
 
Chapitre 02 

Limites de suites 
 

I. Limite finie ou infinie d'une suite 
1. Limite infinie 
Exemple 

La suite  définie sur ℕ par  a pour limite . (𝑢
𝑛
) 𝑢

𝑛
= 𝑛2 + ∞

En effet, les termes de la suite deviennent aussi grand que l'on souhaite à partir d'un certain rang. Si l’on prend 
un réel  quelconque, l'intervalle  contient tous les termes de la suite à partir d'un certain rang. 𝑎 ]𝑎; + ∞[
 

Définition 1 
▪​ On dit que la suite  admet pour limite  si,pour tout réel , l’intervalle  contient tous les (𝑢

𝑛
) + ∞ 𝑎 ]𝑎; + ∞[

termes de la suite à partir d'un certain rang et on note​ ​  𝑢
𝑛

=+ ∞ 
▪​ On dit que la suite  admet pour limite  si, pour tout réel , l’intervalle  contient tous (𝑢

𝑛
) − ∞ 𝑏 ] − ∞; 𝑏[

les termes de la suite à partir d'un certain rang et on note​​  𝑢
𝑛

=− ∞ 

D’un point de vue mathématique,  équivaut à dire que 𝑢
𝑛

=+ ∞ 
 ∀𝐴∈𝑅, ∃𝑁∈𝑁, ∀𝑛∈𝑁, 𝑛≥𝑁⟹𝑢

𝑛
≥𝐴

Par exemple, pour la suite définie  définie ci-dessus, soient  et , (𝑢
𝑛
) 𝐴∈𝑅 𝑛∈𝑁

 𝑢
𝑛
≥𝐴⟺𝑛2≥𝐴 (1)

Donc, si , l’inégalité est toujours vérifiée et  convient. 𝐴≤0 𝑁 = 0
Si , par croissance de la fonction racine sur  𝐴 > 0 𝑅

+

 (1)⟺𝑛≥ 𝐴 
Donc,  convient 𝑁 = ⌊ 𝐴⌋ + 1 = ⌈ 𝐴⌉
Dans tous les cas, il existe un entier naturel  tel que 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁⟹𝑢
𝑛
≥𝐴

Remarques 
▪​ De la même façon,  équivaut à dire que 𝑢

𝑛
=− ∞ 

 ∀𝐴∈𝑅, ∃𝑁∈𝑁, ∀𝑛∈𝑁, 𝑛≥𝑁⟹𝑢
𝑛
≤𝐴

▪​ On peut aussi écrire​ ​ au lieu de​  𝑢
𝑛
 𝑛→∞→ + ∞ 𝑢

𝑛
=+ ∞ 

▪​ Le symbole «   » veut dire « il existe ». ∃
▪​  désigne la partie entière (inférieure) de  et  représente la partie entière supérieure de . Ces ⌊ 𝐴⌋ 𝐴 ⌈ 𝐴⌉ 𝐴

deux notations ne sont pas au programme de terminale mais seront utilisées dans le supérieur. C’est 
pourquoi l’on utilisera les limites des suites usuelles et les opérations sur les limites pour justifier les 
exercices. 

▪​ Dans cet exemple, il est plutôt aisé de trouver une valeur explicite de  (dépendant de ) la plus petite 𝑁 𝐴
possible mais dans certains cas, cela ne sera pas aisé (voire impossible) de l’exprimer avec les fonctions 
usuelles. On utilisera alors des programmes de calcul (algorithme de calcul de seuil) permettant de 
déterminer un rang à partir duquel une suite croissante de limite infinie est supérieure ou égal à un nombre 
réel A 
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Exemple 1 
On considère la suite  définie par  et pour (𝑢

𝑛
) 𝑢

0
= 2

tout entier naturel , 𝑛
 𝑢

𝑛+1
= 4𝑢

𝑛
+ 3

Cette suite est croissante et admet pour limite  + ∞
On a écrit ci-contre un algorithme écrit en langage 
Python. En appliquant cet algorithme avec , 𝐴 = 100

En Python 

 

https://fr.wikipedia.org/wiki/Partie_enti%C3%A8re_et_partie_fractionnaire


 
🖥 Vidéos dans la Playlist 
https://www.youtube.com/playlist?list=PLVUDmbpupCarZdaGUMO7DV35pi1I8zIJZ 
 
 

Remarques 
▪​ Les commandes n=n+1 et n+=1 donnent le même résultat : elles rajoutent 1 à la variable n. 
▪​ On peut aussi utiliser e**n pour calculer l’exponentielle mais le résultat est (un peu) moins précis et ne 

permet pas de calculer l’exponentielle complexe. 
▪​ La première ligne permet d’importer la bibliothèque math qui contient notamment les fonctions de base 

(telles que la fonction racine carrée sqrt pour square root en anglais). 
 
2. Limite finie 
Exemple 
La suite  définie sur  par​  (𝑢

𝑛
) 𝑁

 𝑢
𝑛

= 1

1+𝑛2

possède pour limite 0. En effet, les termes de la suite se resserrent autour de 0 à partir d'un certain rang. Si l’on 
prend un intervalle ouvert quelconque contenant 0 (excepté l’ensemble vide), tous les termes de la suite 
appartiennent à cet intervalle à partir d'un certain rang. 

Définition 2 
On dit que la suite  admet pour limite  si tout intervalle ouvert non vide contenant  contient tous les (𝑢

𝑛
) 𝐿 𝐿

termes de la suite à partir d'un certain rang et on note 
 𝑢

𝑛
= 𝐿 

Une telle suite est dite convergente. 
D’un point de vue mathématique,  équivaut à dire que 𝑢

𝑛
 = 𝐿

 (définition topologique) ∀𝐼⊂𝑅, 𝐼≠∅,  𝐼 𝑜𝑢𝑣𝑒𝑟𝑡 𝑡𝑒𝑙 𝑞𝑢𝑒 𝐿∈𝐼, ∃𝑁∈𝑁, ∀𝑛∈𝑁, 𝑛≥𝑁⟹𝑢
𝑛
∈𝐼

Ou encore 
 (définition métrique) ∀ε > 0, ∃𝑁∈𝑁, ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢

𝑛
− 𝐿| | < ε

C’est souvent cette dernière définition que l’on utilisera dans le supérieur pour montrer la convergence d’une 
suite (au bac, comme on l’a dit précédemment, on se servira des théorèmes des paragraphes suivants). 
Par exemple, montrons la convergence de la suite  citée ci-dessus. Soit un réel  et soit , la suite (𝑢

𝑛
) ε > 0 𝑛∈𝑁

 étant (strictement) positive (𝑢
𝑛
)

 𝑢
𝑛

− 0| | < ε⟺𝑢
𝑛

< ε⟺ 1

1+𝑛2 < ε (2)

Puis, par décroissance de la fonction inverse sur , 𝑅
+
*

 2( )⟺1 + 𝑛2 > 1
ε

 2( )⟺𝑛2 > 1
ε − 1

Si ,  donc  convient ε≥1 1
ε − 1≤0 𝑁 = 0

Si ,  et donc, par stricte croissance de la fonction racine sur  ε < 1 1
ε − 1 > 0 𝑅

+
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on obtient en sortie . À partir du terme , la 𝑛 = 3 𝑢
3

suite est supérieure à 100. 

