

SECRETARIA DE ESTADO DA EDUCAÇÃO

Componente Curricular:	Número da Aula:
FÍSICA	AULA 13
Título da Aula: RADARES DE VELOCIDADE	Ano/Série: 1º SÉRIE - 2024
Estudante:	Nº:
LISTA DE EXERCÍCIOS	
Descritor:	

- 1) Uma grande cidade do interior do Paraná iniciou os testes com radares fixos de velocidade média. Supondo que a velocidade média da via donde serão feitos os testes seja de 40 km/h, qual deve ser o tempo mínimo, em minutos, que um automóvel deve percorrer uma distância de 1,2 km entre os dois pontos que se encontram os radares de velocidade média? (*Lembre-se 1h = 60 minutos)
- a) 0,03
- b) 1,8
- c) 3
- d) 6

COMENTÁRIO:

Utilizando a equação de velocidade média: $v_m=\frac{\Delta S}{\Delta t}$, obtemos $\Delta t=0,03h$. Transformando horas em minutos, obtemos 1,8 min.

- 2) (UEL-PR) Uma lombada eletrônica possui dois sensores, que detectam a presença de veículos, distantes entre si 1,8 m. Qual deve ser o tempo mínimo (em segundos) que um automóvel deve passar por estes detectores sem que infrinja o limite de velocidade local de 60 km/h? (3,6 km/h = 1 m/s)
- a) 0,1
- b) 1,6
- c) 1,8
- c) 16,6

COMENTÁRIO:

Utilizando a equação de velocidade média: $v_m = \frac{\Delta S}{\Delta t}$, obtemos $\Delta t = 0, 1s$. É necessário lembrar que 1 km/h equivale a 3,6 m/s.

