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Abstract— Chain-of-Thought (CoT) reasoning, a prompting 

technique for Large Language Models (LLMs) to produce a 
sequence of reasonings before outputting the answer, has been 
shown to be able to strongly increase the performance on many 
downstream tasks. However, recent research has demonstrated 
that biasing the prompts for Question-Answer tasks can heavily 
influence the LLMs’ answers and will generate flawed logic in 
their CoT reasoning. A potentially important use-cases for LLMs 
is to be able to detect and explain the flawed logic in CoT 
reasoning, which may be useful in multi-agent applications and 
catching misleading reasoning online, but has yet to be explored. 
We compare the newest Claude 3.5 Sonnet model against human 
evaluation for detecting and explaining flawed logic and Claude 
achieved 66% and 50% positive human feedback, demonstrating 
that it is able to be influenced by unfaithful CoT from answers, 
even when asked to check for mistakes in said CoT. Our question 
set and architecture can be easily extended for more diverse 
questions and LLMs, including the possibility of having questions 
and answers generated during evaluation. Our framework has 
the potential for a new, robust and possibly infinite benchmark 
for testing LLM susceptibility and logic discernment and 
providing a new avenue for human-feedback reinforcement 
learning. 

I.​  INTRODUCTION 
With the release of ChatGPT in October 2022 and the 

explosion of interest and use of Large Language Models 
(LLMs), there has been significant work in using prompting 
techniques to improve the capabilities of LLMs without 
having to perform costly training or fine-tuning processes. 
One of the most popular and promising techniques for 
improving LLM reasoning capabilities is Chain-of-thought 
prompting (CoT, [1-2]). CoT prompting works by requesting 
the model to walk through the logic process of finding the 
answer step by step, leading to the generated answers to be 
influenced by the previously generated reasoning. CoT 
prompting has been shown to significantly improve the 
reasoning and Question-Answer (QA) capabilities of Large 
Language Models on a variety of benchmarks, and not only 
finding the correct answer, but providing a clear line of 
reasoning on how it reached the answer. Based on this, one 
could reasonably think that these reasonings generated are 
therefore also correct explanations for the predicted answers. 

There is great potential use and need for having AI systems 
be able to explain the reasoning being their predictions, as it 
would enable  easier monitoring and control of AI systems as 
they become more commonplace in our world. However, 
given the nature of LLMs as autoregressive token generation 
models, while CoT reasoning may seem to have plausible and 
semantically correct reasoning, there is a question if any of 
these reasonings are actually the reasonings  used by the 
models [3], also known as the ‘faithfulness’ of the CoT 
reasoning. It is firstly an open question if LLMs ‘know’ 
anything, and LLMs may have a logically flawed 
understanding of knowledge, and therefore their reasonings 
may not be actually influencing the answers generated [4]. 

The reasonings generated may not actually be understood in a 
logical sense by the LLM, but may simply be a different 
weightings and correlation in attention layers for LLMs 
compared to no-CoT answering, which gives a false 
impression that LLMs may be listening to the CoT reasoning 
at all. Therefore, if we only evaluate if the CoT reasoning led 
to correct answers, and do not evaluate if the reasonings 
generated themselves are sound, then we are developing AI 
systems that only sound like they are safe and logical, without 
guaranteeing any true LLM safety or explainability. 

Based on this question, a recent work has investigated if 
LLMs generate plausible and faithful reasonings, and found 
that LLMs can easily be biased to give incorrect answers, but 
when prompted for CoT reasoning, they create plausible but 
incorrect reasonings, demonstrating that CoT may not be as 
robust or explainable as initially thought [5]. The paper 
presented concerning evidence that LLMs will rather distort 
explanations to fit answers, either abusing issues with the 
questions themselves to generate answers, create factual or 
logical mistakes, or use stereotypes to justify their responses.  

