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Chapitre 02
Limites de suites

I. Limite finie ou infinie d'une suite
1. Limite infinie
Exemple
. L 2 o
La suite (un) définie sur N par u =mn apour limite + oo.

En effet, les termes de la suite deviennent aussi grand que 1'on souhaite a partir d'un certain rang. Si 'on prend
un réel a quelconque, l'intervalle |a; + oo[ contient tous les termes de la suite a partir d'un certain rang.

Définition 1

= On dit que la suite (un) admet pour limite + oo si,pour tout réel g, 'intervalle ]a; + oo[ contient tous les
termes de la suite a partir d'un certain rang et on note u =+ oo

= On dit que la suite (un) admet pour limite — oo si, pour tout réel b, I'intervalle | — oo; b[ contient tous

les termes de la suite a partir d'un certain rang et on note u ==

D’un point de vue mathématique, u =+ oo équivaut a dire que
VA€ER,ANEN, VneN, n2N=>un2A
Par exemple, pour la suite définie (un) définie ci-dessus, soient AER et n€N,
2
u >Ae=n 24 (D

Dong, si A<0, I'inégalité est toujours vérifiée et N = 0 convient.
SiA > 0, par croissance de la fonction racine sur R+

(1)=n>+/A
Donc, N = [\/ZJ +1= [\/Z] convient
Dans tous les cas, il existe un entier naturel N tel que
VneNn, n2N=>un2A

Remarques
* Delaméme facon, u =— oo équivaut a dire que
VAER,INEN, VneN, n2N=u <A
=  On peut aussi écrire U n—0— + © au lieu de u =+ oo

* Le symbole « 3 » veut dire « il existe ».

. [\/ZJ désigne la partie entiere (inférieure) de \/Z et [\/Z] représente la partie entiere supérieure de \/Z Ces
deux notations ne sont pas au programme de terminale mais seront utilisées dans le supérieur. C'est
pourquoi l'on utilisera les limites des suites usuelles et les opérations sur les limites pour justifier les
exercices.

= Dans cet exemple, il est plutot aisé de trouver une valeur explicite de N (dépendant de A) la plus petite
possible mais dans certains cas, cela ne sera pas aisé (voire impossible) de I'exprimer avec les fonctions
usuelles. On utilisera alors des programmes de calcul (algorithme de calcul de seuil) permettant de
déterminer un rang a partir duquel une suite croissante de limite infinie est supérieure ou égal a un nombre

réel A
Exemple 1 En Python
On considere la suite (un) définie par u, = 2 etpour | A=float(input("Quel est le seuil A choisi ?"))
tout entier naturel n, E:g

u =4 +3 while u<A

Cette suite est croissante et admet pour limite + oo :tZiu+3
On a écrit c1-coptre un algorlth.me écrit en langage print("Le rang cherché est : ",n)
Python. En appliquant cet algorithme avec A = 100,
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on obtient en sortie n = 3. A partir du terme u, la

suite est supérieure a 100.

M yidéos dans la Playlist
https://www.youtube.com/playlist?list=PLVUDmbpupCarZdaGUMO7DV35pi1l8zI]Z

Exemple 2 En Python
On considere la suite (vn) définie par from math import x
P n A=float(input("Quel est le seuil A choisi ?"))
VneN,v =n +n+e n=0
! =nx*x2+n+exp(n)
Cette suite est croissante et admet pour limite + oo :h;'_"{: U<A:
On veut connaltre a partir de quel rang v atteint n=n+1
1000, 1 000 000 et 1 000 000 000. e T
print("Le rang cherché est : ",n)

D’apres l'algorithme en Python écrit ci-contre, les
rangs cherchés sont respectivement 7, 14 et 21.
Remarques
* Lescommandes n=n+1 et n+=1 donnent le méme résultat : elles rajoutent 1 a la variable n.
= On peut aussi utiliser e**n pour calculer I'exponentielle mais le résultat est (un peu) moins précis et ne
permet pas de calculer 'exponentielle complexe.
= La premiere ligne permet d’'importer la bibliotheque math qui contient notamment les fonctions de base
(telles que la fonction racine carrée sqrt pour square root en anglais).