Exemple 2 
On considère la suite  définie par (𝑣

𝑛
)

 ∀𝑛∈𝑁, 𝑣
𝑛

= 𝑛2 + 𝑛 + 𝑒𝑛

Cette suite est croissante et admet pour limite  + ∞
On veut connaître à partir de quel rang  atteint 𝑣

𝑛
1 000, 1 000 000 et 1 000 000 000. 
D’après l’algorithme en Python écrit ci-contre, les 
rangs cherchés sont respectivement 7, 14 et 21. 

En Python 

 

https://www.youtube.com/playlist?list=PLVUDmbpupCarZdaGUMO7DV35pi1I8zIJZ


 2( )⟺𝑛 > 1
ε − 1

Donc  convient et, dans tous les cas, 𝑁 = ⌊ 1
ε − 1⌋ + 1

 ∃𝑁∈𝑁, ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢
𝑛

− 0| | < ε
 

Définition 3 
Une suite qui n'est pas convergente est dite divergente. 

 
 
Remarque 
Une suite qui est divergente n'admet pas nécessairement de limite infinie. Par exemple, la suite de terme 

générale  prend alternativement les valeurs  et 1. Elle n'admet donc pas de limite finie, ni infinie. Elle − 1( )𝑛 − 1
est donc divergente. 
 

Théorème 1 
Si la suite  est convergente, alors il existe un réel M tel que 𝑢

𝑛( )
 ∀𝑛∈𝑁,  𝑢

𝑛| |≤𝑀
De plus, si les conditions suivantes sont réalisées 

 ∀𝑛∈𝑁,  𝑢
𝑛
≠0 𝑒𝑡 𝑢

𝑛
 ≠ 0 

Alors il existe un réel  tel que 𝑚 > 0
 ∀𝑛∈𝑁,  𝑢

𝑛| |≥𝑚

Preuve 
 est convergente. Soit  sa limite. Soit Il existe donc un entier  tel que 𝑢

𝑛( ) 𝐿∈𝑅 ε > 0.  𝑁
 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢

𝑛
− 𝐿| | <  ε⟺𝐿 −  ε < 𝑢

𝑛
< 𝐿 +  ε

On en déduit que 
 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢

𝑛| | < 𝐿 −  ε| |; 𝐿 +  ε| |( ) 
Par ailleurs, 

 ∀𝑛∈𝑁, 𝑛 < 𝑁⟹ 𝑢
𝑛| | ≤ 𝑢

𝑘| |( ) 
Si l’on pose 

 𝑀
1

= 𝐿 −  ε| |; 𝐿 +  ε| |( )  𝑒𝑡 𝑀
2

= 𝑢
𝑘| |( )  

 convient et dans ce cas 𝑀 = 𝑀
1
; 𝑀

2( ) 
 ∀𝑛∈𝑁,  𝑢

𝑛| |≤𝑀
Supposons maintenant que 

 ∀𝑛∈𝑁,  𝑢
𝑛
≠0 𝑒𝑡 𝑢

𝑛
 ≠ 0 

 donc on peut choisir  tel que  𝐿≠0 ε > 0 0∉ 𝐿 −  ε; 𝐿 +  ε[ ]
On en déduit que 

 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢
𝑛| | > 𝐿 −  ε| |; 𝐿 +  ε| |( ) > 0 

Par ailleurs et par hypothèse, 
 ∀𝑛∈𝑁, 𝑛 < 𝑁⟹ 𝑢

𝑛| | ≥ 𝑢
𝑘| |( ) > 0

Si l’on pose 
 𝑚

1
= 𝐿 −  ε| |; 𝐿 +  ε| |( )  𝑒𝑡 𝑚

2
= 𝑢

𝑘| |( )  
 convient et dans ce cas 𝑚 = 𝑚

1
; 𝑚

2( ) > 0
 ∀𝑛∈𝑁,  𝑢

𝑛| |≥𝑚
 
3. Limites des suites usuelles 

Propriété 1 

 𝑛 =+ ∞  𝑛2 =+ ∞  𝑛 =+ ∞  1
𝑛 = 0  1

𝑛2 = 0  1
𝑛

= 0  
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Démonstration de  1
𝑛 = 0 

Soit un réel  et soit , la suite  étant (strictement) positive ε > 0 𝑛∈𝑁* 1
𝑛( )

 𝑢
𝑛

− 0| | < ε⟺𝑢
𝑛

< ε⟺ 1
𝑛 < ε (3)

Puis, par décroissance de la fonction inverse sur , 𝑅
+
*

 3( )⟺𝑛 > 1
ε

Donc, en posant  (  est le plus petit entier supérieur à ) 𝑁 = ⌊ 1
ε ⌋ + 1 𝑁 1/ε

 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢
𝑛

− 0| | < ε 𝑐𝑞𝑓𝑑 
 
 
 
 

II. Opérations sur les limites 
🖥 Vidéo https://youtu.be/v7hD6s3thp8 
1. Limite d'une somme 

 𝑢
𝑛
  𝐿  𝐿  𝐿  + ∞  − ∞  + ∞
 𝑣

𝑛
  𝐿'  + ∞  − ∞  + ∞  − ∞  − ∞

 𝑢
𝑛

+ 𝑣
𝑛( )  𝐿 + 𝐿'  + ∞  − ∞  + ∞  − ∞ F.I.* 

* Forme indéterminée : on ne peut pas prévoir la limite éventuelle. 
 
