 
	Overview 
	Generating ZK proof 
	Verifying ZK proof 
	Verifying inputs 
	Summary 

	Implementation 
	Assumptions 
	Key challenges 
	Computing Merkle Tree roots 
	Cairo specifics 


	Conclusion 