2. Limite finie
Exemple
La suite (un) définie sur N par

u = >
n 1+n

possede pour limite 0. En effet, les termes de la suite se resserrent autour de 0 a partir d'un certain rang. Si 'on
prend un intervalle ouvert quelconque contenant 0 (excepté I'ensemble vide), tous les termes de la suite
appartiennent a cet intervalle a partir d'un certain rang.

Définition 2

On dit que la suite (un) admet pour limite L si tout intervalle ouvert non vide contenant L contient tous les

termes de la suite a partir d'un certain rang et on note

u =1=1L
n

Une telle suite est dite convergente.
D’un point de vue mathématique, u = L équivaut a dire que

VICR, I#0, I ouvert tel que LEl,ANEN, VneN, n=N=u €l (définition topologique)

Ou encore
Ve > 0,aNEN, VneN, n2N=>|un — L| < ¢ (définition métrique)

C’est souvent cette derniére définition que I'on utilisera dans le supérieur pour montrer la convergence d'une
suite (au bac, comme on I'a dit précédemment, on se servira des théorémes des paragraphes suivants).
Par exemple, montrons la convergence de la suite (un) citée ci-dessus. Soit un réel € > 0 et soit n€N, la suite

(un) étant (strictement) positive
|u — 0|< eou < s@%< €(2)
n n 1+n
Puis, par décroissance de la fonction inverse sur R+,
2 1
2)=1+n >—
2 1
2)en >—--1
Siex1, % — 1<0donc N = 0 convient

Sie < 1, % — 1 > 0 et dongc, par stricte croissance de la fonction racine sur R+
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()en >q——1

Donc N = | % — 1| + 1 convient et, dans tous les cas,
ANEN, VneN, n2N=|un ~ 0| <

Définition 3
Une suite qui n'est pas convergente est dite divergente.

Remarque
Une suite qui est divergente n'admet pas nécessairement de limite infinie. Par exemple, la suite de terme

générale(— 1)n prend alternativement les valeurs — 1 et 1. Elle n'admet donc pas de limite finie, ni infinie. Elle
est donc divergente.

Théoréme 1
Si la suite (un) est convergente, alors il existe un réel M tel que

VneN, |un|SM

De plus, si les conditions suivantes sont réalisées
VneN, un;&O et u #0

Alors il existe un réel m > 0 tel que

VneN, |un|2m

Preuve
(un) est convergente. Soit LER sa limite. Soit € > 0. Il existe donc un entier N tel que
VneN, n=N—= |un— L|< el — ¢ <u < L+ ¢

On en déduit que

vneN, n=N=lu [ < (IL — &;|L + &)
Par ailleurs,

VneN,n < N=>|un| < (|uk|)

Sil’'on pose

M =(L— el|L+ ¢]) etM, = (|uk|)
M = (M1; Mz) convient et dans ce cas

VneNn, |u |SM
n
Supposons maintenant que
VneN, un;&O et u =0

L#0 donc on peut choisir e > 0 tel que 0€[L — & L + ¢
On en déduit que
vneN, n2N=>|un| >(L — el;|IL + g))> 0

Par ailleurs et par hypotheése,
VneN, n < N=>|un| > (|uk|) >0
Sil’'on pose
m, = (IL — €|;|IL + €]) etm, = (|uk|)

m = (ml; mz) > 0 convient et dans ce cas

VneN, |un|2m

3. Limites des suites usuelles
Propriété 1
1

n=+oon2=+oo\/£:+oo—=OLZ=OL=0
n n \/E
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Démonstration de % =0
Soitunréel € > 0 et soit n€N , la suite (%) étant (strictement) positive
|u — 0|< gouU < so—< €(3)
n n n
Puis, par décroissance de la fonction inverse sur R+,
1
B)en > —
1 . . s N
Donc, en posant N = |—] + 1 (N estle plus petit entier superieur a 1/)
VnEN,nZNz>|un — 0| < gcqfd

II. Opérations sur les limites
M yidéo https://youtu.be/v7hD6s3thp8
1. Limite d'une somme

u L L L + o — o0 + oo
vn L' + oo — o0 + oo — o0
(un+vn) L+ L + oo — oo + oo FIL.*

* Forme indéterminée : on ne peut pas prévoir la limite éventuelle.

