
Are You Sure About That? Investigating LLM
Capabilities of Detecting Flawed Logic

Nicholas Gray
Department of Computer Science

University of Central Florida

Alejandro Aparcedo
Department of Computer Science

University of Central Florida

Abstract— Chain-of-Thought (CoT) reasoning, a prompting

technique for Large Language Models (LLMs) to produce a
sequence of reasonings before outputting the answer, has been
shown to be able to strongly increase the performance on many
downstream tasks. However, recent research has demonstrated
that biasing the prompts for Question-Answer tasks can heavily
influence the LLMs’ answers and will generate flawed logic in
their CoT reasoning. A potentially important use-cases for LLMs
is to be able to detect and explain the flawed logic in CoT
reasoning, which may be useful in multi-agent applications and
catching misleading reasoning online, but has yet to be explored.
We compare the newest Claude 3.5 Sonnet model against human
evaluation for detecting and explaining flawed logic and Claude
achieved 66% and 50% positive human feedback, demonstrating
that it is able to be influenced by unfaithful CoT from answers,
even when asked to check for mistakes in said CoT. Our question
set and architecture can be easily extended for more diverse
questions and LLMs, including the possibility of having questions
and answers generated during evaluation. Our framework has
the potential for a new, robust and possibly infinite benchmark
for testing LLM susceptibility and logic discernment and
providing a new avenue for human-feedback reinforcement
learning.

I.​ INTRODUCTION
With the release of ChatGPT in October 2022 and the

explosion of interest and use of Large Language Models
(LLMs), there has been significant work in using prompting
techniques to improve the capabilities of LLMs without
having to perform costly training or fine-tuning processes.
One of the most popular and promising techniques for
improving LLM reasoning capabilities is Chain-of-thought
prompting (CoT, [1-2]). CoT prompting works by requesting
the model to walk through the logic process of finding the
answer step by step, leading to the generated answers to be
influenced by the previously generated reasoning. CoT
prompting has been shown to significantly improve the
reasoning and Question-Answer (QA) capabilities of Large
Language Models on a variety of benchmarks, and not only
finding the correct answer, but providing a clear line of
reasoning on how it reached the answer. Based on this, one
could reasonably think that these reasonings generated are
therefore also correct explanations for the predicted answers.

There is great potential use and need for having AI systems
be able to explain the reasoning being their predictions, as it
would enable easier monitoring and control of AI systems as
they become more commonplace in our world. However,
given the nature of LLMs as autoregressive token generation
models, while CoT reasoning may seem to have plausible and
semantically correct reasoning, there is a question if any of
these reasonings are actually the reasonings used by the
models [3], also known as the ‘faithfulness’ of the CoT
reasoning. It is firstly an open question if LLMs ‘know’
anything, and LLMs may have a logically flawed
understanding of knowledge, and therefore their reasonings
may not be actually influencing the answers generated [4].

The reasonings generated may not actually be understood in a
logical sense by the LLM, but may simply be a different
weightings and correlation in attention layers for LLMs
compared to no-CoT answering, which gives a false
impression that LLMs may be listening to the CoT reasoning
at all. Therefore, if we only evaluate if the CoT reasoning led
to correct answers, and do not evaluate if the reasonings
generated themselves are sound, then we are developing AI
systems that only sound like they are safe and logical, without
guaranteeing any true LLM safety or explainability.

Based on this question, a recent work has investigated if
LLMs generate plausible and faithful reasonings, and found
that LLMs can easily be biased to give incorrect answers, but
when prompted for CoT reasoning, they create plausible but
incorrect reasonings, demonstrating that CoT may not be as
robust or explainable as initially thought [5]. The paper
presented concerning evidence that LLMs will rather distort
explanations to fit answers, either abusing issues with the
questions themselves to generate answers, create factual or
logical mistakes, or use stereotypes to justify their responses.

Based on this, we wanted to investigate if LLMs would be
robust in detecting unfaithful reasonings when presented, and
if it could discern where it was unfaithful. The motivation for
this testing is that, with the rise in multi-agent systems, it
would be important for LLMs themselves to be able to catch
flawed logic and not be influenced by it, and even be able to
point out where it is flawed to catch flaws in existing systems
or potential bad actors. In a perfect scenario, an LLM would
be able to detect any bad logic in an answer and ignore it, and
when prompted be able to correctly highlight the lines or
sections where the logic is flawed. However, by integrating
these reasonings into the prompts, even when we ask to
discern about it, the reasonings may “convince” the LLM of
incorrect ideas by having plausible logic, presenting a
concerning idea that LLMs do not robustly consider logic but
only semantic plausibility. In the following sections, we talk
about how we selected questions to test for this idea, our
testing procedure and framework, our initial results and their
implications, and then conclude on how our pipeline can be
extended and improved to a full and robust benchmark.