Preuve du premier cas 

Supposons que, soient ,​𝐿, 𝐿'∈𝑅
 𝑢

𝑛
 = 𝐿 𝑒𝑡 𝑣

𝑛
 = 𝐿' 

Montrons que 
 𝑢

𝑛
+ 𝑣

𝑛( ) = 𝐿 + 𝐿'

Soit . Soient . Par hypothèse, il existe deux entiers  tels que ε > 0 ε
1
,  ε

2
∈ 𝑅

+
* 𝑁

1
, 𝑁

2
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
1
⟹ 𝑢

𝑛
− 𝐿| | <  ε

1
⟺𝐿 −  ε

1
< 𝑢

𝑛
< 𝐿 +  ε

1

 ∀𝑛∈𝑁, 𝑛≥𝑁
2
⟹ 𝑣

𝑛
− 𝐿'|||

||| <  ε
2
⟺𝐿' −  ε

2
< 𝑣

𝑛
< 𝐿' +  ε

2
Posons 

 𝑁 = (𝑁
1
; 𝑁

2
) 

Soit , d’après l’inégalité triangulaire, 𝑛∈𝑁, 𝑛≥𝑁
 𝑢

𝑛
+ 𝑣

𝑛
− 𝐿 + 𝐿'( )| | = 𝑢

𝑛
− 𝐿 + 𝑣

𝑛
− 𝐿'| | ≤ 𝑢

𝑛
− 𝐿| | + 𝑣

𝑛
− 𝐿'|||

||| < ε
1

+  ε
2

On peut choisir  et  tels que ε
1

ε
2

 ε
1

= ε
2

= ε
2

Ainsi, 

 ∀𝑛∈𝑁, 𝑛≥𝑁, 𝑢
𝑛

+ 𝑣
𝑛

− 𝐿 + 𝐿'( )| | < ε
2 + ε

2 = ε
Et donc 

 𝑢
𝑛

+ 𝑣
𝑛( ) = 𝐿 + 𝐿'

Les autres cas se démontrent avec des raisonnements similaires. 
 
Exemple 

 𝑛2 + 𝑛( ) ?
Solution 

 𝑛2 =+ ∞  𝑒𝑡 𝑛 =+ ∞ 
Par somme des limites, 

 𝑛2 + 𝑛( ) =+ ∞ 
 
2. Limite d'un produit 
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https://youtu.be/v7hD6s3thp8


 𝑢
𝑛
  𝐿  𝐿 > 0  𝐿 < 0  𝐿 > 0  𝐿 < 0  + ∞  − ∞  + ∞ 0 

 𝑣
𝑛
  𝐿'  + ∞  + ∞  − ∞  − ∞  + ∞  − ∞  − ∞  ou  + ∞ − ∞

 𝑢
𝑛

• 𝑣
𝑛( )  𝐿×𝐿'  + ∞  − ∞  − ∞  + ∞  + ∞  + ∞  − ∞ F.I. 

Preuve du premier cas 
Supposons que, soient ,​𝐿, 𝐿'∈𝑅

 𝑢
𝑛
 = 𝐿 𝑒𝑡 𝑣

𝑛
 = 𝐿' 

Montrons que 
 𝑢

𝑛
× 𝑣

𝑛
 = 𝐿×𝐿'

Soit . Soient . Par hypothèse, il existe deux entiers  tels que ε > 0 ε
1
,  ε

2
∈ 𝑅

+
* 𝑁

1
, 𝑁

2
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
1
⟹ 𝑢

𝑛
− 𝐿| | <  ε

1

 ∀𝑛∈𝑁, 𝑛≥𝑁
2
⟹ 𝑣

𝑛
− 𝐿'|||

||| <  ε
2

Posons 
 𝑁 = (𝑁

1
; 𝑁

2
) 

Soit , d’après l’inégalité triangulaire, 𝑛∈𝑁, 𝑛≥𝑁
 𝑢

𝑛
𝑣

𝑛
− 𝐿𝐿'| | = 𝑢

𝑛
𝑣

𝑛
− 𝐿𝑣

𝑛
+ 𝐿𝑣

𝑛
− 𝐿𝐿'| | ≤ 𝑢

𝑛
𝑣

𝑛
− 𝐿𝑣

𝑛| | + 𝐿𝑣
𝑛

− 𝐿𝐿'| | ≤ 𝑣
𝑛| | 𝑢

𝑛
− 𝐿| | + 𝐿| | 𝑣

𝑛
− 𝐿'| |

Or, d’après le théorème 1, il existe  tel que 𝑀
 ∀𝑛∈𝑁,  𝑣

𝑛| |≤𝑀
Posons alors 

 𝑀
1

= (𝑀; 1)  𝑒𝑡 𝑀
2

= ( 𝐿| |; 1)  
En remarquant que  et  par définition, on peut choisir  et  tels que 𝑀

1
> 0 𝑀

2
> 0 ε

1
ε

2

 ε
1

= ε
2𝑀

1
 𝑒𝑡 ε

2
= ε

2𝑀
2

 

Ainsi, 

 ∀𝑛∈𝑁, 𝑛≥𝑁, 𝑢
𝑛
𝑣

𝑛
− 𝐿𝐿'|||

||| < 𝑀
1

× ε
2𝑀

1
+ 𝑀

2
 × ε

2𝑀
2

= ε

Ainsi 
 𝑢

𝑛
• 𝑣

𝑛( ) = 𝐿×𝐿'
Les démonstrations des autres cas se traitent par des raisonnements aussi imbuvables… 
 
Exemple 

 1
𝑛

+ 1( ) 𝑛2 + 3( ) ?  

 
Solution 

 1
𝑛

 = 0⟹ 1
𝑛

+ 1( ) = 1

 𝑛2 =+ ∞ ⟹ 𝑛2 + 3( ) =+ ∞ 
 D'après la règle sur la limite d'un produit 

 1
𝑛

+ 1( ) 𝑛2 + 3( ) =+ ∞ 

 
3. Limite d'un quotient 

 𝑢
𝑛
 L L 

 𝐿 > 0
ou 

 + ∞

 𝐿 < 0
ou 

 − ∞

 𝐿 > 0
ou 

 + ∞

 𝐿 < 0
ou 

 − ∞
0  + ∞  + ∞  − ∞  − ∞  ou + ∞

 − ∞

 𝑣
𝑛
  𝐿'≠0

 + ∞
ou 

 − ∞

0 avec 
 𝑣

𝑛
> 0

0 avec 
 𝑣

𝑛
> 0

0 avec 
 𝑣

𝑛
< 0

0 avec 
 𝑣

𝑛
< 0 0  𝐿' > 0  𝐿' < 0  𝐿' > 0  𝐿' < 0  ou + ∞

 − ∞

 
𝑢

𝑛

𝑣
𝑛

( )  𝐿
𝐿' 0  + ∞  − ∞  − ∞  + ∞ F.I.  + ∞  − ∞  − ∞  + ∞ F.I. 