Preuve du premier cas
Supposons que, soient L, L'ER,
u =1Letv =1L
n n
Montrons que
(w,+v) =L+ L
n n.
Soit e > 0. Soient €, €, € R+. Par hypothese, il existe deux entiers N1’ N2 € N tels que
VnEN,nZN:>|u —L|< el — e <u <L+ ¢
1 n 1 1 n 1
VnEN,n2N=|v —L'< el — e <v <L' + ¢
2 n 2 2 n 2
Posons
N = (Nl; Nz)
SoitneEN, n>N, d’apres I'inégalité triangulaire,
u +v —(L+L')|=|u - L+v —L'|S|u —L|+|v —L|<s + €
n n n n n n 1 2
On peut choisir e ete tels que

€
g =g =5
Ainsi,
1 € €

VneN, n=N, un+vn—(L+L)|<7+7= €
Et donc

(u +v) =L+ L

n n,

Les autres cas se démontrent avec des raisonnements similaires.

Exemple
2
n +n)?
Solution
2
n =+ oetn =+ ©
Par somme des limites,
2
(n + n) =+ o

2. Limite d'un produit
(4[]



https://youtu.be/v7hD6s3thp8

u, L L>0|L<0|L>0|L<0]| +0 | —0 | + 0

n

v L' + o + o — — + o — — + o ou— ®

(un- vn) LxL' + — — + o0 + o + o — o El

Preuve du premier cas
Supposons que, soient L, L'ER,
u =Letv =1
n n
Montrons que
u Xv = LXL
n n
Soit € > 0. Soient €, €, € R+. Par hypothese, il existe deux entiers N1’ N2 € N tels que
VneN, n>N = |u — L| < €
1 n 1
VneN,n>N :>|v — L|< €
2 n 2
Posons
N = (Nl; NZ)
SoitneEN, n>N, d’apres I'inégalité triangulaire,
uv — LL'|=|uv —Lv + Lv —LL'|£|uv - Lv |+|Lv —LL'|S|17 ||u —L|+|L||v — L'|
nn nn n n nn n n n n n
Or, d’apres le théoreme 1, il existe M tel que
VneN, |vn|SM
Posons alors
M1 = (M;1) et M2 = (IL; D
En remarquant que M1 > Oet M2 > 0 par définition, on peut choisir g ete, tels que

—fope =
81_ M, e Sz_ 2M,

Ainsi,
VneN, n=N, 'unvn —LL | <M, x

€
2M

E_
+M2X2M =

1 2

€

Ainsi
(un o vn) = LXL'

Les démonstrations des autres cas se traitent par des raisonnements aussi imbuvables...

Exemple

1 2
(ﬁ + 1)(71 +3)7
Solution
-+ = o:>(+ + 1) =1
\n \n

2 2
n’ =+ w=(n"+3) =+

D'apres la regle sur la limite d'un produit

(% + 1)(n2 +3) =+ o

3. Limite d'un quotient

L>0|IL<O0|L>0|L<O

u L L ou ou ou ou 0 + o [+ | —oc [ — oo +jo;)Ou
+ oo — 00 + oo — 00

v , T @ 1 0avec | 0avec| 0avec | 0avec ) ' . ) + oo ou

n L'#0 | ou v >0lv >olv <olv <0 0 L'>0|L' <O0|L' >0(L'<O0 >
— 0 n n n n

(Z") LL 0 + o0 | —00 | —o | + EL + o | —0c0 | —0 | + EL

Preuve du premier cas
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Supposons que la suite (vn) ne s’annule pas et, soient L, L'€R,

u =>Letv =1'
n n

un L
v | T
Soit & > 0. Soient €, €, € R+. Par hypothese, il existe deux entiers N1’ N2 € N tels que
VneN, n=N_— |u - L| < g
1 n 1

