
Static Decorators Early Feedback
Attention: Shared Google-externally

Author: syg@chromium.org

Last Updated: 2019-12-02

What “Static” Ought to Mean
The current static proposal is an attempt to improve startup performance concerns as raised by
V8 engineers. For an implementation, I’d like the “static” qualifier to mean the following:

1. That there is a one-time cost that is paid during parsing or the initial compile.
a. Decorators should have no per-class literal evaluation cost by design.
b. Engines should be able to generate code for decorators during the initial compile.

That is, modules or class bodies should not need to be reparsed/recompiled.
2. That the common use cases that look declarative actually act declarative. Once a

module’s decorator imports are all loaded, what a decorator does should be knowable
without running code. Further, decorators in the common case should not result in
dynamism such as Object.defineProperty. Escape hatches should exist, but the
common uses should be achievable declaratively.

Implementation Constraints

Motivations
There are (at least) three relevant implementation choices made by V8 and Chrome that are
important to the design of decorator:

1. ClassBoilerplate. After a class literal is parsed, all { instance, static } x { methods,
accessors } are gathered and put into a boilerplate structure that has the same lifetime
as the bytecode. When the class is defined, the shape of the constructor and the
prototype can be precomputed up to the point of all the methods and accessors.

The important invariant here is that once the boilerplate is computed prior to evaluation,
it can be left alone and be deep copied when e.g. passing around classes. Decorators
must be static enough that the boilerplate would not need mutation per class literal

mailto:syg@chromium.org


evaluation, or that the initial boilerplate structure is unconditionally, immediately
amended by calls to Object.defineProperty.

2. Synthetic Members Initializer Functions. All instance fields are collated into a
synthesized function which is called per instance construction. Similarly, all static fields
are collated into another function which is called when the class is defined. These
functions are compiled eagerly when the class literal itself is compiled, as the AST for
the class literal (and all its elements) will be discarded by evaluation time.

The important invariant here is that, in the same vein as the invariant for the boilerplate,
that once these initializer functions are compiled, they should remain undisturbed.
Decorators must be static enough that the initializer functions do not need to be
recompiled per class literal evaluation.

3. Parallel Module Fetching, Parsing, and Bytecode Compilation. A module’s dependencies
are fetched, parsed, and bytecode compiled in parallel. In other words, currently codegen
is done on the unlinked module.

The important invariant here is that static decorators should not require post-linking
bytecode compilation for the entire module. Doing so creates a serialization point and
requires either reparsing the entire module or keeping the AST around, both of which
have unacceptable performance penalties.

Constraints

No Reshaping

Decorators, for the common use cases, should act declaratively. After decorators run and the
class is defined, the initial instance shape should be stable (at least up to methods, because
field initializers have always been “anything goes”, like deleting other fields or freezing the
instance). Concretely this means both that the ClassBoilerplate optimization must remain
possible in light of decorators, and that common use of decorators must not result in code that
immediately invalidates the boilerplate result.

Bytecode Compilation Should Be Done Once

When decorators remove or replace fields, public or private, with or without initializers, requires
the initializer functions to be recompiled and the boilerplate to be fixed up. This can be
accomplished several ways: reparsing the class literal, representing the class literal as IR,
keeping ASTs around, bytecode patching, or rearchitecting how module graphs are loaded. After
discussion with other V8 engineers, rearchitecting module loading is the most robust and
palatable choice despite the significant amount of work required.



Currently modules are able to be compiled without knowing the rest of the module graph. In fact,
a module’s dependencies are not known until after it is compiled. To support static decorators
without recompilation or reparsing, the module graph needs to be compiled in dependency
order. If module A imports @foo from module B, B needs to be compiled before A so A has
access to the definition of @foo. This suggests the following architecture:

1. Perform a fast preparse that discovers the dependencies of a module.
2. Perform step 1 until the entire module graph is discovered.
3. Topologically sort the graph so modules are parsed and compiled in the right order for

static decorators.

Step 1 is an unknown. A full parse is required to extract the decorators from an import currently.

Step 3 raises the question of cyclic imports of static decorators. How would they work, if at all?
For regular imports, circularity in the import itself is the issue. For static decorators, circularity in
at the module level is problematic since the initial compile depends on it.

Skepticism
The design space for decorators seems to me like the following matrix. In matrix tree below, by
“expressive”, I mean supporting many disparate use cases: declarative class element
transformation, imperative action on class elements, metadata, etc.

Dynamic Expressive Static Expressive

Dynamic Restrictive Static Restrictive

Dynamic Expressive is what was objected to when the proposal tried to advance to Stage 3.

V8 objected to Dynamic: by inviting programmers to use a declarative-looking feature only to
have it not behave declaratively encourages writing non-performant programs, especially at
startup.

JSC objected to Expressive: intrinsic to an expressive proposal is the complexity of reflecting
the structures needed to enable that expressivity. In the Dynamic Expressive proposal, reflecting
all the class elements became too heavyweight.

So, now here we are exploring the possibility of static decorators. It seems like performance
wise, with enough engineering, a Static design may be possible to overcome V8’s original
objections. But can the feature satisfy both the generality and expressiveness constraints and
the implementation constraints?



I believe Static Expressive will run afoul of the same complexity concerns. Expressivity for
decorators seems to me to require either powerful reflection, like in Java’s annotations, or
powerful syntax transformation, like in languages with syntax macros, or a powerful “constexpr”
DSL, which is probably morally equivalent to syntax macros.

That leaves Static Restrictive, like re-scoping the proposal to only consider the class element
metaprogramming use case. I am skeptical this restriction of scope is possible or desirable for
the end user. I’m skeptical this is possible because the mental model of restricted static
decorators is elusive. Are they more like ad-hoc syntax macros? (But they can’t be because
many common use cases aren’t expressible with declarative syntax, cf @readonly.) What about
their scopes? In other words, because JS does not have a static metaprogramming model, the
complexity cliff remains very, very tall even with use cases restricted. I’m skeptical this is
desirable because, well, static metaprogramming doesn’t jive with the rest of JS. I don’t feel like
we can avoid discussing staging, and the committee has come down on the question of staging
before.

This design space is already a difficult one, and adding in production engines’ constraints
makes it all the more difficult. All of this leads me back to thinking about alternatives that do not
require implementation in engines, such as the original idea of annotations and standardizing
pure syntax, or attempt to break new ground by specifying a new stage of evaluation
(“compilation”?). But that won’t solve the dynamism-of-generated-code concern for the same
reasons that the complexity cliff for the static case is high: we don’t have declarative syntax for
many common use cases, just Object.defineProperty.

Where does that leave us?