Preuve du premier cas 
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Supposons que la suite  ne s’annule pas et, soient ,​(𝑣
𝑛
) 𝐿, 𝐿'∈𝑅

 𝑢
𝑛
 = 𝐿 𝑒𝑡 𝑣

𝑛
 = 𝐿' 

Montrons que 

 
𝑢

𝑛

𝑣
𝑛

( ) = 𝐿

𝐿'

Soit . Soient . Par hypothèse, il existe deux entiers  tels que ε > 0 ε
1
,  ε

2
∈ 𝑅

+
* 𝑁

1
, 𝑁

2
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
1
⟹ 𝑢

𝑛
− 𝐿| | <  ε

1

 ∀𝑛∈𝑁, 𝑛≥𝑁
2
⟹ 𝑣

𝑛
− 𝐿'|||

||| <  ε
2

Posons 
 𝑁 = (𝑁

1
; 𝑁

2
) 

Soit , d’après l’inégalité triangulaire, 𝑛∈𝑁, 𝑛≥𝑁

 
𝑢

𝑛

𝑣
𝑛

− 𝐿

𝐿'

|||
||| =

𝑢
𝑛
𝐿'−𝐿𝑣

𝑛

𝐿'𝑣
𝑛

|||
||| =

𝑢
𝑛
𝐿'−𝐿𝐿'+𝐿𝐿'−𝐿𝑣

𝑛

𝐿'𝑣
𝑛

|
|
|

|
|
|

≤
𝑢

𝑛
𝐿'−𝐿𝐿'|||

|||+ 𝐿𝐿'−𝐿𝑣
𝑛| |

𝐿'| | 𝑣
𝑛| | ≤

𝐿'| | 𝑢
𝑛
−𝐿| |+ 𝐿| | 𝑣

𝑛
−𝐿'| |

𝐿'| | 𝑣
𝑛| |

Or, d’après le théorème 1, il existe un réel  tel que 𝑚 > 0
 ∀𝑛∈𝑁,  𝑣

𝑛| |≥𝑚⟺ 1
𝑣

𝑛| | ≤ 1
𝑚

Posons alors 
 𝑀 = 𝐿| |; 1( ) 

En remarquant que  par définition, on peut choisir  et  tels que 𝑀 > 0 ε
1

ε
2

 ε
1

= 𝑚ε
2  𝑒𝑡 ε

2
= 𝑚 𝐿'| |ε

2𝑀  
Ainsi, 

 ∀𝑛∈𝑁, 𝑛≥𝑁, 𝑢
𝑛
𝑣

𝑛
− 𝐿𝐿'|||

||| <
𝐿'| |× 𝑚ε

2 +𝑀× 𝑚 𝐿'| |ε
2𝑀

𝐿'| |𝑚 = ε
Ainsi 

 
𝑢

𝑛

𝑣
𝑛

( ) = 𝐿

𝐿'

 
Exemple 

 2

−𝑛2−3
  ?

Solution 

​ ​ donc​ ​ et donc​​  𝑛2 =+ ∞ − 𝑛2( ) =− ∞ − 𝑛2 − 3( ) =− ∞ 
D'après la règle sur la limite d'un quotient, 

 2

−𝑛2−3
 = 0

Remarque 
Tous ces résultats sont intuitifs. On retrouve par exemple, un principe sur les opérations de limite semblable à la 
règle des signes établie sur les nombres relatifs. Il est important cependant de reconnaître les formes 
indéterminées pour lesquelles il faudra utiliser des calculs algébriques (et souvent factoriser) afin de lever 
l'indétermination ou utiliser d'autres propriétés sur les calculs de limites. 

Les quatre formes indéterminées sont, par abus d'écriture, «   » ;  «   » ; «   » et «   » ∞ − ∞ 0×∞ ∞
∞

0
0

 
Méthode 
Lever une indétermination 
🖥 Vidéo https://youtu.be/RQhdU7-KLMA​ 🖥 Vidéo https://youtu.be/wkMleHBnyqU 
🖥 Vidéo https://youtu.be/loytWsU4pdQ​ 🖥 Vidéo https://youtu.be/9fEHRHdbnwQ 
Déterminer les limites suivantes. 
a
.  𝑛 − 3 𝑛( ) b.  

5𝑛2+4

4𝑛2+3𝑛
 c.  

3𝑛2+𝑛
𝑛+3  d.  𝑛 + 2 − 𝑛( ) 

Solution 
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a. ​ et​  𝑛 =+ ∞ 3 𝑛 =+ ∞ 
Il s'agit d'une forme indéterminée du type «   » ∞ − ∞
Soit ,  𝑛∈𝑁 𝑛 − 3 𝑛 = 𝑛 𝑛 − 3( )
Or​  et  𝑛 =+ ∞ 𝑛 − 3( ) =+ ∞ 
Donc par limite d'un produit, 

 𝑛 − 3 𝑛( ) = 𝑛 𝑛 − 3( ) =+ ∞ 

b.  et​  5𝑛2 + 4 =+ ∞ 4𝑛2 + 3𝑛 =+ ∞ 
Il s'agit d'une forme indéterminée du type «   » ∞

∞

 𝑆𝑜𝑖𝑡 𝑛∈𝑁*,  5𝑛2+4

4𝑛2+3𝑛
= 𝑛2

𝑛2 ×
5+ 4

𝑛2

4+ 3
𝑛

=
5+ 4

𝑛2

4+ 3
𝑛

Or  et  5 + 4

𝑛2( ) = 5 4 + 3
𝑛( ) = 4 

Donc, par limite d'un quotient, 

 
5𝑛2+4

4𝑛2+3𝑛
=

5+ 4

𝑛2

4+ 3
𝑛

= 5
4   

c. Il s'agit d'une forme indéterminée du type «   » ∞
∞

 𝑆𝑜𝑖𝑡 𝑛∈𝑁,  3𝑛2+𝑛
𝑛+3 = 𝑛

𝑛 × 3𝑛+1
1+ 3

𝑛

= 3𝑛+1
1+ 3

𝑛

Or  et  3𝑛 + 1( ) =+ ∞ 1 + 3
𝑛( ) = 1 

Donc, par limite d'un quotient, 

 
3𝑛2+𝑛

𝑛+3 = 3𝑛+1
1+ 3

𝑛

=+ ∞  

d. Il s'agit d'une forme indéterminée du type « ∞ − ∞
 » 

 ∀𝑛∈𝑁, 𝑛 + 2 − 𝑛 = 𝑛+2− 𝑛( ) 𝑛+2+ 𝑛( )
𝑛+2+ 𝑛

 = 𝑛+2−𝑛
𝑛+2+ 𝑛

= 2
𝑛+2+ 𝑛

On a multiplié  par son expression 𝑛 + 2 − 𝑛
conjuguée  𝑛 + 2 + 𝑛
Or ​  d’après la règle sur les 𝑛 + 2 + 𝑛( ) =+ ∞ 
limites de sommes. Donc, par limite d'un quotient, 

 𝑛 + 2 − 𝑛 = 2
𝑛+2+ 𝑛

= 0  

 
 