Montrons que

VneN,n>N =>|v —L|< €
2 n 2

Posons
N = (N1; Nz)
Soit nEN, n>N, d’aprés I'inégalité triangulaire,
u . u L'—Lv | u L-LL+LL'~Lv_ |unL'—LL"+|LL'—Lvn| I ||w,~L|+1L1[v L |
v - L - L'vn - | L'Vn - |L'||vn| - |L'||vn|
Or, d’apres le théoreme 1, il existe un réel m > 0 tel que
1 1
VneNn, vn|2m(:>-|v—n|- < -
Posons alors
M = (|L]; 1)
En remarquant que M > 0 par définition, on peut choisir € ete, tels que
_ _me _ m|L'|e
5§ =72 et & ="
Ainsi,
' L |x2+M xLzlfV;'E
VneN,n=N, 'u v - LL|<,— =t
nn |L'|m
Ainsi
un L
v | T
Exemple
2_ 9
—n2—3 '
Solution
2 2 2
n =+ oo donc —n)=—oo et donc (—n —3)=—oo
D'apreés la régle sur la limite d'un quotient,
=0
—n’-3

Remarque

Tous ces résultats sont intuitifs. On retrouve par exemple, un principe sur les opérations de limite semblable a la
regle des signes établie sur les nombres relatifs. Il est important cependant de reconnaitre les formes
indéterminées pour lesquelles il faudra utiliser des calculs algébriques (et souvent factoriser) afin de lever
l'indétermination ou utiliser d'autres propriétés sur les calculs de limites.

. , . s . 00 0
Les quatre formes indéterminées sont, par abus d'écriture, « 0 — 00 »; « 0X00 » ; « = »et«

Méthode

Lever une indétermination

M yidéo https://youtu.be/RQhdU7-KLMA M yidéo https://youtu.be/wkMleHBnyqU
M yidéo https://youtu.be/loytWsU4pdQ M yidéo https://youtu.be/9fEHRHdbnwQ

Déterminer les limites suivantes.

2 2
RCEEID b ¢ d. ({2 -n)

Solution

Uel!


https://youtu.be/RQhdU7-KLMA
https://youtu.be/wkMleHBnyqU
https://youtu.be/loytWsU4pdQ
https://youtu.be/9fEHRHdbnwQ

a.n =+ o et 3\/£=+00 b.5n" + 4 =+ o et 4n° + 3n =+ o
Il s'agit d'une forme indéterminée du type « oo — oo »

SoitneN,n — 3( = \/ﬁ(\/ﬁ - 3) ¥ sniea 2 544 54+

—_ _ —_ 7 —_— e —— X n — n
Or \/ﬁ—+ © et(\/ﬁ _3) =+ o Soit neN , PRI EE RS PR
Donc par limite d'un produit,

(n = 3n) =Jn(fn — 3) =+ o Or(5+%)=5et(4+%)=4

Donc, par limite d'un quotient,

Il s'agit d'une forme indéterminée du type « — »
(o]

4
5712+4 _ >t n’ . i
4n’+3n 4+% 4
c. I s'agit d'une forme indéterminée du type « — » d. Il s'agit d'une forme indéterminée du type « 0 — oo
2 »
. 3n +n n 3n+1 3n+1
SOltnEN —_— = X = (\/m_\/ﬁ)(\/m_{_\/ﬁ)
' +3 = . VnEN, \yn —\n =
! S 3 o +2=qn Jnt2tn
Or(3n+1)=+ooet(1 +7)=1 __nt2n _ 2
Pk ' . \n+2+ \n+2+
Dong, par limite d'un quotient, s i ! _ﬁ
3n’4n 341 On a multiplié W — \/E par son expression
nt3 T 14l =t conjuguéen + 2 ++/n

