
LCP WebPerf Implementation 
This document is public 
npm@ 
April 2019 
 
This document contains implementation details for Largest Contentful Paint (LCP) Web Perf 
API. An explainer for LCP can be found here. As of right now, the precise shape of the API has 
not been decided so this is a rough draft that tries to avoid going into those details. 
 
We consider the following objective: expose LCP for each frame, leaving room to expose 
different information depending on whether the content being exposed passes 
TimingAllowOrigin (TAO) checks. 
 
There are two alternatives from which we could expose: ElementTiming code or UMA/UKM LCP 
code. We have decided to expose via the latter because it will be simpler. 
 
If we added the hooks via ElementTiming code, we would need to add the following logic to that 
part of the code: 

●​ Keep track of the largest element seen thus far (not needed right now by 
ElementTiming). This would be relatively simple. 

●​ Remove from consideration elements that are disconnected from the DOM tree. 
Currently ElementTiming does not consider this at all, although it will with the addition of 
the ‘element’ attribute (which needs to return null once an element is disconnected). This 
part is relatively complex because it means we need to keep track of a set of largest 
candidates instead of just the largest, in order to update the largest if the largest is 
disconnected. This logic is already implemented in UMA/UKM LCP code. 

 
Due to this, we consider it simpler to add the hooks via UMA/UKM LCP code. 
 
Adding the hooks via the UMA/UKM LCP code means we need to augment that code as 
follows: 

1.​ Hook into the LCP WebPerf class from both 
ImagePaintTimingDetector::UpdateCandidate and 
TextPaintTimingDetector::UpdateCandidate because the image and text candidates are 
considered separately. The LCP Web Perf class will keep track of the largest image and 
largest text. Any time the candidates are updated, the ‘largest’ might be updated. Note 
that just keeping track of the largest overall is not good enough. For example, if the 
largest image is disconnected and the new largest image is smaller than the current 
largest text, then we need to update LCP to be the largest text. 

2.​ Include enough information in the ImageRecord and TextRecord for the hook into LCP 
WebPerf class to have all the information it needs. Because the shape of the API is 

https://docs.google.com/document/d/1ySnglZJiCbOrOMX8PNgE0mRKmt9vglNDyggE8oYN8gQ/edit#heading=h.hjlf1s5m20ko
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Timing-Allow-Origin
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/paint/image_paint_timing_detector.cc?l=106&rcl=3fe085f9573c24ab0c3f62662b30a7d899a5396e
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/paint/text_paint_timing_detector.cc?l=81&rcl=3fe085f9573c24ab0c3f62662b30a7d899a5396e
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/paint/image_paint_timing_detector.h?l=27&rcl=1eaf666ae16b75a34a7c10c0ee30a0cdd2525238
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/paint/text_paint_timing_detector.h?l=25&rcl=1eaf666ae16b75a34a7c10c0ee30a0cdd2525238


known at the moment, it’s unclear what this information is. However, it would be 
expected for the following to be the minimum: 

○​ Size of the LCP 
○​ Paint timestamp of the LCP 
○​ Element associated to the LCP 
○​ Image url if the content is an image (note that this is not recoverable from the 

Element because it could be a background image, in which case the element 
does not necessarily provide information to determine which is the URL). 

○​ Enough information for the TAO check if the content is an image, also not 
recoverable from the Element. 

It seems that most of this is there already. The size and paint timestamp are explicitly there, and 
the Element can be obtained from the DOMNodeId. The main missing components are the 
image URL and the information to compute TAO checks for images. The image_url is available 
in DEBUG mode, but since this is not enough to compute the TAO check I would recommend 
just adding the pointer to the ImageResourceContent to ImageRecord because that class 
contains both the URL and the ResourceResponse (needed for the TAO check, see how it is 
done in ImageElementTiming). 

https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/paint/image_paint_timing_detector.h?l=38&rcl=1eaf666ae16b75a34a7c10c0ee30a0cdd2525238
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/loader/resource/image_resource_content.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/paint/image_element_timing.cc?l=94&rcl=f546218abd755f0e5f1569261fe1275a53655d60

	LCP WebPerf Implementation 