 
 
III. Comportement à l'infini d'une suite arithmétique et d’une suite géométrique 
Soit . Dans tout le paragraphe, on note  l’ensemble des entiers supérieurs ou égaux à . 𝑖∈𝑁 𝐼 𝑖

 𝐼 = 𝑘≥𝑖{ } = 𝑁\⟦0; 𝑖 − 1⟧
 désigne l’ensemble des entiers entre 0 et  inclus.  est l’ensemble des entiers ⟦0; 𝑖 − 1⟧ 𝑖 − 1 𝑁\⟦0; 𝑖 − 1⟧

naturels privé des entiers entre 0 et  inclus (c’est-à-dire l’ensemble des entiers supérieurs ou égaux à ). 𝑖 − 1 𝑖
 
1. Suites arithmétiques 

Définition 4 
Une suite est une suite arithmétique s'il existe un nombre  tel que 𝑢

𝑛( )
𝑛∈𝐼

 𝑟

 ∀𝑛∈𝐼, 𝑢
𝑛+1

= 𝑢
𝑛

+ 𝑟
Le nombre  est appelé raison de la suite. 𝑟

 
Exemple 
La suite  définie par  pour tout  et  est une suite géométrique de raison  et de (𝑢

𝑛
) 𝑢

𝑛+1
= 𝑢

𝑛
− 1 𝑛∈𝑁 𝑢

3
= 2 − 1

premier terme 2. 
 

Propriété 2 
Soit  une suite arithmétique de raison  et de premier terme  𝑢

𝑛( )
𝑛∈𝐼

𝑟 𝑢
𝑖

 ∀𝑛∈𝐼, 𝑢
𝑛

= 𝑢
𝑖

+ 𝑛 − 𝑖( )𝑟

Preuve 
Laissée au lecteur (récurrence évidente). 
 
Exemple 
Pour la suite précédente, pour tout entier  ,  𝑛∈𝑁 𝑢

𝑛
= 2 + 𝑛 − 3( ) × − 1( ) = 5 − 𝑛

 
Limites et variations 

r  𝑟 = 0  𝑟 < 0  𝑟 > 0
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Premier terme  𝑢
𝑖

 𝑢
𝑖
∈𝑅  𝑢

𝑖
∈𝑅  𝑢

𝑖
∈𝑅

Variations de la suite  𝑢
𝑛( )

𝑛∈𝐼
Constante égale à  𝑢

𝑖 décroissante croissante 

 𝑢
𝑖

+ 𝑛 − 𝑖( )𝑟  𝑢
𝑖  − ∞  + ∞

 
Exemple 
La suite précédente a pour limite  − ∞
 
Somme des termes d’une suite géométrique 

Propriété 3 
Soit  une suite arithmétique de raison  et de premier terme  𝑢

𝑛( )
𝑛∈𝐼

𝑟 𝑢
𝑖

 ∀𝑛∈𝐼,
𝑘=𝑖

𝑛

∑ 𝑢
𝑘

= 𝑢
𝑖

+ 𝑢
𝑖+1

+ … + 𝑢
𝑛

= 𝑛 − 𝑖 + 1( )
𝑢

𝑖
+𝑢

𝑛

2 = 𝑛 − 𝑖 + 1( )𝑢
𝑖

+ 𝑛−𝑖( ) 𝑛−𝑖+1( )
2 𝑟

 

Preuve 
Soit  𝑛∈𝐼,

 
𝑘=𝑖

𝑛

∑ 𝑢
𝑘

= 𝑢
𝑖

+ 𝑢
𝑖+1

+ … + 𝑢
𝑛

= 𝑢
𝑖

+ 𝑢
𝑖

+ 𝑟( ) + 𝑢
𝑖

+ 2𝑟( ) + … + 𝑢
𝑖

+ 𝑛 − 𝑖( )𝑟( )

 
𝑘=𝑖

𝑛

∑ 𝑢
𝑘

= 𝑛 − 𝑖 + 1( )𝑢
𝑖

+ 𝑟
𝑘=0

𝑛−𝑖

∑ 𝑘

Par ailleurs, 

 
𝑘=0

𝑛−𝑖

∑ 𝑘 =
𝑘=0

𝑛−𝑖

∑ 𝑛 − 𝑖 − 𝑘

 
 
Donc, en additionnant les sommes (finies) terme à terme, 

 2
𝑘=0

𝑛−𝑖

∑ 𝑘 =
𝑘=0

𝑛−𝑖

∑ 𝑘 +
𝑘=0

𝑛−𝑖

∑ 𝑛 − 𝑖 − 𝑘( ) =
𝑘=0

𝑛−𝑖

∑ 𝑛 − 𝑖( ) = 𝑛 − 𝑖( ) 𝑛 − 𝑖 + 1( )

 
 
On en déduit 

 
𝑘=0

𝑛−𝑖

∑ 𝑘 = 𝑛−𝑖( ) 𝑛−𝑖+1( )
2

Donc 

 
𝑘=𝑖

𝑛

∑ 𝑢
𝑘

= 𝑛 − 𝑖 + 1( )𝑢
𝑖

+ 𝑛−𝑖( ) 𝑛−𝑖+1( )
2 𝑟

 
Exemple 
Pour la suite précédente, on obtient 

 
𝑘=3

𝑛

∑ 𝑢
𝑘

= 𝑛 − 3 + 1( ) 2+2+ 𝑛−3( )×(−1)
2 = 𝑛−2( ) −𝑛+7( )

2 = −𝑛2+9𝑛−14
2

 
2. Suites géométriques 

Définition 5 
Une suite est une suite géométrique s'il existe un nombre  tel que 𝑢

𝑛( )
𝑛∈𝐼

 𝑞

 ∀𝑛∈𝐼, 𝑢
𝑛+1

= 𝑞×𝑢
𝑛

Le nombre  est appelé raison de la suite. 𝑞
 
Exemple 
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La suite  définie par  pour tout  et  est une suite géométrique de raison  et de (𝑢
𝑛
) 𝑢

𝑛+1
=− 3𝑢

𝑛
𝑛∈𝑁 𝑢

0
= 5 − 3

premier terme 5. 
 

Propriété 4 
Soit  une suite géométrique de raison  et de premier terme  𝑢

𝑛( )
𝑛∈𝐼

𝑞 𝑢
𝑖

 ∀𝑛∈𝐼, 𝑢
𝑛

= 𝑢
𝑖

× 𝑞𝑛−𝑖

Preuve 
Laissée au lecteur (récurrence évidente). 
 