Or (\/Tl + 2+ \/E) =+ 00 d’apres la regle sur les
limites de sommes. Dongc, par limite d'un quotient,

-_— 2 -_—
Vn+2—\/£—m—0

III. Comportement a l'infini d'une suite arithmétique et d’'une suite géométrique
Soit i€N. Dans tout le paragraphe, on note I 'ensemble des entiers supérieurs ou égaux a i.
I = {k=i}= N\[0;i — 1]
[0;i — 1] désigne I'ensemble des entiers entre 0 eti — 1 inclus. N\[[0; i — 1] estl’ensemble des entiers
naturels privé des entiers entre 0 et i — 1 inclus (c’est-a-dire 'ensemble des entiers supérieurs ou égaux a i).

1. Suites arithmétiques

Définition 4
Une suite (un) est une suite arithmétique s'il existe un nombre r tel que
nel

Vnel,u =u +r
n+1 n

Le nombre r est appelé raison de la suite.

Exemple
La suite (un) définie par u o =u o= 1 pour tout n€N et u, = 2 est une suite géométrique de raison — 1 et de

premier terme 2.

Propriété 2
Soit (un) une suite arithmétique de raison r et de premier terme u,
nel
Vnel, u =u + (n— Dr

Preuve
Laissée au lecteur (récurrence évidente).

Exemple
Pour la suite précédente, pour tout entier neN,un =2+nM-3)X(—1D=5-n

Limites et variations

| r | r=20 | r <0 | r >0




Premier terme u, uiER uieR uiER
Variations de la suite (u”)nez Constante égale a u, décroissante croissante
ui+(n—i)r u, - + o
Exemple

La suite précédente a pour limite — o

Somme des termes d’une suite géométrique

Propriété 3
Soit (un) une suite arithmétique de raison r et de premier terme u

nel
n

u+u - .
_ . , —D)(n—i+1
vnel, Yu =u +u + ..+u =(n-—-1i+ 1)— "=(n—l+1)u,+wr
Pt k i i+1 n 2 i 2
e —
est le nombre de termes de |  Moyenne du T terme et du
la somime dernier terme de la somme
Preuve
Soit n€l,

n

Zuk=ui+ui+1+ . tu =u_+(ui+r)+(ui+ 2r)+ ...+(ui+(n—i)r)

. n i
k=i

n n—i
Yu=Mm—-i+Du+r)k
.k i
k=i k=0
Par ailleurs, Dans Tes 7 cas, on
n—i n—i . additionne tous les entiers
YXk=Yn—-i-k — entre 0 et

k=0 k=0 "'--l

Dong, en additionnant les sommes (finies) terme a terme,

znz_Lk = nz_lk +nz_l(n —i- k)=n2_l(n —)=m-Dn—i+1)
k=0 k=0 k=0 k=0

e

Tous les termes sont égaux et

On en déduit I'on en dénombre
. k = gn—izgn—i+12
k=0 2
Donc
n . .
Zukz(n—i+ 1)ui+Wr
k=i
Exemple
Pour la suite précédente, on obtient
n 2
_ _ 24+24+(n-3)x(-1) _ (n—=2)(—n+7) _ -n +9n—14
» u = n—-34+1 > = 5 = >

k=3

2. Suites géométriques

Définition 5
Une suite (un) est une suite géométrique s'il existe un nombre g tel que
nel
Vnel, U= qxun

Le nombre q est appelé raison de la suite.

Exemple
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La suite (un) définie par u == 3un pour tout n€N et u, = 5 est une suite géométrique de raison — 3 et de

premier terme 5.

Propriété 4
Soit (un) une suite géométrique de raison g et de premier terme u,
nel

vnel,bu =u X qn
n L

Preuve
Laissée au lecteur (récurrence évidente).

