Assessment Report

Candidate: Aman Gupta

Role Applied: Software Engineer - Vision & AI/ML

Company: Terafac Technologies

Exact Image Search in a Bit-Level Image Database

1. Problem Statement

Given a dataset of 100×100 RGB images with 1-bit channels, the task was to design an efficient program to search whether a given image exists in the dataset. Additionally, I was asked to analyze time complexity, memory usage, and scaling behavior with increasing dataset sizes.

Alternate Approaches Considered

- Brute-Force Matching: Compare each image pixel-by-pixel. Accurate but O(N) query time.
- Image Hashing with List Storage: Hash images and store in a list. Still O(N) due to list traversal.
- Exact Hash-Based Lookup with Dict: Hash images and store them in a Python dictionary for O(1) average-time lookup using hash table mechanics. Chosen for its high efficiency and simplicity for exact matches.

2.Chosen Approach: Exact Hash-Based Lookup

I opted for a high-efficiency method using image hashing combined with a Python dictionary for constant-time lookup. Step-by-Step Strategy:

Dataset Generation

Generate N images with pixel values in {0,1} for all RGB channels using NumPy. def generate_bit_images(N):
 return np.random.randint(0, 2, (N, 100, 100, 3), dtype=np.uint8)

Index Building

Convert each image to bytes, hash it, and store it in a dictionary.

def hash_bits(img):
 return hash(img.tobytes())

def build_index(images):
 return {hash_bits(img): True for img in images}

Image Lookup

Hash the query image and check existence in the index.

found = hash_bits(query_img) in index

3.Performance Evaluation

Logged generation time, memory usage, index build time, and query time for different dataset sizes using TensorBoard and DataFrames.

4.Observations

- Query Time: Remains O(1) due to hash table lookup.
- Memory Usage: Scales linearly with dataset size.
- Index Time: Also linear, but acceptable.

5. Shortcomings & Considerations

- Exact Match Only: Cannot handle slight variations, distortions, or lossy encoding.
- Hash Collisions: Though rare, possible.
- Memory Bound: At very high N, RAM becomes a bottleneck (especially in Colab). This limitation could potentially be
 addressed by using a disk-based key-value store like RocksDB, which would allow for scalable indexing and lookup
 without loading the entire dataset into memory. Currently I just flush the memory by manually calling the garbage
 collector.

7. Conclusion

The image data generation and memory footprint and image hash dictionary creation all of these had a time complexity of O(n). while the image search time complexity for exact match was O(1).

Image Similarity Search using Machine Learning

1. Problem Statement

The objective of this assessment was to design and implement a system capable of finding visually similar images from a dataset using machine learning.

2. Initial Exploration and Approach Considerations

I had several approaches that i found for consideration

- Pretrained CNN Feature Extraction (e.g., ResNet, VGG): Using off-the-shelf CNNs to extract features, followed by L2/FAISS-based similarity search. Simple and effective, but lacks task-specific representation learning.
- Vision Transformers (ViTs): Architectures like DINOv2 or CLIP use self-supervised or contrastive methods to learn strong semantic features.
- Supervised Classification Features: Using labels to train a classifier and utilizing embeddings from penultimate layers. However, this approach requires labeled data.

Given the goal of building a similarity search engine with minimal labeled data, contrastive learning (SimCLR-style) was chosen as the most appropriate method. This self-supervised strategy enables the model to learn useful representations by comparing different augmentations of the same image (positives) against other images (negatives).

3. Chosen Approach: SimCLR with ResNet-18 Backbone

3.1 Dataset

The COCO-128 dataset was used, downloaded via Roboflow. This small subset of COCO contains 128 images in the training set. While suitable for proof-of-concept, it poses challenges for contrastive training due to its limited size.

3.2 Data Augmentation

SimCLR heavily relies on strong augmentations to generate different views of the same image. The following transformations were used:

```
T.RandomResizedCrop(224, scale=(0.2, 1.0))
T.RandomHorizontalFlip()
T.ColorJitter(0.4, 0.4, 0.4, 0.1)
T.GaussianBlur(5)
T.ToTensor()
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```

3.3 Model Architecture

- Encoder: ResNet-18 without the final classification head.
- Projection Head: A small MLP with two layers to project 512-D features to a 128-D embedding space.

```
nn.Sequential(
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 128)
```

Normalization: The output is normalized to lie on the unit hypersphere (important for cosine similarity).

3.4 Loss Function: InfoNCE

The contrastive InfoNCE loss compares all positive pairs against all negatives in the batch, using cosine similarity and a temperature-scaled softmax. Positive pairs are augmented views of the same image, and the rest serve as negatives.

3.5 Hyperparameters

Several key hyperparameters influenced model performance:

- Batch Size: 64. A modest size, constrained by dataset size (128 images) and compute. Larger sizes (e.g., 256+) would help create more negative pairs.
- Embedding Dimension: 128. Balances compactness and expressivity of learned representations.
- Temperature (τ): 0.1. Controls the sharpness of the softmax distribution in InfoNCE. Lower values increase emphasis on harder negatives.
- Learning Rate: Default for Adam optimizer, not specifically tuned here but can be explored.
- Epochs: 30. Chosen to ensure convergence given the small dataset.

3.6 Training

The model was trained for 30 epochs using a batch size of 64. Since the dataset contains only 128 images, training was effectively done in 2 batches per epoch. The Adam optimizer was used for optimization.

4. Evaluation Methodology

- Embedding Extraction: After training, all images were passed through the model to generate embeddings.
- FAISS Indexing: Embeddings were stored in a FAISS IndexFlatL2 structure for efficient nearest-neighbor search.
- Querying: A query image was passed through the model, and its embedding was used to search the FAISS index for the top-k similar images.

5. Limitations

- Dataset Size: The COCO-128 dataset is too small for effective contrastive training. Larger datasets like ImageNet or OpenImages would produce more robust representations.
- Batch Size: SimCLR benefits greatly from large batch sizes (e.g.,512+) to provide diverse negative samples.
 Although this experiment used a batch size of 64, the dataset size was only 128 images, resulting in just 2 batches per epoch—still limiting the diversity of negative samples compared to larger datasets.
- Training Time: Without proper hardware or augmentation caching, training was slow.
- No Hard Negative Mining: All negatives are equally treated, which could be improved by using semi-hard/hard negatives.

6. Alternative & Advanced Methods to Explore

6.1 DINO / DINOv2

- Self-supervised ViT-based method by Meta.
- Produces rich features useful for clustering, retrieval, segmentation.
- Requires more compute but no labels.

6.2 CLIP (Contrastive Language-Image Pretraining)

- Joint vision-language model by OpenAl.
- Learn aligned vision-text embeddings.
- Pretrained on large datasets, shows strong generalization.
- Could be used to find similar images based on textual query as well.

6.3 MoCo (Momentum Contrast)

- More memory-efficient alternative to SimCLR.
- Maintains a queue of negative samples instead of large batch sizes.

6.4 Supervised ViT Embeddings

• If labels are available, supervised ViTs (e.g., DeiT, Swin) can be used and embeddings from intermediate layers can be used.

7. Conclusion

Increasing batch size, using a larger and more diverse dataset, and experimenting with DINO or CLIP-based models would significantly improve performance and generalization.