Exemple 

Pour la suite précédente, pour tout entier  ,  𝑛∈𝑁 𝑢
𝑛

= 5× − 3( )𝑛

 
Limites et variations 

q  𝑞∈𝑅  𝑞≤ − 1 − 1 < 𝑞 < 0  𝑞 = 0  0 < 𝑞 < 1  𝑞 = 1  𝑞 > 1
Premier 
terme  𝑢

𝑖
 𝑢

𝑖
= 0  𝑢

𝑖
≠0  𝑢

𝑖
≠0  𝑢

𝑖
∈𝑅  𝑢

𝑖
> 0  𝑢

𝑖
< 0  𝑢

𝑖
∈𝑅  𝑢

𝑖
> 0  𝑢

𝑖
< 0

Variations de 
la suite 

 𝑢
𝑛( )

𝑛∈𝐼

Constante 
égale à  0 alternée alternée 

Stationnaire 
à partir du 
rang  𝑖 + 1

décroissant
e 

croissante 
Constante 
égale à  𝑢

𝑖

croissant
e 

décroissant
e 

 𝑢
𝑖
𝑞𝑛−𝑖  0 pas de 

limite 
0 0 0 0  𝑢

𝑖  + ∞  − ∞

 
Remarques 
Une suite est alternée si le produit de 2 termes consécutifs est négatif. Autrement dit, des termes consécutifs 
sont de signes opposés. 
Une suite est constante si tous ses termes sont égaux. 
Une suite est stationnaire si elle est constante à partir d’un certain rang. 
 
 
 
 
Démonstration dans le cas  (exigible BAC) 𝑞 > 1
Prérequis 
Soit , d’après l’inégalité de Bernoulli, 𝑛∈𝐼

 1 + 𝑎( )𝑛−𝑖≥1 + 𝑛 − 𝑖( )𝑎
On suppose que , donc il existe un réel  strictement positif tel que  𝑞 > 1 𝑎 𝑞 = 𝑎 + 1

 𝑞𝑛−𝑖 = 1 + 𝑎( )
𝑛−𝑖

≥1 + 𝑛 − 𝑖( )𝑎
 donc, par somme et produit des limites, 𝑎 > 0

 1 + 𝑛 − 𝑖( )𝑎( ) =+ ∞ 
Donc, d’après le théorème de comparaison,  𝑞𝑛−𝑖 =+ ∞ 
On déduit que, par produit des limites, 

 𝑢
𝑖
𝑞𝑛−𝑖 =+ ∞ 𝑠𝑖 𝑢

𝑖
> 0 𝑒𝑡 𝑢

𝑖
𝑞𝑛−𝑖 =− ∞ 𝑠𝑖 𝑢

𝑖
< 0 

 
Exemple 

 donc la suite de terme général  a pour limite  4𝑛 =+ ∞ − 5×4𝑛 − ∞
 
Somme des termes d’une suite géométrique 

Propriété 5 
Soit  une suite géométrique de raison  et de premier terme  𝑢

𝑛( )
𝑛∈𝐼

𝑞≠1 𝑢
𝑖

 ∀𝑛∈𝐼,
𝑘=𝑖

𝑛

∑ 𝑢
𝑘

= 𝑢
𝑖

1 + 𝑞 + 𝑞2 + … + 𝑞𝑛−𝑖( ) = 𝑢
𝑖

1−𝑞𝑛−𝑖+1

1−𝑞 = 𝑢
𝑖

𝑞𝑛−𝑖+1−1
𝑞−1
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Preuve 
Soient  et , 𝑛∈𝐼 𝑞∈𝑅\ 1{ }

 1 − 𝑞( ) 1 + 𝑞 + 𝑞2 + … + 𝑞𝑛−𝑖( ) = 1 + 𝑞 + 𝑞2 + … + 𝑞𝑛−𝑖 − 𝑞 − 𝑞2 − … − 𝑞𝑛−𝑖 − 𝑞𝑛−𝑖+1 = 1 − 𝑞𝑛−𝑖+1

Donc 

 1 + 𝑞 + 𝑞2 + … + 𝑞𝑛−𝑖 = 1−𝑞𝑛+1−𝑖

1−𝑞
On en déduit le résultat désiré en passant à l’opposé au numérateur et au dénominateur pour le dernier calcul 

 
𝑘=𝑖

𝑛

∑ 𝑢
𝑘

= 𝑢
𝑖

1 + 𝑞 + 𝑞2 + … + 𝑞𝑛−𝑖( ) = 𝑢
𝑖

1−𝑞𝑛−𝑖+1

1−𝑞 = 𝑢
𝑖

𝑞𝑛−𝑖+1−1
𝑞−1

 
Méthode 
Utiliser la limite d'une suite géométrique 
🖥 Vidéo https://youtu.be/XTftGHfnYMw 
Déterminer les limites suivantes.​  

a. ​ ​ b. ​ ​ c.   −2( )𝑛

3  2𝑛 − 3𝑛( ) 1 + 1
2 + 1

2( )2
+ 1

2( )3
+ … + 1

2( )𝑛( ) 

Solution 

a.  est le terme général d’une suite géométrique de raison  et  donc  ne possède pas − 2( )𝑛 − 2 − 2≤ − 1 − 2( )𝑛

de limite. 

Et donc  n'existe pas. −2( )𝑛

3  
 

b.   2𝑛 − 3𝑛 = 3𝑛 2
3( )𝑛

− 1( )
Or  est le terme général d’une suite géométrique de raison  et  donc  2

3( )𝑛 2
3 − 1 < 2

3 < 1 2
3( )𝑛

= 0 

Donc  2
3( )𝑛

− 1( ) =− 1 

 est le terme général d’une suite géométrique de raison  et  donc  3𝑛 3 3 > 1 3𝑛 =+ ∞ 

Donc, par limite d'un produit,  2𝑛 − 3𝑛( ) = 3𝑛 2
3( )𝑛

− 1( ) =− ∞ 

c. On reconnaît les  premiers termes d'une suite géométrique de raison  et de premier terme 1.  𝑛 1
2

 1 + 1
2 + 1

2( )2
+ 1

2( )3
+ … + 1

2( )𝑛
=

1− 1
2( )𝑛+1

1− 1
2

= 2 1 − 1
2( )𝑛+1( )

Or  est le terme général d’une suite géométrique de raison  et  donc  1
2( )𝑛+1 1