II.​ METHODOLOGY

A.​ Dataset Generation
For our proof-of-concept dataset, we selected six questions

from the Big-Bench Hard (BBH) [6], and Bias Benchmark for
QA (BBQ) [7] datasets, four from BBH and two from BBQ.
The questions from Big-Bench Hard cover the sce, while the

two questions from BBQ cover the scenario of how
stereotypes may. For each question, we generate a set of two
correct CoT reasonings and answers and two incorrect CoT
reasonings and answers. We chose to generate two sets of
correct and incorrect scenarios so we could cover the three

situations of “correct vs. incorrect”, “correct vs. correct”, and

Figure 1: Example of Testing Interface

“incorrect vs. incorrect”, making it more difficult for LLM
and human evaluators to make the shortcut assumption that
only one answer is incorrect.

To generate the answers, we prompt GPT-4 [8] with the
multiple choice question and an addition of “I know the
correct answer is <X>. Help me make a chain of thought
reasoning that leads to this answer”, where <X> is either the
correct or incorrect choice. After each of the four answers was
generated, the answers were edited for clarity and to ensure
that the chains of reasonings were not too similar. This was a
priority for the correct answer reasonings, as we did not want
LLMs or human testers to shortcut in the scenario where both
answers are correct by noticing the similar reasonings in both
answers. While there was concern that GPT-4 would ignore
the prompt addition and generate a reasoning to the correct
answer instead, we were surprised to find it performed the task
without issue, which could be a future topic of investigation
on if LLMs can be used to generate purposefully misleading
and potentially dangerous yet influential logic.

B.​ Testing Benchmarks
To test the capabilities of LLMs to both detect incorrect

answers and unfaithful reasoning, we developed two
benchmarks - a more standard accuracy-oriented QA
correct-answer score for correctly identifying which answer(s)
is/are incorrect, and a novel human-evaluated benchmark
studying how well the LLM is able to discern the points where
there is flawed logic and effectively explain why the logic is
flawed. This benchmark is evaluated by having the LLM use
CoT reasoning to arrive at its answer, specifically asking for it
to find the lines of logic that are flawed and explain why they
are flawed. We then ask users if they believe the LLM is being
faithful and correct in its reasoning, while not showing if the
answer Claude arrived at is correct. We see this as a signal on
whether the LLM can create believable explanations about

flawed logic and more importantly, whether it can find flawed
logic at all.

The baseline for the QA-accuracy is 25%, which signifies
a random selection of the four possible answers. For the
human feedback benchmark, there is no immediately
discernible baseline, as randomly choosing the answers would
be considered a failure to properly provide reasoning on its
discernment and answer.

C.​ Testing Interface

Our testing interface is written in Streamlit [9], a Python
package that allows easy data-oriented front-end applications
to be written. We present the question at the top with the
multiple choice answers, and then provide two answers
randomly. We ask the user to select which answer provides
unfaithful reasoning, as can be seen in Figure 1. After that,
there is a button to submit and evaluate the LLM’s output. For
the LLM, we provide a simple thumbs up/down interface with
the question “Was this analysis faithful?” This elicits the user
to read the LLM response and think about if it was able to
correctly think about the logic presented in the answer, and
pick apart any flaws in it to influence its results.

III.​ RESULTS
For our testing, we used two expert human testers and our

LLM was the new Claude 3.5 Sonnet model [10]. We used our
Streamlit interface to perform the testing. The results of our
testing were that the two humans were able to correctly
answer 4 out of 6 and 5 out of 6 times, achieving a 75%
accuracy. Claude 3.5 Sonnet was able to get 4 out of 6
correct, achieving a 66% accuracy on QA benchmark. For the
human feedback benchmark, the two human testers gave
Claude both 3 out of 6, meaning on average 50% of Claude’s
answers were considered to be faithful. We believe these to be
good initial evidence that LLMs are susceptible to unfaithful
reasoning and are not robust on being able to detect and
discern it, with the potential to continue with more questions
and greater testing.

IV.​ IMPLICATIONS
While only very rough proof of concept results, the fact

that Claude was not able to achieve a 100% accuracy on these
results points to a potential issue that it is influenced by flawed
logic, even when possibly presented with correct logic as well.
This implies that these LLMs may be easily susceptible to be
tricked even when prompted to look out and find tricks. This
could have concerning behavior downstream in multi-agent
applications, as it means that LLMs could be tricked into
thinking bad logic is correct without taking the time to discern
it and pick it apart like a human would. This would lead to
malicious actors being able to jailbreak LLMs to elicit
negative behavior by seeding bad actions with ‘plausible
reasonings’.