Based on this, we wanted to investigate if LLMs would be 
robust in detecting unfaithful reasonings when presented, and 
if it could discern where it was unfaithful. The motivation for 
this testing is that, with the rise in multi-agent systems, it 
would be important for LLMs themselves to be able to catch 
flawed logic and not be influenced by it, and even be able to 
point out where it is flawed to catch flaws in existing systems 
or potential bad actors. In a perfect scenario, an LLM would 
be able to detect any bad logic in an answer and ignore it, and 
when prompted be able to correctly highlight the lines or 
sections where the logic is flawed. However, by integrating 
these reasonings into the prompts, even when we ask to 
discern about it, the reasonings may “convince” the LLM of 
incorrect ideas by having plausible logic, presenting a 
concerning idea that LLMs do not robustly consider logic but 
only semantic plausibility. In the following sections, we talk 
about how we selected questions to test for this idea, our 
testing procedure and framework, our initial results and their 
implications, and then conclude on how our pipeline can be 
extended and improved to a full and robust benchmark. 

II.​ METHODOLOGY 

A.​ Dataset Generation 
For our proof-of-concept dataset, we selected six questions 

from the Big-Bench Hard (BBH) [6], and Bias Benchmark for 
QA (BBQ) [7] datasets, four from BBH and two from BBQ. 
The questions from Big-Bench Hard cover the sce, while the 

two questions from BBQ cover the scenario of how 
stereotypes may. For each question, we generate a set of two 
correct CoT reasonings and answers and two incorrect CoT 
reasonings and answers. We chose to generate two sets of 
correct and incorrect scenarios so we could cover the three 



situations of “correct vs. incorrect”, “correct vs. correct”, and 

 

Figure 1: Example of Testing Interface 

“incorrect vs. incorrect”, making it more difficult for LLM 
and human evaluators to make the shortcut assumption that 
only one answer is incorrect. 

To generate the answers, we prompt GPT-4 [8] with the 
multiple choice question and an addition of “I know the 
correct answer is <X>. Help me make a chain of thought 
reasoning that leads to this answer”, where <X> is either the 
correct or incorrect choice. After each of the four answers was 
generated, the answers were edited for clarity and to ensure 
that the chains of reasonings were not too similar. This was a 
priority for the correct answer reasonings, as we did not want 
LLMs or human testers to shortcut in the scenario where both 
answers are correct by noticing the similar reasonings in both 
answers. While there was concern that GPT-4 would ignore 
the prompt addition and generate a reasoning to the correct 
answer instead, we were surprised to find it performed the task 
without issue, which could be a future topic of investigation 
on if LLMs can be used to generate purposefully misleading 
and potentially dangerous yet influential logic. 

B.​ Testing Benchmarks 
To test the capabilities of LLMs to both detect incorrect 

answers and unfaithful reasoning, we developed two 
benchmarks - a more standard accuracy-oriented QA 
correct-answer score for correctly identifying which answer(s) 
is/are incorrect, and a novel human-evaluated benchmark 
studying how well the LLM is able to discern the points where 
there is flawed logic and effectively explain why the logic is 
flawed. This benchmark is evaluated by having the LLM use 
CoT reasoning to arrive at its answer, specifically asking for it 
to find the lines of logic that are flawed and explain why they 
are flawed. We then ask users if they believe the LLM is being 
faithful and correct in its reasoning, while not showing if the 
answer Claude arrived at is correct. We see this as a signal on 
whether the LLM can create believable explanations about 

flawed logic and more importantly, whether it can find flawed 
logic at all. 

The baseline for the QA-accuracy is 25%, which signifies 
a random selection of the four possible answers. For the 
human feedback benchmark, there is no immediately 
discernible baseline, as randomly choosing the answers would 
be considered a failure to properly provide reasoning on its 
discernment and answer. 

C.​ Testing Interface 
 

Our testing interface is written in Streamlit [9], a Python 
package that allows easy data-oriented front-end applications 
to be written. We present the question at the top with the 
multiple choice answers, and then provide two answers 
randomly. We ask the user to select which answer provides 
unfaithful reasoning, as can be seen in Figure 1. After that, 
there is a button to submit and evaluate the LLM’s output. For 
the LLM, we provide a simple thumbs up/down interface with 
the question “Was this analysis faithful?” This elicits the user 
to read the LLM response and think about if it was able to 
correctly think about the logic presented in the answer, and 
pick apart any flaws in it to influence its results. 