2 − 1 < 1
2 < 1 1

2( )𝑛+1
= 0 

Donc   et  1 − 1
2( )𝑛+1( ) = 1 1 + 1

2 + 1
2( )2

+ 1
2( )3

+ … + 1
2( )𝑛( ) =  2 1 − 1

2( )𝑛+1( ) = 2 

 
Méthode 
Étudier une suite arithmético-géométrique 
🖥 Vidéo https://youtu.be/6-vFnQ6TghM 
🖥 Vidéo https://youtu.be/0CNt_fUuwEY 
Un investisseur dépose 5000 € sur un compte rémunéré à 3% par an. Chaque année suivante, il dépose 300€ de 

plus. On note  la somme épargnée à l'année . Ainsi,  et pour tout , (𝑢
𝑛
) 𝑛 𝑢

0
= 5 000 𝑛∈𝑁*

 𝑢
𝑛+1

= 1, 03𝑢
𝑛

+ 300
1. Calculer  et  𝑢

1
𝑢

2
2. Prouver que la suite  définie pour tout entier  par  est géométrique et donner sa (𝑣

𝑛
) 𝑛 𝑣

𝑛
= 𝑢

𝑛
+ 10 000

raison et son premier terme. 
3. Exprimer  en fonction de . 𝑣

𝑛
𝑛

4. En déduire  en fonction de .  𝑢
𝑛

𝑛
5. Étudier les variations de  (𝑢

𝑛
)

Solution 
1. ​ ​ ​  𝑢

1
= 1, 03𝑢

0
+ 300 = 5 450 𝑢

2
= 1, 03𝑢

1
+ 300 = 5 913, 5
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2. Soit , 𝑛∈𝑁
 𝑣

𝑛+1
= 𝑢

𝑛+1
+ 10 000 = 1, 03𝑢

𝑛
+ 300 + 10 000 = 1, 03𝑢

𝑛
+ 10 300 = 1, 03 𝑢

𝑛
+ 10 000( ) = 1, 03𝑣

𝑛
Donc  est une suite géométrique de raison 1,03 et de premier terme  (𝑣

𝑛
) 𝑣

0
= 𝑢

0
+ 10 000 = 15 000

3. Pour tout ,  𝑛∈𝑁 𝑣
𝑛

= 15 000×1, 03𝑛

4. Pour tout ,  𝑛∈𝑁 𝑢
𝑛

= 15 000×1, 03𝑛 − 10 000

5. Pour tout ,  𝑛∈𝑁 𝑢
𝑛+1

− 𝑢
𝑛

= 15 000×1, 03𝑛+1 − 10 000 − 15 000×1, 03𝑛 − 10 000( )
 𝑢

𝑛+1
− 𝑢

𝑛
= 15 000× 1, 03𝑛+1 − 1, 03𝑛( ) = 15 000×1, 03𝑛 1, 03 − 1( ) = 450×1, 03𝑛 > 0

Donc la suite  est strictement croissante. (𝑢
𝑛
)

 
IV. Limites et comparaison 
1. Théorèmes de comparaison 

Théorème 2 
Soit  et  deux suites définies sur ℕ. (𝑢

𝑛
) (𝑣

𝑛
)

Si, à partir d'un certain rang,  et  alors  𝑢
𝑛

≤ 𝑣
𝑛

𝑢
𝑛

=+ ∞ 𝑣
𝑛

=+ ∞ 

Preuve 
Soit un nombre réel . 𝑎

 𝑢
𝑛

=+ ∞ 
donc il existe un entier  tel que 𝑁

1
∈ 𝑁

 ∀𝑛 ∈ 𝑁, 𝑛≥𝑁
1
⟹ 𝑎 < 𝑢

𝑛
Par hypothèse, il existe un entier  tel que 𝑁

2
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
2
⟹𝑢

𝑛
≤ 𝑣

𝑛
Posons . On en déduit que 𝑁 = 𝑁

1
; 𝑁

2( ) 
 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑎 < 𝑢

𝑛
≤ 𝑣

𝑛
On en déduit que 

 𝑣
𝑛

=+ ∞ 
 

Théorème 3 
Soit  et  deux suites définies sur ℕ. (𝑢

𝑛
) (𝑣

𝑛
)

Si, à partir d'un certain rang,  et  alors  𝑢
𝑛

≥ 𝑣
𝑛

𝑢
𝑛

=− ∞ 𝑣
𝑛

=− ∞ 

Preuve 
Soit un nombre réel . 𝑎

 𝑢
𝑛

=− ∞ 
donc il existe un entier  tel que 𝑁

1
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
1
⟹𝑢

𝑛
< 𝑎

Par hypothèse, il existe un entier  tel que 𝑁
2

∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
2
⟹𝑣

𝑛
≤ 𝑢

𝑛
 
Posons . On en déduit que 𝑁 = 𝑁

1
; 𝑁

2( ) 
 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑣

𝑛
≤ 𝑢

𝑛
< 𝑎

On en déduit que 
 𝑣

𝑛
=− ∞ 

 
Méthode 
Déterminer une limite par comparaison 
🖥 Vidéo https://youtu.be/iQhh46LupN4 

Déterminer la limite suivante ​ ​  𝑛2 + − 1( )𝑛( ) 
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Solution 
Soit , 𝑛∈𝑁

 − 1( )𝑛≥ − 1⟺𝑛2 + − 1( )𝑛 ≥ 𝑛2 − 1
Or, par somme de limites, 

 𝑛2 − 1( ) =+ ∞
Donc, d’après le théorème de comparaison, 

 𝑛2 + − 1( )𝑛( ) =+ ∞ 
 
2. Théorème d'encadrement 

Théorème des gendarmes 
Soit ,  et  trois suites définies sur ℕ. (𝑢

𝑛
) (𝑣

𝑛
) (𝑤

𝑛
)

Si, à partir d'un certain rang,  et  alors  𝑢
𝑛

≤ 𝑣
𝑛

≤ 𝑤
𝑛

𝑢
𝑛

=  𝑤
𝑛

= 𝐿 𝑣
𝑛

= 𝐿 

Preuve 
Soit un nombre réel . ε > 0

 𝑢
𝑛

=  𝐿
donc il existe un entier  tel que 𝑁

1
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
1
⟹ 𝑢

𝑛
− 𝐿| | <  ε⟺𝐿 −  ε < 𝑢

𝑛
< 𝐿 +  ε

 𝑣
𝑛

=  𝐿
donc il existe un entier  tel que 𝑁

2
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
2
⟹ 𝑤

𝑛
− 𝐿| | <  ε⟺𝐿 −  ε < 𝑤

𝑛
< 𝐿 +  ε

Par hypothèse, il existe un entier  tel que 𝑁
3

∈ 𝑁
 ∀𝑛∈𝑁, 𝑛≥𝑁

3
⟹𝑢

𝑛
≤ 𝑣

𝑛
≤ 𝑤

𝑛
Posons . On en déduit que 𝑁 = 𝑁

1
; 𝑁

2
; 𝑁

3( ) 
 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝐿 − ε < 𝑣

𝑛
< 𝐿 + ε⟺ 𝑣

𝑛
− 𝐿| | <  ε

Et donc 
 𝑣

𝑛
= 𝐿 

 
Méthode 
Déterminer une limite par encadrement 
🖥 Vidéo https://youtu.be/OdzYjz_vQbw 
Déterminer la limite suivante 