Exemple

Pour la suite précédente, pour tout entier n€N , u = 5%(— 3)n

Limites et variations

q gER g — 1|-1 < g < g=20 0<g<l1 g=1 g>1
Premier
u =20 u+#0 u+#0 UuER u >0 u <90 U ER u >0 u <o
terme u. i i i i i i i i i
l
Variations de : .
la suite Constante , , S‘tatlon.nalre décroissant . Constante| crojssant | décroissant
. . ~ |alternée| alternée a partir du croissante| goa1e 3
(u égalea 0 . e egaleau, e e
n rangi + 1
—i as de
u,qn ' 0 pas. 0 0 0 0 u, + o — o
i limite .
Remarques

Une suite est alternée si le produit de 2 termes consécutifs est négatif. Autrement dit, des termes consécutifs
sont de signes opposés.

Une suite est constante si tous ses termes sont égaux.

Une suite est stationnaire si elle est constante a partir d'un certain rang.

Démonstration dans le cas ¢ > 1 (exigible BAC)
Prérequis
Soit n€l, d’apreés 'inégalité de Bernoulli,
1+a)" 214+ -da
On suppose que g > 1, donc il existe un réel a strictement positiftelqueq = a + 1
. n—i
q" l=(1+a) =1+ —ia
a > 0 donc, par somme et produit des limites,
1+ Mm-1ia)=+ o
Donc, d’apreés le théoréme de comparaison, qn_L =+ o0
On déduit que, par produit des limites,

uiqn_L =+ oo si u, > Oetuiqn_l =— 00 si u <0

Exemple

4" =+ oo donc la suite de terme général — 5x4" a pour limite — oo

Somme des termes d’une suite géométrique

Propriété 5
Soit (un) une suite géométrique de raison g#1 et de premier terme u,
nel
" 2 n—i
Vnel, Y u =u,(1 +qg+q + ... +q )=u,
Pt k i i

n—i+1 n—i+1

1-q
1_

q i q-1

0o



Preuve

Soient n€l et geR\{1},
(1 _ C[)(]. + q +q2+ +qn—z): 1 + q +q2+ +qn—z_ q _qZ_ _qn—t_qn—z+1: 1 _qn—z+1
Donc
2 n—i 1_qn+1—i

1+q+q +..+q = 1=
On en déduit le résultat désiré en passant a 'opposé au numérateur et au dénominateur pour le dernier calcul
n . n—i+1 n—i+1

_ 2 n—iy _ 1—q _ -1
,Eiuk_ui(l +q+q + ..+q )—ui T
Méthode
Utiliser la limite d'une suite géométrique
M yidéo https://youtu.be/XTftGHfnYMw
Déterminer les limites suivantes.

n 2 3 n

(=2) n n 1 1 1 1

a—= b.(Z —3) C.(1+7+(T) +(T> ++(7))

Solution

a.(— 2)n est le terme général d'une suite géométrique de raison — 2 et — 2< — 1 donc (— Z)n ne possede pas
de limite.

(=2)"
3

b. 2" -3"= 3"((%)” - 1)

Or (%)n est le terme général d’une suite géométrique de raison % et— 1< % < 1donc (%)n =0
Donc ((%)n - 1) =—1

3" est le terme général d’'une suite géométrique de raison 3 et 3 > 1 donc 3" =+ o

Dongc, par limite d'un produit, (2" — 3n) = 3"((%)71 - 1) =— ®

Et donc

n'existe pas.

~ . . Je o . 1 .
c. On reconnait les n premiers termes d'une suite geométrique de raison —- et de premier terme 1.

n+1

R N CRICERO RS (RO

1\ L S . 1 1 1\"H
Or (?) est le terme général d'une suite geométrique de raison —-et— 1 <—- < 1donc (7) =0
ponc (1= (3)7 )= 1 et(1 43+ (3) +(3) + -+ (3))=21-()7)=2
Méthode

Etudier une suite arithmético-géométrique
M vidéo https://youtu.be/6-vFnQ6TghM
M yidéo https://youtu.be/0CNt_fUuwEY
Un investisseur dépose 5000 € sur un compte rémunéré a 3% par an. Chaque année suivante, il dépose 300€ de
plus. On note (un) la somme épargnée a l'année n. Ainsi, u, = 5000 et pour tout neN

u  =1,03u + 300

n+1 n

1. Calculer u etu,
2. Prouver que la suite (vn) définie pour tout entier n par v o=u + 10 000 est géométrique et donner sa

raison et son premier terme.
3. Exprimer v en fonction de n.

4. En déduire u_en fonction de n.

5. Etudier les variations de (un)

Solution

1. u = 1,03u0 4+ 300 = 5450 u, = 1,03u1 + 300 = 5913,5
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https://youtu.be/XTftGHfnYMw
https://youtu.be/6-vFnQ6TghM
https://youtu.be/0CNt_fUuwEY

2. Soit neN,

v =u + 10000 = 1,03u + 300 + 10000 = 1,03u_ + 10300 = 1,03(u + 10 000)= 1,03v
n+1 n n n n

n+1
Donc (vn) est une suite géométrique de raison 1,03 et de premier terme v, = Ut 10000 = 15000

3. Pour tout neN, v = 15 000x1, 03"

4. Pour toutneN,u_ = 15 000x1, 03" — 10 000

—u = 15000x1,03""" = 10000 — (15 000x1,03" — 10 000)

n

u —u =15 000><(1,03“+1 — 1,03”) = 15000x1,03"(1,03 — 1) = 450x1,03" > 0

n+1
n

Donc la suite (un) est strictement croissante.

5. Pour tout n€N, u
n+1

IV. Limites et comparaison
1. Théoréemes de comparaison

Théoréme 2
Soit (un) et (vn) deux suites définies sur N.

Si, a partir d'un certain rang, u < v et u =+ oo alors v =4

Preuve
Soit un nombre réel a.
u =+ o
n

donc il existe un entier N1 € N tel que

vn € N, n2N1= a < u
Par hypothese, il existe un entier N2 € N tel que

VneN,n>2N =u <v

2 n n
Posons N = (Nl; Nz) .On en déduit que
VneN, n=N= a < u < v

On en déduit que

v =+
n
Théoreme 3
Soit (un) et (vn) deux suites définies sur N.
Si, a partir d'un certain rang, u 2v etu =— o alors v ==
Preuve
Soit un nombre réel a.
u =— o

donc il existe un entier N1 € N tel que
VneNn, n2N1=>un <a
Par hypothese, il existe un entier N2 € N tel que

VneN,n>N_ =v <u
2 n n

Posons N = (Nl; Nz) . On en déduit que
VneN, n=N—= v < u <a

On en déduit que

Méthode
Déterminer une limite par comparaison
M yidéo https://youtu.be/iQhh46LupN4

. : o : 2
Déterminer la limite suivante (n + (— 1)n)
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https://youtu.be/iQhh46LupN4

Solution
Soit n€N,

- D's - 1o+ 1D'=2n" -1
Or, par somme de limites,
2
(n - 1) =4 oo
Donc, d’apres le théoréme de comparaison,
2 n
(n +(—1 )=+-m

2. Théoreme d'encadrement

Théoreme des gendarmes
Soit (un), (vn) et (wn) trois suites définies sur N.

Si, a partir d'un certain rang, u v swetu =w = L alors v o= L

Preuve
Soit un nombre réel £ > 0.

donc il existe un entier N1 € N tel que

VnEN,n2N1=> |un — L| < gL — e < u <L+ ¢

v = L

donc il existe un entier N2 € N tel que

VnEN,n2N2:> |Wn - L| < gL - < w < L+ ¢
Par hypothese, il existe un entier N3 € N tel que

VneN, n2N3=>un sv sw
Posons N = (Nl; NZ; N3) . On en déduit que
VneN,n=2N=1L — ¢ < v < L + €<=|vn— L| < ¢

Et donc

Méthode

Déterminer une limite par encadrement

M yidéo https://youtu.be/0dzYjz_vQbw
Déterminer la limite suivante

sinn
(1 + S )
Solution
Soit neN ,

sinn
n

. 1 1
—1Ssmsmn£1(=>—7§ 57

Or,

donc, d apres le théoreme des gendarmes,

Et donc, par somme des limites,

V. Convergence des suites monotones

Propriété 6
Soit (un) une suite croissante définie sur N. Si u = L alors la suite (un) est majorée par L.

Preuve
Raisonnons par I'absurde et supposons qu'’il existe un entier p tel que
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https://youtu.be/OdzYjz_vQbw

Posonss=up—L >0

donc il existe un entier N1 € N tel que
VnEN,n2N1=> |un — L| < gL — < u <L+ ¢
Orup = L + edonc
VneN,n=N =u <u
1 n p
La suite (un) est croissante donc
VneNn, n2p=>un > up
Posons N = (Nl; p) . On en déduit que
VneEN,n2N=u <u <u=u <u
P n 2 2 P

Cette derniére égalité est impossible donc I'hypothese est fausse et la suite (un) est majorée par L.

Théoreme de convergence monotone
=  Siune suite croissante est majorée alors elle est convergente.
» Siune suite décroissante est minorée alors elle est convergente.

Remarque

Ce théoreme permet de s'assurer de la convergence mais ne donne pas la limite.

. n+1 , . . , . . . . ,
La suite (—) . est décroissante et minorée par 0 mais tend vers 1 (elle est d’ailleurs aussi minorée par 1).
nenN

Méthode

Utiliser le théoreme de convergence monotone

M yidéo https://youtu.be/g0-MQUIBAfo

On considere la suite (un) définie pour tout entier naturel n par

_ 1 _
il = 3un+ 2 etuo— 2

Démontrer que la suite (un) est convergente et calculer sa limite.

Solution
Montrons par récurrence la proposition P(n) : « u <u < 3»
Initialisation
- L — =5
u1—3u0+2—3+2—
u, <u <3 donc P(0) est vraie
Hérédité
Supposons P (k) vraie et montrons P(k + 1).
1 1 1
u <u, . < 3<=>3uk+ 2 <?uk+1+ 2<5 X3+ 2<=)uk+1<uk+2< 3
Donc P(k + 1) estvraie
Conclusion
La proposition est vraie au rang 0 et héréditaire a partir de ce rang donc, d’apreés le principe de récurrence, elle
est vraie pour tout entier naturel.
VneN,u <u <3
n n+1
La suite (un) est donc strictement croissante et majorée par 3. D'apres le théoréme de convergence monotone,
on en déduit que la suite (un) est convergente. Remarquons que
u = u =1L
n+1 n
Or,

VneN, u =iu + 2
n+1 37

Dong, par produit et somme de limites,
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https://youtu.be/gO-MQUlBAfo

1
u =—

n+1 3L+2

Par unicité de la limite, on en déduit que
L=+L+ 2oL =3
La suite (un) converge donc vers 3.

Théoréme 4
=  Siune suite croissante est non majorée alors elle tend vers + oo
=  Siune suite décroissante est non minorée alors elle tend vers — o

Preuve
Soit un réel a. Comme la suite (un) n'est pas majoreée, il existe un entier p tel que
u >a
2
La suite (un) est croissante donc
VneNn, n2p=>un = up

Donc
VneN, an:mn > a

On en déduit que
u =+

La démonstration est analogue pour le deuxieme point.

Corollaire
= Siune suite croissante, alors soit elle est convergente soit elle tend vers + oo
=  Siune suite décroissante, alors soit elle est convergente soit elle tend vers — oo

Preuve
La preuve découle directement des deux derniers théoremes.
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