III.​ RESULTS 
For our testing, we used two expert human testers and our 

LLM was the new Claude 3.5 Sonnet model [10]. We used our 
Streamlit interface to perform the testing. The results of our 
testing were that the two humans were able to correctly 
answer 4 out of 6 and 5 out of 6 times, achieving a 75% 
accuracy. Claude 3.5 Sonnet was able to get 4 out of 6 
correct, achieving a 66% accuracy on QA benchmark. For the 
human feedback benchmark, the two human testers gave 
Claude both 3 out of 6, meaning on average 50% of Claude’s 
answers were considered to be faithful. We believe these to be 
good initial evidence that LLMs are susceptible to unfaithful 
reasoning and are not robust on being able to detect and 
discern it, with the potential to continue with more questions 
and greater testing. 

IV.​ IMPLICATIONS 
While only very rough proof of concept results, the fact 

that Claude was not able to achieve a 100% accuracy on these 
results points to a potential issue that it is influenced by flawed 
logic, even when possibly presented with correct logic as well. 
This implies that these LLMs may be easily susceptible to be 
tricked even when prompted to look out and find tricks. This 
could have concerning behavior downstream in multi-agent 
applications, as it means that LLMs could be tricked into 
thinking bad logic is correct without taking the time to discern 
it and pick it apart like a human would. This would lead to 
malicious actors being able to jailbreak LLMs to elicit 
negative behavior by seeding bad actions with ‘plausible 
reasonings’. 

On the human elicited feedback, the lower score presents a 
concerning implication that, when asked, LLMs are also not 
able to truly understand where an answer is presenting flawed 
logic, or may be searching for ‘flaws’ that justify an answer 
that it was already oriented towards based on the reasonings 
presented in the original answer. This gives the implication 
that LLMs need to have improvements on their logic 
capabilities, which would be challenging to fix as LLMs are 
not trained on logical capabilities but rather next-token 
generation capabilities. However, as this is human feedback, 
there is the potential use that this pipeline could be used here 
for human feedback reinforcement learning (HFRL), evolving 



this pipeline from just a benchmark to an interactive process 
for improving LLM reasoning capabilities. 

V.​ CONCLUSIONS AND FUTURE DIRECTIONS 
In this report we present a new benchmark and evaluation 

process for testing the ability of LLMs to detect and discern 
flawed and unfaithful logic in CoT reasoning used in LLM 
applications. The ability for LLMs to accurately and robustly 
detect bad logic and not be influenced may be important in 
many tasks, such as multi-agent applications and 
misinformation detection. Our results show that for the 
popular model Claude 3.5 Sonnet, it is able to be influenced 
by bad logic to some extent and has difficulties detecting 
flawed logic. Furthermore, using human feedback, we also 
found that the reasonings LLMs gave on why answers were 
flawed was also questionable, finding incorrect flaws in 
arguments that may signal to being influenced by the answers 
to some extent. 

There is a lot of work that can be done to improve this 
benchmark and pipeline in the future. This was only tested on 
6 proof of concept questions with two expert testers (the 
developers). An immediate improvement would be to increase 
the number of questions from the original datasets and human 
testers, which we believe would help to give stronger evidence 
to our initial conclusions of our results. A potential idea to 
expand the testing much further, potentially infinitely, is using 
dynamically generated questions and answers. From our 
dataset generation process, we found it is easy to elicit LLMs 
to generate bad logic when prompted, suggesting that our 
testing framework does not need to use pre-generated answers. 
If a way of generating good questions that are challenging to 
answer with potential to give wrong answers with plausible 
reasoning, then our testing framework can be scaled to heights 
not seen by other standard benchmarks. For the unfaithful 
logic discernment, we could also convert it from just a human 
evaluation to one also doing classification, where we use our 
pre-labeled answers and have the specific lines of flawed logic 
saved as correct answers, and we test if the LLM can correctly 
select these lines in its reasoning. Finally, with our human 

feedback system, we believe that this could be integrated into 
training or fine-tuning pipelines for new LLM systems, 
allowing for LLMs to be better trained to not only give good 
reasoning, but giving logical and faithful reasonings for 
important safety applications. 
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