  1 + 𝑠𝑖𝑛 𝑛
𝑛( ) 

Solution 

Soit , 𝑛∈𝑁*

 − 1≤ sin 𝑠𝑖𝑛 𝑛 ≤1⟺ − 1
𝑛 ≤ 𝑠𝑖𝑛 𝑛

𝑛 ≤ 1
𝑛

, 𝑂𝑟 
 − 1

𝑛( ) = 1
𝑛( ) = 0

, 𝑑𝑜𝑛𝑐,  𝑑'𝑎𝑝𝑟è𝑠 𝑙𝑒 𝑡ℎé𝑜𝑟è𝑚𝑒 𝑑𝑒𝑠 𝑔𝑒𝑛𝑑𝑎𝑟𝑚𝑒𝑠
 𝑠𝑖𝑛 𝑛

𝑛( ) = 0
Et donc, par somme des limites, 

 1 + 𝑠𝑖𝑛 𝑛
𝑛( ) = 1

 
V. Convergence des suites monotones 
 

Propriété 6 
Soit  une suite croissante définie sur ℕ. Si  alors la suite  est majorée par . (𝑢

𝑛
) 𝑢

𝑛
=  𝐿 (𝑢

𝑛
) 𝐿

 
Preuve 
Raisonnons par l’absurde et supposons qu’il existe un entier p tel que 
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 𝑢
𝑝

> 𝐿
Posons  ε = 𝑢

𝑝
− 𝐿 > 0

 𝑢
𝑛

=  𝐿
donc il existe un entier  tel que 𝑁

1
∈ 𝑁

 ∀𝑛∈𝑁, 𝑛≥𝑁
1
⟹ 𝑢

𝑛
− 𝐿| | <  ε⟺𝐿 −  ε < 𝑢

𝑛
< 𝐿 +  ε

Or  donc 𝑢
𝑝

= 𝐿 + ε
 ∀𝑛∈𝑁, 𝑛≥𝑁

1
⟹𝑢

𝑛
< 𝑢

𝑝
La suite  est croissante donc (𝑢

𝑛
)

 ∀𝑛∈𝑁, 𝑛≥𝑝⟹𝑢
𝑛

≥ 𝑢
𝑝

Posons . On en déduit que 𝑁 = 𝑁
1
; 𝑝( ) 

 ∀𝑛∈𝑁, 𝑛≥𝑁⟹ 𝑢
𝑝

≤ 𝑢
𝑛

< 𝑢
𝑝
⟹ 𝑢

𝑝
< 𝑢

𝑝
Cette dernière égalité est impossible donc l’hypothèse est fausse et la suite  est majorée par L. (𝑢

𝑛
)

 
Théorème de convergence monotone 
▪​ Si une suite croissante est majorée alors elle est convergente. 
▪​ Si une suite décroissante est minorée alors elle est convergente. 

 
Remarque 
Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite. 

La suite  est décroissante et minorée par 0 mais tend vers 1 (elle est d’ailleurs aussi minorée par 1). 𝑛+1
𝑛( )

𝑛∈𝑁*

 
Méthode 
Utiliser le théorème de convergence monotone 
🖥 Vidéo https://youtu.be/gO-MQUlBAfo 
On considère la suite  définie pour tout entier naturel  par (𝑢

𝑛
) 𝑛

 𝑢
𝑛+1

= 1
3 𝑢

𝑛
+ 2  𝑒𝑡 𝑢

0
= 2

Démontrer que la suite  est convergente et calculer sa limite. (𝑢
𝑛
)

Solution 
Montrons par récurrence la proposition  : «   » 𝑃(𝑛) 𝑢

𝑛
< 𝑢

𝑛+1
< 3

Initialisation 

 𝑢
1

= 1
3 𝑢

0
+ 2 = 2

3 + 2 = 8
3

  donc  est vraie 𝑢
0

< 𝑢
1

< 3 𝑃(0)
Hérédité 
Supposons  vraie et montrons . 𝑃(𝑘) 𝑃(𝑘 + 1)

 𝑢
𝑘

< 𝑢
𝑘+1

< 3⟺ 1
3 𝑢

𝑘
+ 2 < 1

3 𝑢
𝑘+1

+ 2 < 1
3 × 3 + 2⟺𝑢

𝑘+1
< 𝑢

𝑘+2
< 3

Donc  est vraie 𝑃(𝑘 + 1)
Conclusion 
La proposition est vraie au rang 0 et héréditaire à partir de ce rang donc, d’après le principe de récurrence, elle 
est vraie pour tout entier naturel. 

 ∀𝑛∈𝑁, 𝑢
𝑛

< 𝑢
𝑛+1

< 3
La suite  est donc strictement croissante et majorée par 3. D'après le théorème de convergence monotone, (𝑢

𝑛
)

on en déduit que la suite  est convergente. Remarquons que (𝑢
𝑛
)

 𝑢
𝑛+1

=  𝑢
𝑛

=  𝐿
Or, 

 ∀𝑛∈𝑁, 𝑢
𝑛+1

= 1
3 𝑢

𝑛
+ 2

 
Donc, par produit et somme de limites, 
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 𝑢
𝑛+1

 = 1
3 𝐿 + 2

Par unicité de la limite, on en déduit que 

 𝐿 = 1
3 𝐿 + 2⟺𝐿 = 3

La suite  converge donc vers 3. (𝑢
𝑛
)

 
Théorème 4 
▪​ Si une suite croissante est non majorée alors elle tend vers  + ∞
▪​ Si une suite décroissante est non minorée alors elle tend vers  − ∞

Preuve 
Soit un réel . Comme la suite  n'est pas majorée, il existe un entier  tel que 𝑎 (𝑢

𝑛
) 𝑝

 𝑢
𝑝

> 𝑎
La suite  est croissante donc (𝑢

𝑛
)

 ∀𝑛∈𝑁, 𝑛≥𝑝⟹𝑢
𝑛

≥ 𝑢
𝑝

Donc 
 ∀𝑛∈𝑁, 𝑛≥𝑝⟹𝑢

𝑛
> 𝑎

On en déduit que 
 𝑢

𝑛
=+ ∞ 

La démonstration est analogue pour le deuxième point. 
 

Corollaire 
▪​ Si une suite croissante, alors soit elle est convergente soit elle tend vers  + ∞
▪​ Si une suite décroissante, alors soit elle est convergente soit elle tend vers  − ∞

Preuve 
La preuve découle directement des deux derniers théorèmes. 
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