On the human elicited feedback, the lower score presents a
concerning implication that, when asked, LLMs are also not
able to truly understand where an answer is presenting flawed
logic, or may be searching for ‘flaws’ that justify an answer
that it was already oriented towards based on the reasonings
presented in the original answer. This gives the implication
that LLMs need to have improvements on their logic
capabilities, which would be challenging to fix as LLMs are
not trained on logical capabilities but rather next-token
generation capabilities. However, as this is human feedback,
there is the potential use that this pipeline could be used here
for human feedback reinforcement learning (HFRL), evolving

this pipeline from just a benchmark to an interactive process
for improving LLM reasoning capabilities.

V.​ CONCLUSIONS AND FUTURE DIRECTIONS
In this report we present a new benchmark and evaluation

process for testing the ability of LLMs to detect and discern
flawed and unfaithful logic in CoT reasoning used in LLM
applications. The ability for LLMs to accurately and robustly
detect bad logic and not be influenced may be important in
many tasks, such as multi-agent applications and
misinformation detection. Our results show that for the
popular model Claude 3.5 Sonnet, it is able to be influenced
by bad logic to some extent and has difficulties detecting
flawed logic. Furthermore, using human feedback, we also
found that the reasonings LLMs gave on why answers were
flawed was also questionable, finding incorrect flaws in
arguments that may signal to being influenced by the answers
to some extent.

There is a lot of work that can be done to improve this
benchmark and pipeline in the future. This was only tested on
6 proof of concept questions with two expert testers (the
developers). An immediate improvement would be to increase
the number of questions from the original datasets and human
testers, which we believe would help to give stronger evidence
to our initial conclusions of our results. A potential idea to
expand the testing much further, potentially infinitely, is using
dynamically generated questions and answers. From our
dataset generation process, we found it is easy to elicit LLMs
to generate bad logic when prompted, suggesting that our
testing framework does not need to use pre-generated answers.
If a way of generating good questions that are challenging to
answer with potential to give wrong answers with plausible
reasoning, then our testing framework can be scaled to heights
not seen by other standard benchmarks. For the unfaithful
logic discernment, we could also convert it from just a human
evaluation to one also doing classification, where we use our
pre-labeled answers and have the specific lines of flawed logic
saved as correct answers, and we test if the LLM can correctly
select these lines in its reasoning. Finally, with our human

feedback system, we believe that this could be integrated into
training or fine-tuning pipelines for new LLM systems,
allowing for LLMs to be better trained to not only give good
reasoning, but giving logical and faithful reasonings for
important safety applications.

REFERENCES

[1]​ M. Nye et al., “Show Your Work: Scratchpads for Intermediate
Computation with Language Models,” arXiv.org, Nov. 30, 2021.
Available: https://arxiv.org/abs/2112.00114. [Accessed: Oct. 26, 2024]

[2]​ J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 24824–24837, 2022.

[3]​ A. Jacovi and Y. Goldberg, “Towards Faithfully Interpretable NLP
Systems: How should we define and evaluate faithfulness?,” arXiv.org,
Apr. 07, 2020. Available: https://arxiv.org/abs/2004.03685. [Accessed:
Oct. 26, 2024]

[4]​ I. Yildirim and L. A. Paul, “From task structures to world models: what
do LLMs know?,” Trends in Cognitive Sciences, vol. 28, no. 5, pp.
404–415, May 2024, doi: 10.1016/j.tics.2024.02.008

[5]​ M. Turpin, J. Michael, E. Perez, and S. Bowman, “Language Models
Don’t Always Say What They Think: Unfaithful Explanations in
Chain-of-Thought Prompting,” Advances in Neural Information
Processing Systems, vol. 36, pp. 74952–74965.

[6]​ M. Suzgun et al., “Challenging BIG-Bench Tasks and Whether
Chain-of-Thought Can Solve Them,” arXiv.org, Oct. 17, 2022.
Available: https://arxiv.org/abs/2210.09261. [Accessed: Oct. 26, 2024]

[7]​ A. Parrish et al., “BBQ: A Hand-Built Bias Benchmark for Question
Answering,” arXiv.org, Oct. 15, 2021. Available:
https://arxiv.org/abs/2110.08193. [Accessed: Oct. 26, 2024]

[8]​ OpenAI et al., “GPT-4 Technical Report,” arXiv.org. Accessed: Oct. 26,
2024. [Online]. Available: https://arxiv.org/abs/2303.08774

[9]​ “Streamlit • A faster way to build and share data apps.” Available:
https://streamlit.io/. [Accessed: Oct. 27, 2024]

[10]​ “Claude 3.5 Sonnet.” Available:
https://www.anthropic.com/claude/sonnet. [Accessed: Oct. 27, 2024]

	I.​ INTRODUCTION
	II.​METHODOLOGY
	A.​Dataset Generation
	B.​Testing Benchmarks

	III.​RESULTS
	IV.​IMPLICATIONS
	V.​CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES

